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Abstract

Complex Word Identification (CWI) aims to identify difficult words for a reader, en-
abling better reading comprehension. CWI has many applications for different demo-
graphics, including language learners, people with learning difficulties, or readers with
low literacy levels. This thesis explores to what extent it is possible to build and re-
implement a complex word identification system based on the best-performing system
from the shared task competition at CWI-2018. Models were built based on the systems
that were developed at CWI-2018, and learner corpora and contextual features were
added to try and improve performance. An attempt was made to recreate the winning
CAMB system (Gooding and Kochmar, 2018) using publicly accessible resources. This
attempt returned a lower performance than the original system but achieved an F-score
of 0.79 when tested on all data compared to an average score of .84 across all data.
The data used in these experiments was the CWIG3G2 data set from (Yimam et al.,
2017a), as in the original competition. The additional learner and contextual features
that were added were not found to offer improvement to the performance of the original
model. The original data was divided into non-native and native annotators, and all
systems performed worse on the divided data.

Keywords : Complex Word Identification (CWI), NLP, Contextualized embed-
dings, Learner corpora, Native speakers, Non-native speakers.
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Chapter 1

Introduction

1.1 Background

In Natural Language Processing (NLP), the task of Complex Word Identification (CWI)
was originally the first stage in the task of Lexical Simplification (LS). The first LS stud-
ies did not prioritise identifying complex words as a first step but proceeded directly to
word simplification. However, this method was found to be computationally intensive,
as simplifying all words is unnecessary. Identifying the specific word causing difficulty
for the reader was a more efficient approach. Therefore, determining which words
were complex became necessary, and the task of identifying complex words became a
stand-alone NLP task.

CWI machine learning (ML) models have been developed to recognise complex
words that may pose challenges for children, second language learners, individuals with
reading difficulties like dyslexia or aphasia, or those with limited literacy skills. For
example, Carroll et al. (1999) researched simplifying all content words to aid apha-
sia patients with language impairments in comprehending English newspaper articles.
More recently, CWI has been used for the development of authorship identification
(North et al., 2023). This involves measuring vocabulary richness in a text, which
can be used as a linguistic fingerprint and extract a unique writing style. For instance,
research by Abdallah et al. (2013) used complex words as a feature for an email author-
ship identification. Other examples of CWI include those developed by Petersen and
Ostendorf (2007) for text simplification for second language learners, Specia (2010) for
Portuguese native speakers with low literacy levels, and Rello et al. (2013) for people
with dyslexia. In short, with the recent growth in distance learning and educational
technologies, ML models that automatically recognise complex words have an increas-
ing number of applications.

1.2 Complex Word Identification (CWI)

The problem of CWI could be defined as the task of detecting words a specific target
audience finds challenging to comprehend when reading. This is an issue because when
a reader encounters an unknown word, they either cease reading, continue without
understanding or place an incorrect meaning to the sentence. Some readers may consult
a dictionary, but this action breaks the concentration, which requires further cognitive
effort to reengage. Many factors contribute to the complexity of understanding specific
words, depending on an individual’s language background, personal experiences, and

1



2 CHAPTER 1. INTRODUCTION

various linguistic characteristics. The challenge posed by a particular word can be
a highly individual concept that relies on a reader’s native language, skill level, and
reading background. The perception of complexity varies significantly even among
native speakers, influenced by factors such as age and education level. Furthermore,
the difficulty of understanding a particular word can arise from many other factors. In
linguistics, the definition of a complex word, in terms of morphology, is that it consists
of two or more morphemes. A morpheme is a unit of language which can not be
subdivided. A complex word includes a root and one or more affixes, such as the word
slower - er or more than one root word in a compound, such as blackbird. However,
an English word that contains only a root could also be complex. For instance, script
as the root of the word manuscript could have many different meanings, complex or
otherwise, depending on the context and semantic meaning. This leads to the second
main area that linguists refer to when describing complexity. This is whether a word
is semantically transparent. A word is semantically transparent if its meaning can be
derived from the sum of its morphological parts. For instance, the word un - happi -
ness as compared to depart - ment. In the first example, the meaning can be decoded
from the morphemes. However, in the second example, the meaning of “depart” is not
helpful in understanding ”department”. Furthermore, if the word consists of just the
root and can not be broken down into morphological parts, then this could possibly
add another level of difficulty for a reader.

Another factor that can lead to semantic ambiguity is the ever-changing nature of
lexis over time. Neologisms and archaic words are just two such factors that can cause
this. An archaic word means that it may have fallen out of common usage over time.
Another factor could be that the word is borrowed from another language or refers to
a concept that is not typical within the reader’s culture, which may pose challenges for
comprehension. Additionally, the word may be uncommon, with limited exposure for
most people, thus making it harder to grasp. In some cases, the word may refer to a
highly specialized concept, requiring specific knowledge or expertise to understand its
meaning fully. Finally, there might be instances where a common word takes on an
uncommon meaning within a given context, leading to confusion or misinterpretation
for readers who are not familiar with that specific usage. Thus CWI is an important
NLP task that has been researched for the last decade.

To sum up, CWI has become a popular task in its own right and not only as the
primary stage in the LS pipeline. The first researcher to consider CWI as a distinct
task from LS was Shardlow (2013). Two specific CWI shared task competitions have
been held, one at SemEval 2016 (Paetzold and Specia, 2016b) and the other at 2018
(Yimam et al., 2018). At SemEval 2021 (Shardlow et al., 2021b), the task was renamed
Lexical Complexity Prediction (LCP), as the data used for this task defined complexity
on a Likert scale of 1-5 as opposed to a binary value. A definition of complexity and
types of complexity in terms of CWI is expanded on in chapter 2. The Related work
section will also include an analysis of the major studies and shared tasks in this area.

This thesis aims to contribute to the task of CWI by building a system inspired
by the winning CAMB system (Gooding and Kochmar, 2018) from the CWI Shared
Task at SemEval 2018 (Yimam et al., 2018) and investigate additional features. The
CAMB system code is available on Github1, but it does not have all the resources
available to run. Lastly, this thesis will investigate the effect of additional features on
the performance of the model by becoming a virtual participant at CWI-2018.

1https://github.com/siangooding/cwi 2018/tree/master
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1.3 Research Question

The main research question is thus:

To what extent is it possible to build a system for CWI based on the best-
performing CAMB system from CWI-2018, using open, publicly available
resources?

The following sub-questions will also be addressed:

1) Would contextual features and additional learner corpus word frequency information
help in the task of complex word identification?

2) To what extent do the complex word annotations by non-native and native speakers
impact the performance of the CWI models? Is this difference measurable?

In order to answer the research questions, the research is threefold. Firstly, this
thesis will create baseline systems, for binary and probabilistic classification, based on
the features described in Yimam et al. (2017a). Then try to partially re-implement
the best-performing CAMB system (Gooding and Kochmar, 2018) with all publicly
available resources. As a result, investigating features and systems that may be useful
for further research into this topic. These systems will aim to shadow participation in
both the binary and probabilistic tracks for English, as the CAMB system did in the
original 2018 competition. Lastly, the research will attempt to improve the performance
of the system by exploring a few new features. Two areas that will be examined for
features will be contextualised embeddings and learner corpus data; this is outlined
in greater detail in the Method 3 section. Finally, this thesis plans to investigate a
separate track that splits the non-native and native annotated data and investigates
to what extent the annotations provided by these two groups have an impact on the
performance of CWI models. In CWI 2018, the data was annotated by ten native
and ten non-native speakers. The competition used a combined score to determine
if or how complex the word was, giving a binary and probabilistic annotation from
the combined non-native and native annotations. More information on the data set
used for this thesis is in 2.5.2 Description of 2018 Data. In addition to participating
in the task as it was originally designed, this research will run the aforementioned
separate track that makes models with features aimed at improving CWI solely for
non-native speakers. The model’s features will be adjusted to investigate which features
can improve performance for the non-native data.

The relevance of this extra track is to improve the process of CWI in the educa-
tional domain by focusing on the understanding of features that improve complexity
detection for the non-native demographic. Specifically, to examine the task from the
perspective of a non-native English language learner and develop a system that identi-
fies non-native complexity identification improvement. Ideally, a CWI system useful in
education would incorporate complexity with CEFR (Common European Framework
of Reference for Languages). The Common European Framework of Reference (CEFR)
is an internationally recognised standard for describing language proficiency based on
six reference levels – A1, A2, B1, B2, C1 and C2. It aims to ”provide a sound basis
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for the mutual recognition of language qualifications” (Europe, 2020). A system that
could differentiate levels of complexity per CEFR level could be useful for teachers and
learners of English. However, after some research, it was found that such a publicly
available data set annotated for complexity by level is not available. A more detailed
investigation and research into the available data sets will be covered in the Related
Work section.

1.4 Outline

The following is a breakdown and brief overview of what will be included in the re-
maining chapters.

Chapter 2 Related Work presents a comprehensive review of relevant literature,
theories, and studies related to CWI and defines the main concepts drawing upon ex-
isting theories, corpora and methods used.

Chapter 3 Method describes the overall design and approach adopted for the study.
This includes details of the data collection and other resources used for word features.
This chapter also describes machine learning methods used for classification and the
description of text processing.

Chapter 4 Results presents the performance of the models described in the previous
chapter and summarises the main findings to address the research questions. Finally,
the section includes some information about the error analysis.

Chapter 5 Discussion analyses the results, interprets the findings, and discusses
their implications and significance with respect to the research questions. Additionally,
it compares the obtained results for the different systems produced in this investiga-
tion with each other and compares the results with previous CWI studies. Finally, it
highlights any consistencies or disparities.

Chapter 6 Conclusion will summarise the key insights from the experiments, draw
conclusions based on the results and discussion, and mention limitations and possible
future directions for CWI research.



Chapter 2

Related Work

The purpose of this chapter is to give an explanation and definition of the frequently
used terms in the field of CWI. It also provides information on previous research,
collaborative efforts, and annotated data sets that can be used as resources for future
work. This chapter will give an overview of the three prior shared tasks, examining the
data they employed and analyzing the architecture of the top three performing systems
at each event. Finally, it covers further CWI approaches and classification techniques.

2.1 Definition of Complexity

According to Pallotti (2015), the complexity of a word can be divided into absolute
complexity or relative complexity. Absolute complexity, also known as objective com-
plexity, is determined by the linguistic properties of a word. These properties include
morphology, syntax, semantics, and phonology. Examples of linguistic characteristics
that contribute to absolute complexity include having many morphemes, containing
derivational or inflectional affixes, having multiple meanings, or containing multiple
vowels or diphthongs. Furthermore, it is possible for words to be considered complex in
one situation but not in another. This is because some words have multiple meanings.
Polysemous words can often have high absolute complexity because the context often
dictates the semantic meaning. An illustration of polysemy can be seen in the word
’sound’. This term has an extensive array of definitions. Specifically, it has 19 noun
meanings, 12 adjective meanings, 12 verb meanings, 4 meanings in verb phrases, and 2
adverb meanings.

Relative complexity, also known as agent-related complexity, refers to the complex-
ity of language that is influenced by an individual’s experience and psycholinguistic
factors(Pallotti, 2015). For example, words that refer to a specific art, culture, or his-
torical group can be difficult for a second language learner, particularly if there are no
cognates or similar cultural contexts available in their native language. A key problem
with CWI is this idiosyncratic notion of complexity, which can be highly subjective.
For example, for the purposes of English language education, the definition of com-
plexity is expected to depend on the learner’s level and educational background. A
CWI task that addressed the level of complexity from the perspective of a language
learner’s ability would be ideal to address this notion of relative complexity in this par-
ticular example. Such a task would ideally have annotated data from native speakers
of various languages that would allow for comparison. It would then be possible to
determine if there were English words that were more complex for some learners than

5
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others. For example, Romance languages such as Spanish and Italian have roots in
Latin, the same as English. Therefore, many complex words in English share similari-
ties with their Spanish and Italian counterparts, making it easier for these learners to
recognize and understand their meanings. For example, words like ”communication”
(comunicación/comunicazione), ”information” (información/informazione). This could
lower the relative complexity of a word if it was compared to a native speaker of a
language such as Mandarin Chinese, which does not share these similarities. There is a
more detailed explanation of specific psycholinguistic features used in this thesis later
in this chapter2.1.1.

More recently, North et al. (2023) state there are four types of complexity for CWI:
comparative, binary, continuous and personalised. Comparative complexity prediction
is a sub-task of lexical simplification (LS) that uses a value to differentiate between
target words based on their level of complexity. This type of word complexity was used
at the SemEval-2012(Specia et al., 2012) LS task, which in turn came from the SemEval-
2007 (McCarthy and Navigli, 2007) shared task on Lexical Substitution. Between
2012 and 2018, binary complexity prediction was the main area of focus in complexity
prediction research. This involves assigning a binary complexity value of 1 or 0 to a
target word, indicating whether it is complex or non-complex. Research has shown
that binary CWI can have low inter-annotator agreement due to the subjectivity of
lexical complexity, which, as mentioned, depends on an individual’s experiences and
prior knowledge (Maddela and Xu, 2018).

The introduction of Lexical Complexity Prediction (LCP) moves away from binary
classification to a rating system. This aims to handle words that have an unclear level
of complexity, as well as words that fall on the decision boundary. LCP measures
complexity based on a range of difficulty levels and uses this information to make pre-
dictions. It assigns varying levels of complexity to target words, such as the Likert scale
used at SemEval-2021. Continuous complexity, also known as LCP (Lexical Complex-
ity Prediction), involves measuring the degree of difficulty associated with a particular
word and predicting its complexity level accordingly. This is accomplished by assigning
a complexity label to each target word, ranging from very easy to very hard, based on
specific thresholds. The scale on which the words were rated was for this specific task
and data set used at SemEval-2021, and the thresholds are defined as follows: very easy
(0), easy (0.25), neutral (0.5), difficult (0.75), or very difficult (1). These scales could
have been with 10 points or 100 points, but this was the way the data was annotated
in this task.

Researchers studying complexity prediction are exploring ways to personalize lex-
ical simplification (Lee and Yeung, 2018). Prior systems have not taken into account
the variations in vocabulary knowledge among users, resulting in a “one size fits all”
approach that fails to accurately model varying perceptions of lexical complexity. To
address this issue, personalized CWI systems have been introduced, which cater to in-
dividual users or specific target demographics. These systems use demographic features
such as language proficiency, native language, race, job, age, ethnicity, or education to
make predictions on an individual basis. For example, (Tack et al., 2016) predicted the
lexical competence of French as a foreign language learners (FFL) by targeting learners
who were native speakers of Dutch having attained the A2/B1 proficiency in French.

Lastly, there is the Personalised Data Set from (Lee and Yeung, 2018), which uses
15 learners of English who were native Japanese speakers. This data consists of 12,000
words labelled with varying degrees of complexity, using a 5-point Likert scale. The
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most recent data set is the CompLex data set (Shardlow et al., 2020) contains 10,800
words and MWEs labelled with 5-point Likert with the words given in context taken
from the Bible, biomedical articles, and Europarl. This set was annotated by people
from US, UK, and Australia.

2.1.1 Psycholinguistic Features Description

The Medical Research Council (MRC) Psycholinguistic Database 1 of English words
(Wilson, 1988; Coltheart, 1981) has data that is freely available and in accessible format
for NLP. Psycholinguistic attributes are characteristics of words that affect how they
are processed and understood in the human brain. Some frequently encountered psy-
cholinguistic attributes of words are frequency, imageability, phonological properties,
semantic relatedness and morphological complexity. The frequency of a word refers
to how often it is used in a language. Generally, words that are used more often are
processed more accurately and quickly than less common words. Concreteness refers
to how well a word represents a tangible object or idea. Words that represent physical
objects, such as ”apple” or ”dog,” are generally processed more accurately and quickly
than abstract words, such as ”freedom” or ”justice.” Imageability is the ability of a word
to bring to mind mental images or visual associations. Words that are highly imageable,
like ”mountain” and ”rainbow,” are usually processed more quickly and accurately than
words with low imageability, such as ”justice” and ”philosophy.” Phonological prop-
erties relate to how words sound, such as their syllable structure, stress pattern, and
phoneme composition. Words that are easy to pronounce and have a consistent sound
structure are usually processed faster and more accurately than words with irregular
phonological properties. Semantic relatedness refers to how closely a word’s meaning
is connected to other words in a language. When words are semantically related, they
are usually processed faster and with greater accuracy compared to words that have no
relation to each other. Morphological complexity refers to the number of morphemes
in a word. Morphemes are the smallest units of meaning in a language. Words with
more morphological complexity, such as ”unhappiness,” are usually processed slower
and less accurately than simpler words, such as ”happy.”

2.2 Evaluation methods used in CWI systems

This section will discuss the metrics used to evaluate the performance of systems used in
the three international competitions at SemEval-2016, CWI–2018 at BEA and SemEval-
2021. These metrics include accuracy, precision, recall, F1-score, G-score, mean abso-
lute error, mean squared error, Pearson’s correlation, and Spearman’s rank.

F1-Score.F1-score is the harmonic average of the accuracy and recall scores. It
penalizes those systems that demonstrate either low precision and recall or a high
imbalance between the two. For each class, the F1-scores are computed and then used
to determine the macro and weighted F1-scores for all the systems. The macro F1-
score is the average of all per-class F1-scores, while the weighted F1-score considers the
number of actual occurrences of each class within the dataset to determine the average
of all per-class F1-scores. The F1 score is calculated using the formula below:

F1 =
2 · Precision · Recall
Precision + Recall

(2.1)

1https://websites.psychology.uwa.edu.au/school/mrcdatabase/uwa_mrc.htm

https://websites.psychology.uwa.edu.au/school/mrcdatabase/uwa_mrc.htm
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G-score. G-score or Geometric mean unlike F1-score, takes into account accuracy
and recall rather than precision and recall (the square root of the product of precision
and recall).

G =

√
TP

(TP + FP) · (TP + FN)
(2.2)

Mean absolute error (MAE) This is used for systems that are required to
predict continuous instead of binary complexity values are commonly evaluated using
mean absolute error, mean squared error, Pearson Correlation, and Spearman’Rank.
The Mean Absolute Error (MAE) is calculated as follows:

MAE =
1

n

n∑
i=1

|yi − xi| (2.3)

Pearson’s Correlation In LCP-2021, the main method of evaluation was Pear-
son’s Correlation (R). This measures the linear connection between two variables, re-
sulting in a value between 1 and 1. A value closer to 1 indicates a strong positive
correlation, while a value closer to -1 indicates a strong negative correlation. The
equation used for calculating Pearson’s correlation is as follows.

RX,Y =
cov(X,Y )

σXσY
(2.4)

Spearman’s Rank Spearman’s Rank (ρ) considers the non-linear relationship be-
tween two variables, making it more robust in handling outliers compared to Pearson’s
Correlation. The value it returns ranges between -1 and 1, which indicates the corre-
sponding correlations,strong negative (-1) and strong positive. It is calculated using
the following equation.

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(2.5)

In the equation di is the difference between the two ranks of each observation, and
n is the total number of observations.

2.3 Previous tasks on Complex Word Identification

This section will examine the previous SemEval (International Workshop on Semantic
Evaluation) CWI shared tasks from 2016 (Paetzold and Specia, 2016b), CWI-2018
(Yimam et al., 2018), and the Lexical Complexity Prediction task in 2021 (Shardlow
et al., 2021b). It was found that This section will then go on to describe each of these
shared task competitions, the best-performing systems that were submitted, as well as
any other systems and data that could be applicable.

Prior to the 2016 shared task, NLP research was not focused on CWI as a stan-
dalone task. At SemEval-2012, CWI was the first major component for the task of
lexical simplification, but it was not a dedicated task on its own and did not have a
large annotated data set until 2016 (Specia et al., 2012). The LS-2012 data set contains
201 complex words, each with multiple options for simplification and each complex word
is shown in 10 different contexts. Native English speakers annotated the data set by
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providing suggestions for simplification, and four L2 learners ranked the proposed sim-
plifications based on their level of complexity. Next, in 2013, there was the CW Corpus
from Shardlow. This corpus contained 731 complex words and their equivalent simpli-
fication. Complex words were taken from Wikipedia edit history, editor comments, and
a series of simplification checks. This data set had 500 lexical simplification examples
and used 50 annotators from the US. Complex words were taken from Wikipedia and
provided in context at the sentence level.

Another useful resource for CWI and LS is the Word Complexity Lexicon 2 as
described by (Maddela and Xu, 2018). They created a data set of human annotations
for the 15,000 most frequent English words in Google 1T Ngram Corpus. These data
sets used a 6-point Likert scale with the categories: very easy, very hard, moderately
easy, moderately hard, easy and hard and were annotated by 11 non-native yet fluent
English speakers. The scores consist of English words and their complexity scores
obtained by averaging over the human ratings. The data is readily available and is
open access.

A study titled ”Lexical Simplification for Non-Native English Speakers,” conducted
by (Paetzold, 2016), found that non-native English speakers tend to perceive certain
words as complex based on their level of proficiency in the language. The study also
discovered that this perception of complexity decreases with age. Furthermore, the
research emphasized that although such words may not be commonly found in corpora
and may be less ambiguous, their level of complexity can vary based on the context
in which they are used. One of the methods used to distinguish complex words was
detecting their presence in a lexicon, using the word lists Ogden’s Basic English (Ogden
and Halász, 1935), the Simple Wikipedia (Kauchak, 2013), and the SubIMDB corpus
(Paetzold and Specia, 2015), which consists of 4,351 subtitles of movies and series for
children.

2.4 SemEval-2016 Shared Task on CWI

2.4.1 Task

The first major shared task for CWI was held at the International Workshop on Se-
mantic Evaluation (SemEval-2016) and was Task 11: Complex Word Identification 3.
42 systems were submitted from 21 distinct teams, and nine baselines were provided.
The data used for this task is free and available for potential further research. The
objective of the task was to predict the complexity of a word for someone who is not a
native speaker, utilising the annotations of non-native speakers. Table 2.2 shows the 10
best-performing systems ranked in order of G-score. In 2016, the organisers evaluated
the systems using G-score (Equation (2.2)). A full list of the 42 systems and baseline
system scores are shown in Table 2.1. The motivation for using G-Score for evaluation
as opposed to F1 was that the researchers felt the F1 evaluation did not accurately
capture the effectiveness of a solution for the task in terms of CWI for LS (Paetzold
and Specia, 2016b).

2https://github.com/mounicam/lexical_simplification/tree/master
3SemEval-2016 Complex Word Identification https://alt.qcri.org/semeval2016/task11/

https://github.com/mounicam/lexical_simplification/tree/master
https://alt.qcri.org/semeval2016/task11/


10 CHAPTER 2. RELATED WORK

2.4.2 Description of 2016 Data

A group of 400 non-native English speaking participants were enlisted to annotate the
data. The majority of the participants were either university students or staff members.
The participants provided information about their native language, age, education level,
and English proficiency level based on the Common European Framework of Reference
for Languages (CEFR). They were required to determine if they could comprehend the
meaning of each content word (nouns, verbs, adjectives, and adverbs) in a group of
sentences. The sentences were judged individually, and volunteers were asked to high-
light all the words they did not understand, even if they comprehended the sentence
as a whole. The 200 sentences were separated into 20 groups of 10 sentences, and 20
volunteers annotated each group. The remaining 9,000 sentences were divided into 300
groups of 30 sentences, and each group was annotated by a single person. The anno-
tators spoke 45 different languages, with the most common being Portuguese (15.3%),
Chinese (13%), and Spanish (11.3%). The annotators’ age range was between 18 and
66 years old, with an average age of 28.2. Of the volunteers, 63.7% were postgraduate
students, 32.3% were undergraduate students, and 4% were in high school. 36.8% of
the annotators claimed to have advanced (C2) English proficiency skills, 37.7% claimed
to have pre-advanced (C1) skills, 16.6% claimed to have upper-intermediate (B2) skills,
6.4% claimed to have intermediate (B1) skills, 2% claimed to have pre-intermediate
(A2) skills, and 0.5% claimed to have elementary (A1) skills. (Paetzold and Specia,
2016b)

2.4.3 Analysis of best-performing systems in 2016

The results of the shared task showed that ensemble methods trained on morpholog-
ical, lexical, and semantic features outperformed any other ML technique, including
systems that used neural approaches. Also, the more straightforward features based on
word frequency and word presence in certain lexicons worked best. The research found
that “word frequencies remain the most reliable predictor of word complexity.” Paet-
zold and Specia (2016b) Furthermore, the findings demonstrate that Decision Trees
and Ensemble methods are effective for the task, but word frequencies are still the
most dependable predictor of word complexity. The top three performing systems are
analysed below. Table 2.2 show the best-performing system’s scores SV000G, TALN,
UWB. Overall, it can be said that systems in 2016 did not perform well in terms of F1
score.

The system with the highest F-1 score was the PLUJAGH team with their second
SEWDFF system (not shown in Table 2.2 that scored 0.922 Accuracy 0.289 Precision,
0.453 Recall, 0.353 F-score and had a G-Score of 0.608. When evaluating a classifier’s
performance, using the geometric mean instead of the harmonic mean will favour pre-
cision and recall values that are closer together. This is because the harmonic mean
F1 score tends to be more pessimistic than the geometric mean.

PLUJAGH-SEWDFF (Wróbel, 2016) was a simple rule-based method that used
information regarding whether the target word was in a prepared vocabulary list.
They presented two Threshold-Based solutions to CWI that outperformed the rest.
Threshold-based approaches aim to find a specific threshold (t) for a given metric of
simplicity (M) that can accurately categorise a word (w) as complex or simple. If the
metric value for the word M(w) ¡ t, the word is classified as a simple (or complex)
word. Implementing threshold-based approaches is both intuitive and simple and in
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G F Team System Accuracy Precision Recall F-score G-score

22 1 PLUJAGH SEWDFF 0.922 0.289 0.453 0.353 0.608
16 2 LTG System2 0.889 0.22 0.541 0.312 0.672
36 3 LTG System1 0.933 0.3 0.321 0.31 0.478
26 4 MAZA B 0.912 0.243 0.42 0.308 0.575
6 5 HMC DecisionTree25 0.846 0.189 0.698 0.298 0.765
- - Baseline (HV) No Baselines 0.88 0.204 0.539 0.296 0.668
9 6 TALN RandomForest SIM 0.847 0.186 0.673 0.292 0.75
5 7 HMC RegressionTree05 0.838 0.182 0.705 0.29 0.766
8 8 MACSAAR RFC 0.825 0.168 0.694 0.27 0.754
3 9 TALN RandomForest WEI 0.812 0.164 0.736 0.268 0.772
4 10 UWB All 0.803 0.157 0.734 0.258 0.767
4 11 PLUJAGH SEWDF 0.795 0.152 0.741 0.252 0.767
- - Baseline (HV) All Systems 0.791 0.151 0.748 0.251 0.769
7 12 JUNLP RandomForest 0.795 0.151 0.73 0.25 0.761
1 13 SV000gg Soft 0.779 0.147 0.769 0.246 0.774
10 14 MACSAAR NNC 0.804 0.146 0.66 0.24 0.725
4 15 JUNLP NaiveBayes 0.767 0.139 0.767 0.236 0.767
2 16 SV000gg Hard 0.761 0.138 0.787 0.235 0.773
32 17 USAAR entropy 0.869 0.148 0.376 0.212 0.525
17 18 MAZA A 0.773 0.115 0.578 0.192 0.661
31 19 BHASHA DECISIONTREE 0.836 0.118 0.387 0.181 0.529
34 20 BHASHA SVM 0.844 0.119 0.363 0.179 0.508
11 21 Pomona NormalBag 0.604 0.095 0.872 0.171 0.714
12 22 Melbourne runw15 0.586 0.091 0.87 0.165 0.701
13 23 UWB Agg 0.569 0.089 0.885 0.161 0.693
14 24 Pomona GoogleBag 0.568 0.088 0.881 0.16 0.691
28 24 GARUDA SVMPP 0.796 0.099 0.415 0.16 0.546
15 25 IIIT NCC 0.546 0.084 0.88 0.154 0.674
16 25 Baseline (TB) Wikipedia 0.536 0.084 0.901 0.154 0.672
24 26 ClacEDLK ClacEDLK-RF 0.5 0.751 0.09 0.475 0.152 0.582
40 27 GARUDA HSVM&DT 0.88 0.112 0.226 0.149 0.36
18 28 Baseline (TB)SimpleWiki 0.513 0.081 0.902 0.148 0.654
19 29 Melbourne runw3 0.513 0.08 0.895 0.147 0.652
37 29 USAAR entroplexity 0.834 0.097 0.305 0.147 0.447
21 30 ClacEDLK ClacEDLK-RF 0.6 0.688 0.081 0.548 0.141 0.61
20 31 Sensible Baseline 0.591 0.078 0.713 0.14 0.646
23 32 IIIT NCC2 0.465 0.071 0.86 0.131 0.604
25 33 Baseline (TB) Senses 0.436 0.068 0.861 0.125 0.579
33 34 Sensible Combined 0.737 0.072 0.39 0.122 0.51
27 35 AmritaCEN w2vecSim 0.627 0.061 0.486 0.109 0.547
41 35 CoastalCPH Concatenation 0.869 0.08 0.171 0.109 0.285
35 36 CoastalCPH NeuralNet 0.693 0.063 0.398 0.108 0.506
36 37 Baseline (TB) Length 0.332 0.057 0.852 0.107 0.478
39 38 Baseline (LB) Ogdens 0.248 0.056 0.947 0.105 0.393
29 39 AIKU native1 0.583 0.057 0.512 0.103 0.545
29 40 AIKU native 0.555 0.056 0.535 0.101 0.545
30 41 AKTSKI wsys 0.587 0.056 0.49 0.1 0.534
38 41 AmritaCEN w2vecSimPos 0.743 0.06 0.306 0.1 0.434
30 42 AKTSKI svmbasic 0.512 0.053 0.558 0.097 0.534
42 43 Baseline (LB) Wikipedia 0.047 0.047 1 0.089 0.09
43 43 Baseline All Complex 0.047 0.047 1 0.089 0.089
44 44 Baseline (LB)SimpleWiki 0.953 0.241 0.002 0.003 0.003
45 45 Baseline All Simple 0.953 0 0 0 0

Table 2.1: Results for all systems from Sem-Eval 2016 Paetzold and Specia (2016b)
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2016, produced the best performance (Paetzold, 2016). The SEWDFF system considers
a word to be complex if its frequency in Simple Wikipedia is less than 147. Features
used were: term frequency and document frequency for the word and its lemma use in
English Wikipedia, Simple English Wikipedia and corpora created from training and
test sentences. Additionally, the system used the length of the sentence (number of
words), length of the word (number of characters), the position of the word in the
sentence, and GloVe word embedding (Pennington et al., 2014).

The SV000gg-Soft and SV000gg-Hard systems, as discussed in Paetzold and Specia
(2016c), were the top performers in terms of G-score. These systems utilised ensemble-
based models that incorporated various sub-models. The developers believed that using
diverse models would enhance the CWI performance. They conducted experiments
using ensemble-based models that incorporated a lexicon-based model and a threshold-
based model for Support Vector Machines, Decision Trees, and Random Forests. The
lexicon-based model was used to determine if a target word was complex or non-complex
by searching for it in a pre-labelled dictionary of lexemes. The threshold-based model
was used to separate complex and non-complex words based on specific features that
were found to be defining characteristics of each word type and if the target word had
a feature above a certain threshold (North et al., 2023).

TALN (RandomForest WEI) (Ronzano et al., 2016)used Random Forests, which
consisted of several Decision trees trained on multiple features. For features, they used
the position of the target word within a sentence, the number of tokens within that
sentence, and the frequencies of both the target word and its context words within the
British National Corpus (BNC) and the 2014 English Wikipedia Corpus.

The UWB system (Konkol, 2016) used the Maximum Entropy classifier for their
system but stated the choice of classifier only had minimal impact compared with
the choice of features. They concluded that word frequency and document frequency
were the best CWI predictors. Their final system used the single feature of document
frequency. With just this feature, they ended up as the third-best team (with the 4th
best system). This clearly demonstrated a state-of-the-art G-score in the 2016 CWI
task was possible with a very simple system.

G F Team System Accuracy Precision Recall F1-score G-score

1 13 SV000gg Soft 0.779 0.147 0.769 0.246 0.774
2 16 SV000gg Hard 0.761 0.138 0.787 0.235 0.773
3 9 TALN RandomForest WEI 0.812 0.164 0.736 0.268 0.772
4 10 UWB All 0.803 0.157 0.734 0.258 0.767
4 11 PLUJAGH SEWDF 0.795 0.152 0.741 0.252 0.767
4 15 JUNLP NaiveBayes 0.767 0.139 0.767 0.236 0.767
5 7 HMC RegressionTree05 0.838 0.182 0.705 0.290 0.766
6 5 HMC DecisionTree25 0.846 0.189 0.698 0.298 0.765
7 12 JUNLP RandomForest 0.795 0.151 0.730 0.250 0.761
8 8 MACSAAR RFC 0.825 0.168 0.694 0.270 0.754
9 6 TALN RandomForest SIM 0.847 0.186 0.673 0.292 0.750
10 14 MACSAAR NNC 0.804 0.146 0.660 0.240 0.725

Table 2.2: Top 10 performing systems in order of G-score from SemEval-2016 CWI
task (Paetzold and Specia, 2016b).
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2.5 2018 Shared Task on CWI

2.5.1 Description of 2018 task

The second CWI task, known as CWI-2018, took place during the BEA (Building
Educational Applications) Workshop at NAACL-HLT’2018 (North American Chapter
of the Association for Computational Linguistics: Human Language Technologies). The
objective of the 2018 CWI shared task was to use annotations from both native and
non-native speakers to anticipate which words pose difficulties for those who are not
native speakers. This was done because of the findings from the prior shared task
in 2016; the data was found to have strong biases and inconsistencies in the test set,
resulting in very low F-scores across all systems (Paetzold and Specia, 2016a; Wróbel,
2016). The 2018 competition builds on the work from 2016. The data used for the
task was the CWIG3G2 4 (Three Text Genres and Two User Groups) from Yimam
et al. (2017a). In comparison to CWI-2016, CWI-2018 had three significant updates.
Firstly, it was multilingual, unlike its predecessor, which was only available in English.
Secondly, it allowed users to input both single and multiple words as targets. Lastly,
there were two sub-tasks: one that required binary classification and another that
required probabilistic classification. In 2018, CWI received submissions from 12 teams
for various tasks and tracks. Following the competition, 10 teams presented their
system description papers at the BEA workshop.

The objective of the 2018 CWI shared task was to determine which words pose
difficulties for non-native speakers, using annotations gathered from both native and
non-native speakers. In order to train their systems, participants were given a train-
ing set that had been labelled with annotations indicating the complexity of words
in context with binary and probabilistic scores. A month later, an unlabeled test set
was provided, and the participating teams were asked to upload their predictions for
evaluation. In the CWI challenge, participants were given data sets in four languages:
English, German, Spanish monolingual CWI and Multilingual with a French test set.
Participants were only given a French test set, without any French training. This was
done in order to strengthen the cross-lingual element. Each team were offered each of
the sets as a separate track, and then each track was subdivided into the already men-
tioned two classification sub-tasks for the binary and probabilistic annotations (Yimam
et al., 2018).

2.5.2 Description of 2018 data

For the English data set, annotations were collected using Amazon Mechanical Turk
(MTurk). The annotators received a paragraph-level task HIT (Human Intelligence
Task) and were instructed not to choose determiners, numbers, or phrases longer than
50 characters. They were presented with 5 to 10 sentences and were requested to
highlight complex words or phrases that were complex in the paragraph. Annotators
were told they should assume a given target reader, such as children, language learners
or people with reading impairments, when assessing if the target is complex. More
than 20 annotators annotated the same text. Complex words were not highlighted
in advance to reduce bias in selection. As shown in Table 2.3, the total number of
annotators was 183, consisting of 134 native speakers and 49 non-native speakers. This

4Complex Word Identification (CWI) Shared Task 2018 https://sites.google.com/view/

cwisharedtask2018/

https://sites.google.com/view/cwisharedtask2018/
https://sites.google.com/view/cwisharedtask2018/
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non-native category does not have a further breakdown of the native language. Yimam
et al. (2017a) sorted the assignments completed by both native and non-native speakers
based on their inter-annotator agreement scores and selected the top 10 for each group.
The annotations showed a measurable difference in annotation agreement between the
two groups.

Language Native Non-native Total

English 134 49 183

German 12 11 23

Spanish 10 12 22

Table 2.3: The number of annotators for different languages (Yimam et al., 2018).

A breakdown of the data can be seen in Table 2.4, the training set contains 27,296
instances, the development set has 3,325 instances, and the test set has 4,100 instances.
The data includes a considerable number of Multiple Word Expressions (MWEs), while
approximately 85% of the data comprises single words. It is also worth noting that the
three genres of data do not contain an equal amount of instances with the NEWS
training data having 14,001 total instances with WIKINEWS and WIKIPEDIA having
7,745 and 5,550 total instances respectively.

Data Train Dev Test

NEWS (Word) 11,948 1,501 1,812
NEWS (MWEs) 2,053 262 282

WIKINEWS (Word) 6,779 775 1,137
WIKINEWS (MWEs) 966 94 149

WIKIPEDIA (Word) 4,832 605 749
WIKIPEDIA (MWEs) 718 88 120

Total Instances 27,296 3,325 4,100

Table 2.4: 2018 CWI data showing number of single word and Multi Word Expression
(MWE) instances (Yimam et al., 2018).

The format of the CWIG3G2 data is shown in Table 2.5. Each line represents a
sentence with one complex word annotation and relevant information, each separated
by a TAB character. The first column gives the HIT ID and shows the paragraph given
to the annotators. All sentences with the same ID belong to the same HIT. The next
column gives the sentence, and the following two columns provide the start and end
slice index of the target word or phrase in the next column. The next two columns show
the Native and Non-native annotator count, which is always ten each for all data. The
”Native” and ”Non-Native” columns give a number for how many annotators decided
the word or phrase was complex for each group. The ”Gold Binary” column is one if
any annotators deem the word complex. The ”Gold Prob” column is the probability of
the word calculated from the total number of annotators divided by the total number.
For instance, in the first row of the table, ”flexed their muscles” was labelled complex
by 3 Native speakers and 2 Non-natives; therefore, the probability was calculated as
(3+2/20), giving 0.25. Additionally, the sentence includes a reference number of the
paragraph that was shown to the annotators. For English, a development and training
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set is given for the three genres, WIKIPEDIA, WIKINEWS and NEWS. In the original
competition, a test set was later supplied for each genre. Further analysis of this data
is done in the Method 3.1 section, as this data was used in all experiments.

HIT Sentence Start End Target Native
Non-
native

Native
Non-
native

Gold
Bi-
nary

Gold
Prob

3P7RGT
LO6EE0
7HLUVD
KKHS6O
7CCKA5

Both China and the Philip-
pines flexed their muscles on
Wednesday.

31 51
flexed
their
muscles

10 10 3 2 1 0.25

3P7RGT
LO6EE0
7HLUVD
KKHS6O
7CCKA5

Both China and the Philip-
pines flexed their muscles on
Wednesday.

31 37 flexed 10 10 2 6 1 0.4

3P7RGT
LO6EE0
7HLUVD
KKHS6O
7CCKA5

Both China and the Philip-
pines flexed their muscles on
Wednesday.

44 51 muscles 10 10 0 0 0 0

Table 2.5: 2018 shared task CWI training data format (CWIG3G2)Yimam et al.
(2017a)

2.5.3 Best-performing system 2018

At CWI-2018, the three best-performing systems were CAMB (Gooding and Kochmar,
2018), NILC (Hartmann and Dos Santos, 2018) and ITEC (De Hertog and Tack, 2018).
Figure 2.1 below shows the 10 teams that submitted description papers and the type of
features and classifiers used. Table 2.6 shows all systems that were submitted for the
binary classification mono-lingual English task ranked by F1 score. Table 2.7 shows
the teams ranked in MAE order for the probabilistic classification task. The best-
performing systems were examined to try and establish common features used. As
can be seen in Table 2.6, the CAMB system outperformed all other systems across all
three genres. The CAMB system uses a total of 27 features Gooding and Kochmar
(2018)k: word length, number of syllables, WordNet features such as the number of
synsets), word n-gram and POS tags, and dependency parse relations, the number of
words grammatically related to the target word, CEFR levels, Google N-gram word
frequencies and psycholinguistic features from the MRC Database Wilson (1988); word
familiarity rating, number of phonemes, Thorndike-Lorge written frequency, imageabil-
ity rating, concreteness rating, number of categories, samples, and written frequencies,
and age of acquisition. A detailed breakdown of the features used in the CAMB system
is in the Method 3.3. There are two notebooks on GitHub 5, but currently, these are
no links to the external resources that were used for feature extraction.

NILC (Hartmann and Dos Santos, 2018) used Our three groups of features. Lexical:
includes word length, number of syllables, number of senses, hypernyms and hyponyms
in WordNet.N-gram: includes log probabilities of an n-gram containing target words
in two language models trained on Book Corpus and One Billion Word data sets using
SRILM (Stolcke, 2002). Lastly, they used the psycholinguistic features of familiarity,
age of acquisition, concreteness and imageability. They used the XGBoost classifier
for this system. This team did develop two other systems that used a shallow neural

5CAMB System Notebooks https://github.com/siangooding/cwi_2018/tree/master

https://github.com/siangooding/cwi_2018/tree/master
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network method using only word embeddings and a Long Short-Term Memory (LSTM)
language model, but they did not perform as well as the feature engineered system.

ITEC (De Hertog and Tack, 2018) was a system that uses deep learning architecture
with information on five aspects: distributional information of the target word itself,
morphological structure, psychological measures, corpus counts and topical informa-
tion. The encoding for each target word is done using its word embedding. In the
case of word groups, the embeddings are concatenated. The assumption is that words
with similar distributional patterns have a similar level of complexity. To reduce the
dimensionality of the representation, an LSTM layer with 64 dimensions is used.

Figure 2.1: Systems submitted to CWI-2018 for the English binary classification task
(Single word track) in alphabetical order, as summarised by Yimam et al. (2018)

.

2.6 SemEval-2021 Task 1: Lexical Complexity Prediction

2.6.1 Task

Task 1 at SemEval-2021 (The 15th International Workshop on Semantic Evaluation)
was Lexical Complexity Prediction (LCP), also referred to as LCP-2021 6. The LCP
shared task 2021 provided participants with a new annotated English data set with a
Likert scale annotation. This data set aims to address some idiosyncratic and subjec-
tive notions of complexity by introducing a Likert scale and giving words a rating of
complexity. The competition had a total of 58 teams, and the competition had two
sub-tasks. Task 1 was broken down into two sub tasks. For the first sub-task, teams
were asked to predict the complexity values for individual words. The second sub-task
required participants to predict complexity values for the entire data set, which in-
cluded MWEs (Shardlow et al., 2021b). The results of the 10 best-performing systems
can be seen in Table 2.8.

6https://sites.google.com/view/lcpsharedtask2021

https://sites.google.com/view/lcpsharedtask2021
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NEWS WIKINEWS WIKIPEDIA
System F-1 RankSystem F-1 RankSystem F-1 Rank

Camb 0.8736 1 Camb 0.84 1 Camb 0.8115 1
Camb 0.8714 2 Camb 0.8378 2 NILC 0.7965 2
Camb 0.8661 3 Camb 0.8364 4 UnibucKernel 0.7919 3
ITEC 0.8643 4 Camb 0.8378 3 NILC 0.7918 4
ITEC 0.8643 4 NLP-CIC 0.8308 5 Camb 0.7869 5
TMU 0.8632 6 NLP-CIC 0.8279 6 Camb 0.7862 6
ITEC 0.8631 7 NILC 0.8277 7 SB@GU 0.7832 7
NILC 0.8636 5 NILC 0.8270 8 ITEC 0.7815 8
NILC 0.8606 9 NLP-CIC 0.8236 9 SB@GU 0.7812 9
Camb 0.8622 8 CFILT IITB 0.8161 10 UnibucKernel 0.7804 10
NLP-CIC 0.8551 10 CFILT IITB 0.8161 10 Camb 0.7799 11
NLP-CIC 0.8503 12 CFILT IITB 0.8152 11 CFILT IITB 0.7757 12
NLP-CIC 0.8508 11 CFILT IITB 0.8131 12 CFILT IITB 0.7756 13
NILC 0.8467 15 UnibucKernel 0.8127 13 CFILT IITB 0.7747 14
CFILT IITB 0.8478 13 ITEC 0.8110 14 NLP-CIC 0.7722 16
CFILT IITB 0.8478 13 SB@GU 0.8031 15 NLP-CIC 0.7721 17
CFILT IITB 0.8467 14 NILC 0.7961 17 NLP-CIC 0.7723 15
SB@GU 0.8325 17 NILC 0.7977 16 NLP-CIC 0.7723 15
SB@GU 0.8329 16 CFILT IITB 0.7855 20 SB@GU 0.7634 18
Gillin Inc. 0.8243 19 TMU 0.7873 19 TMU 0.7619 19
Gillin Inc. 0.8209 24 SB@GU 0.7878 18 NILC 0.7528 20
Gillin Inc. 0.8229 20 UnibucKernel 0.7638 23 UnibucKernel 0.7422 24
Gillin Inc. 0.8221 21 hu-berlin 0.7656 22 hu-berlin 0.7445 22
hu-berlin 0.8263 18 SB@GU 0.7691 21 SB@GU 0.7454 21
Gillin Inc. 0.8216 22 LaSTUS/TALN 0.7491 25 UnibucKernel 0.7435 23
UnibucKernel 0.8178 26 LaSTUS/TALN 0.7491 25 LaSTUS/TALN 0.7402 25
UnibucKernel 0.8178 26 SB@GU 0.7569 24 LaSTUS/TALN 0.7402 25
CFILT IITB 0.8210 23 hu-berlin 0.7471 26 NILC 0.7360 26
CFILT IITB 0.8210 23 Gillin Inc. 0.7319 28 hu-berlin 0.7298 27
hu-berlin 0.8188 25 Gillin Inc. 0.7275 30 CoastalCPH 0.7206 28
UnibucKernel 0.8111 28 Gillin Inc. 0.7292 29 LaSTUS/TALN 0.6964 29
NILC 0.8173 27 Gillin Inc. 0.7180 31 Gillin Inc. 0.6604 30
LaSTUS/TALN/TALN 0.8103 29 LaSTUS/TALN 0.7339 27 Gillin Inc. 0.6580 31
LaSTUS/TALN 0.8103 29 Gillin Inc. 0.7083 32 Gillin Inc. 0.6520 32
LaSTUS/TALN 0.7892 31 UnibucKernel 0.6788 33 Gillin Inc. 0.6329 33
UnibucKernel 0.7728 33 SB@GU 0.5374 34 SB@GU 0.5699 34
SB@GU 0.7925 30 - - - CoastalCPH 0.5020 35
SB@GU 0.7842 32 - - - LaSTUS/TALN 0.3324 36
LaSTUS/TALN 0.7669 34 - - - - - -
UnibucKernel 0.5158 36 - - - - - -
SB@GU 0.5556 35 - - - - - -
LaSTUS/TALN 0.2912 37 - - - - - -
LaSTUS/TALN 0.1812 38 - - - - - -
LaSTUS/TALN 0.1761 39 - - - - - -
Baseline 0.7579 - Baseline 0.7106 - Baseline 0.7179 -

Table 2.6: Binary classification results for the monolingual English tracks. (Yimam
et al., 2018)
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News WikiNews Wikipedia

Rank MAE Source Rank MAE Source Rank MAE Source

1 0.051 TMU 1 0.0674 Camb 1 0.0739 Camb
2 0.0539 ITEC 1 0.0674 Camb 2 0.0779 Camb
3 0.0558 Camb 2 0.0690 Camb 3 0.0780 Camb
4 0.056 Camb 3 0.0693 Camb 4 0.0791 Camb
5 0.0563 Camb 4 0.0704 TMU 5 0.0809 ITEC
6 0.0565 Camb 5 0.0707 ITEC 6 0.0819 NILC
7 0.0588 NILC 6 0.0733 NILC 7 0.0822 NILC
8 0.0590 NILC 7 0.0742 NILC 8 0.0844 Camb
9 0.1526 SB@GU 8 0.0820 Camb 9 0.0931 TMU
10 0.2812 Gillin Inc. 9 0.1651 SB@GU 10 0.1755 SB@GU
11 0.2872 Gillin Inc. 10 0.2890 Gillin Inc. 11 0.2461 NILC
12 0.2886 Gillin Inc. 11 0.3026 Gillin Inc. 12 0.3156 Gillin Inc.
13 0.2958 NILC 12 0.3040 Gillin Inc. 13 0.3208 Gillin Inc.
14 0.2978 NILC 13 0.3044 Gillin Inc. 14 0.3211 Gillin Inc.
15 0.3090 Gillin Inc. 14 0.3190 Gillin Inc. 15 0.3436 Gillin Inc.
16 0.3656 SB@GU 15 0.3203 NILC 16 0.3578 NILC
17 0.6652 NILC 16 0.3240 NILC 17 0.3819 NILC
- 0.1127 Baseline - 0.1053 Baseline - 0.1112 Baseline

Table 2.7: Probabilistic classification results for the monolingual English tracks (Yimam
et al., 2018).

2.6.2 CompLex Data Description

Participants were provided with an augmented version of the CompLex data set 7

(Shardlow et al., 2020). The sentences were annotated with a 5-point Likert scale. The
complex words for annotation came from three sources/domains: the Bible, Europarl,
and biomedical texts. The annotation process resulted in a corpus of 9,476 sentences,
each annotated by around seven annotators. Significantly, from the perspective of
CWI for English language learners, they selected annotators from English-speaking
countries. The data labels only nouns and multi-word expressions; the annotations
were restricted to those that followed a Noun-Noun or Adjective-Noun structure and
employed Stanford CoreNLP’s POS tagger Manning et al. (2014). The CompLex corpus
contains 1,800 occurrences of multi-word expressions in its three sub-corpora. A multi-
word expression is represented by a Noun-Noun or Adjective-Noun pattern, followed
by any POS tag that is not a noun. At the LCP-2021, the original CompLex data
was augmented by increasing the number of annotations on the same data by utilizing
Amazon’s Mechanical Turk platform. This produced CompLex 1.0, which was used by
teams. This was done to address the reliability problems in the original CompLex data
set (Shardlow et al., 2020). For the first data set only instances that were marked as
complex by four or more annotators were kept, the average number of annotations per
instance being seven. Using the Mechanical Turk platform they requested a further ten
annotations of each on the instances.

7Lexical Complexity Prediction 2021 data https://sites.google.com/view/lcpsharedtask2021/

call-for-participation

https://sites.google.com/view/lcpsharedtask2021/call-for-participation
https://sites.google.com/view/lcpsharedtask2021/call-for-participation
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2.6.3 Best-performing systems 2021

In 2021, it was evident that transformer-based models outperformed other models for
LCP. This was especially true when a variety of transformers were used to create an
ensemble-based model.Shardlow et al. (2021a)

Rank Team Pearson Spearman MAE MSE R2

1 JUST BLUE 0.7886 0.7369 0.0609 0.0062 0.6172
2 DeepBlueAI 0.7882 0.7425 0.0610 0.0061 0.6210
3 Alejandro Mosquera 0.7790 0.7355 0.0619 0.0064 0.6062
4 Andi 0.7782 0.7287 0.0637 0.0064 0.6036
5 CS-UM6P 0.7779 0.7366 0.0803 0.0100 0.3813
6 tuqa 0.7772 0.7344 0.0635 0.0068 0.5771
7 OCHADAI-KYOTO 0.7772 0.7313 0.0617 0.0065 0.6015
8 BigGreen 0.7749 0.7294 0.0629 0.0065 0.5983
9 CSECU-DSG 0.7716 0.7326 0.0632 0.0066 0.5909
10 ia pucp 0.7704 0.7361 0.0618 0.0066 0.5929

Table 2.8: Top 10 best-performing systems from LCP-2021 in terms of Pearson, Spear-
man, MAE, MSE, and R2, ranked in Pearson order (Shardlow et al., 2021b).

JUST BLUE

The best-performing JUST BLUE (Yaseen et al., 2021) used the pre-trained language
models, BERT(Devlin et al., 2018) and RoBERTa (Liu et al., 2019b) models. They
imported the BERT model and used a scikit-learn wrapper to fine tune BERT, as it
includes SciBERT and BioBERT models for the scientific and biomedical fields. They
used simple transformers and classification libraries to import the RoBERTa model.
This system obtained the highest Pearson Correlation score of 0.788 using the pre-
trained language models BERT and RoBERTa. This program utilized four language
models: two BERT models and two RoBERTa models. Bert1 and RoBERTa1 were
provided with individual target words, while Bert2 and RoBERTa2 received the corre-
sponding sentences for each target word, allowing for context to be taken into account.
These models predicted the complexity level of the inputted words or sentences, which
was determined by a weighted average. Model 1 had a weight of 80% and Model 2
had a weight of 20%, indicating that the complexity of target words was given more
importance than the complexity of other words in the sentence. However, the program
still considered the context of each sentence when calculating the weighted average, as
previous studies have shown that context can significantly affect complexity prediction
(North et al., 2023).

DeepBlueAI

The DeepBlueAI (Pan et al., 2021) system performed exceptionally well in both sub-
tasks, achieving the highest Pearson’s Correlation for Sub-task 2 and the second highest
for Sub-task 1. It also had the highest R2 score overall. To achieve these results, the
system used a combination of pre-trained language models that were fine-tuned for the
task using techniques such as Pseudo Labelling, Data Augmentation, Stacked Training
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Models, and Multi-Sample Dropout. Transformer models were used to encode the
data, with the genre and token serving as a query string and the given context as
supplementary input. Pan et al. concluded their model’s state-of-the-art performance
in both sub-tasks was due to its use of multiple transformers and training strategies.
This is congruent with the findings from the best-performing JUST BLUE (Yaseen
et al., 2021) system that also used a diverse range of models.

Alejandro Mosquera

Mosquera’s system illustrated that feature engineering is still a viable approach as this
system was the third best-performing. It uses 51 features. From the pycholinguistic
features, average age of acquisition (AOA): At what age the target word is most likely
to enter someone’s vocabulary, was found to be the most important. Additionally the
system used a selection of lexical, contextual and semantic features at both target word
and sentence level. It treated both sub-tasks as regression problems since the labels in
the training data set were continuous. To address sub-task 1, they utilized the gradient
tree boosting implementation of LightGBM (LGB) (Ke et al., 2017). They performed
minimal hyper-parameter optimization with a 0.01 learning rate and restricted the
number of leaves of each tree to 30 over 500 boosting iterations based on the develop-
ment set. For sub-task 2, they obtained the complexity score of each MWE component
using a linear regression (LR) model and averaged it with equal weights.

2.7 Summary of approaches for complexity prediction

Each of the best-performing systems from the three shared tasks performed well on
their particular data set but each data set has its own characteristics. Therefore, when
trying to establish the best-performing overall approach it is sensible to establish themes
rather than a precise model. At CWI-2018, all of the top sytems CAMB(Gooding and
Kochmar, 2018), NILC(Hartmann and Dos Santos, 2018) and ITEC (De Hertog and
Tack, 2018) used MRC Database psycholinguistic features. After analyzing the systems
that took part in the 2021 task, it was found that there was not much difference between
the deep Learning and feature Based approaches.

After reviewing the three international competitions, it was found that various
machine learning (ML) models have been used. These include Support Vector Ma-
chines (SVMs), Decision Trees (DTs), Random Forests (RFs), neural networks, and
state-of-the-art transformers like BERT (Bidirectional Encoder Representations from
Transformers), RoBERTa(Robustly optimized BERT approach), and ELECTRA (Ef-
ficiently Learning an Encoder that Classifies Token Replacements Accurately). Word
embeddings that consider context, such as RoBERTA, were used by many top perform-
ing systems in the 2021 competition. According to North et al. (2023) ensemble-based
models, which combine several of these models, were the best approach before the
more recent emergence of transformer-based models. This section will provide a brief
description of the various models used.

2.7.1 Support Vector Machines

Support Vector Machines (SVMs) are ideal for binary classification tasks. They deliver
outstanding results when there is a clear separation between the two classes. However,
SVMs are less effective when dealing with multiple classes or a large number of features
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since this can lessen the uniqueness of each class. Previously, SVMs were popular in
early CWI research, which concentrated on predicting binary complexity. However,
as the task has changed to LCP on a scale, their use has declined. Four systems
(Malmasi et al., 2016; Sanjay et al., 2016; Kuru, 2016; Choubey and Pateria, 2016)
used SVMs, as can be seen in the in the full list of systems submitted to SemEval-
2016 in Table 2.1. At SemEval 2016, the AmritaCEN teamSanjay et al. (2016) used
SVM with word embedding features, orthographic word features, similarity features
and POS tag features. It is worth noting that their system w2vecSimPos scored worse
out of the four systems and suggest that POS tags are less of an important feature
for CWI. More recently, Yaseen et al. (2021) with their JUST BLUE system at CWI-
2021 discovered that between SVM, RF, BERT, and RoBERTa models, along with a
BERT and RoBERTa hybrid model, a BERT and RoBERTa hybrid model achieved
the highest performance.

2.7.2 Decision Trees and Random Forests

Decision Trees (DTs) are a type of algorithm that use learned rules to make accurate
predictions. They work by filtering labeled data through decision nodes or branches
until the data is accurately separated based on class. They use the values in each feature
to split the data set to a point where all data points that have the same class are grouped
together DTs are known to outperform SVMs in the context of CWI, possibly because
they are better equipped to handle features that overlap between classes. At CWI-
2016 the most common and arguably the most successful CWI systems were either a
DT or a RF model. As can be seen in Table 2.1 6 systems used this approach. RFs
are comprised of multiple DTs, each trained on a random subset of the data. With
limited input, each DT learns a sequence of hierarchical rules for classification. RFs
generate their final output through a plurality voting system. Due to each DT only
observing a small fraction of the data, RFs are less prone to overfitting. Each DT learns
to distinguish its inputted classes without making sweeping generalizations across the
data set. Consequently, each DT becomes specialized in identifying the distinguishing
features of its limited input. By pooling these DTs together, an RF is more adaptable
to unseen data than a stand-alone DT. Therefore, RFs are better suited to dealing with
large data sets with numerous features compared to a single DT.

2.7.3 Ensemble-Based Models

Ensemble-based models consist of multiple sub-models that work together to produce
a final output through a form of voting. These sub-models can be of the same type,
like an RF, or different types. The diversity of ensemble-based models is their main
advantage, as they can utilize the strengths of various models, such as SVMs, DTs, RFs,
neural networks, or transformers while mitigating the disadvantages of relying on only
one type of model. As a result, ensemble-based models are currently the best option
for LCP. Over time, various combinations of sub-models have been used. However,
according to a research paper by Zampieri et al. (2017), an ensemble classifier that used
predictions from multiple systems in the 2016 task performed worse as more systems
were added. They employed ensemble classifiers by utilizing the output of the 2016
SemEval systems. This method involves training several classifiers and merging them
through ensembles. Figure 2.2 shows how plurality voting ensembles performed using
the output of all systems, and the top-10 ranked systems showed the best performance.
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However, the setup that utilized the top-10 systems performed well but still fell short
of the best system in the competition. In summary, the best-performing system was
the smallest ensemble. This research suggests that keeping it simple is a good heuristic
to apply with ensemble-based models.

Figure 2.2: Ensemble system built from output of systems in SemEval 2016 Zampieri
et al. (2017) Precision, Recall and F1-score.



Chapter 3

Method

This chapter is divided into four sections. The first section describes a baseline system
with features inspired by the baseline classifier that was used in the CWI-2018 shared
task (Yimam et al., 2018). The second section shows the method for building a system
inspired by the best-performing CAMB system(Gooding and Kochmar, 2018). The
third section is a description of a CAMB A model that investigates additional features
from learner corpora data and contextual features from (Liu et al., 2019b). The last
section is the final system with a list of the features chosen from those described in
the previous sections. All systems and models are trained using training data and
tested on the development sets that were used in the original 2018 task, apart from
the final system that was tested on the test data. After investigating the impact of
the added features, the final system is then run on the test data that was used in the
original competition. All of the systems use the data from CWI-2018 in the original
splits of training, development and test that were released to participants of the original
competition. This is described in more detail in subsection 2.5.2. Although the data was
left unchanged, it was further split into non-native and native annotations to compare
the differences between these two groups. This was done to answer sub-question 2 ”To
what extent do the complex word annotations by non-native and native speakers have
an impact on the performance of the CWI models? Is this difference measurable?”.
Each system has a description of the resources that were used for the features and
links to publicly available sources. As with the original task, the goal was to provide
models that would perform with the binary and probabilistic data that was provided.
Therefore, each system includes a description of the different methods used for these
two classifications.

For the CAMB-influenced model, some resources were not freely available, and
therefore the models described use only resources that are publicly available and do
not require payment. For instance, the GoogleWeb 1T 5-Grams used for word frequency
in the baseline system is only available from the Linguistic Data Consortium for a fee
of $150. Similarly, the CALD (Cambridge Advanced Learner’s Dictionary) used in the
CAMB model to add CEFR-level information for the target words can be obtained in
a straightforward manner by extracting the data through the site 1. However, upon
reviewing the documentation, this was found to be prohibited.

1https://www.englishprofile.org/wordlists/evp

23
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3.1 Data Description

Total instances in the data set is shown in Table 3.1 along with the mean probabilistic
complexity score.

File Name Total Instances Mean Probabilistic

WikiNews Train 7745 0.42
WikiNews Dev 869 0.41
WikiNews Test 1286 0.42

Wikipedia Train 5550 0.45
Wikipedia Dev 693 0.49
Wikipedia Test 869 0.5

News Train 14001 0.4
News Dev 1763 0.39
News Test 2094 0.38

Table 3.1: Statistics for CWI-2018 data.

As shown in Table 3.2 more words are labelled as complex by the non-native speaker
annotators than the native speakers. This seems anomalous because if English was the
annotators’ second language, then it would seem logical that they would find more
instances of complex words and phrases. However, it makes sense in the context of the
directions that were given to annotators to label words that they thought would be
complex for language learners and not themselves.

File Name Total native complex Total non-native complex

WikiNews Train 2446 2288

WikiNews Dev 281 250

WikiNews Test 400 389

Wikipedia Train 1892 1785

Wikipedia Dev 273 234

Wikipedia Test 341 294

News Train 4173 4152

News Dev 529 509

News Test 596 627

Table 3.2: Number of rows labeled as complex for Native and Non-Native data.

For the comparison of the classifiers with Non-Native and Native each Genre was
split into separate sets. The data was split after the features had been extracted. The
NATIVE data contains rows where ’Native’ is not null and ’Non-Native’ is either null
or equal to 0. The NON-NATIVE data contains rows where ’Non-Native’ is not null
and ’Native’ is either null or equal to 0. The function splits all files in a folder into
two new subfolders one called ”native” and one called ”non-native” . The ’Native’ and
’Non-Native’ columns refer to columns 7 and 8 in Table 2.5. This was done to try
and establish to what extent annotations by non-native and native speakers impact the
performance of the CWI models and investigate the performance of different features
on these two demographics.
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3.2 Description of Baseline Systems

In the 2018 shared task competition, two simple baseline systems were developed for
binary and probabilistic classification tasks. The baseline system only utilized the
essential six frequency and length features described in (Yimam et al., 2017b). In
summary, the baseline system uses the length of the word, the number of vowels, the
number of syllables. It also has three corpora frequency features: the frequency of
the word in Simple Wikipedia, the frequency of the word in the paragraph in the
original paragraph shown in the (HIT) Human Intelligence Task, and the frequency of
the word in the GoogleWeb 1T 5-Grams. The system employed the Nearest Centroid
classifier and Linear Regression algorithms from scikit-learn for binary and probabilistic
classification, respectively. The binary classification task was assessed using accuracy
and macro-averaged F1 metrics, while the probabilistic classification task used the Mean
Absolute Error (MAE) measure. The MAE calculates the average deviation between
the values predicted by the system and the values in the gold standard for all the test
instances, as detailed in section 2.2. For the probabilistic monolingual English track
the baseline system performed better than approximately 50% of the systems in the
competition as seen in Table 2.7. It scored an MAE of 0.1127, 0.1053 and 0.1112 for the
NEWS, WIKINEWS and WIKIPEDIA data respectively. This baseline system would
have ranked 9th for NEWS and WIKINEWS data and 10th for WIKIPEDIA data if it
had been in the competition. For the binary classification, the baseline systems were
more widely outperformed. Out of the 39 systems that were entered for the NEWS
data only 5 scored worse than the baseline. This fall to 3 for WIKINEWS and 8 for the
WIKIPEDIA data. For the binary track approximately twice as many systems were
entered with many teams entering multiple systems for each data set. The baseline
system performed best on the NEWS data scoring an F-1 of 0.7579 F-1. For the
WIKINEWS and WIKIPEDIA data it scored lower with 0.7106 and 0.7179, as shown
in Table 2.6.

3.2.1 Prepossessing

For all of the systems and features that were investigated, the same preprocessing steps
were carried out. The cleaning operations that were done to the ’sentence’ column
as shown in Table 2.5. These included removing punctuation and replacing ”%” with
”percent”. The ’Target’ column was split into separate words using white space and
storing the result in a new column called ’split’. The number of words in is stored in
a new column called ’count’. The WIKINEWS data has a difference from the other
two genres, as can be seen in the following example:[#37-1 Guatemalan Supreme
Court approves impeachment of President Molina Yesterday in Guatemala,
the Supreme Court approved the attorney general’s request to impeach Pres-
ident Otto Pérez Molina.] The ”#37-1” is added to the beginning of the sentence.
This number is not present in the other two genres and will need to be removed in the
preprocessing. Apart from this difference, the rest of the format is identical across the
three genres. Therefore, the same preprocessing steps can be applied. This example
sentence repeats over 24 rows, and 8 words are marked as complex. The exact word
in the same place in the sentence is only repeated in the row if it is part of an MWE.
The data is given in a tab-separated format and is in the format shown in Table 2.5
but without the column headings.
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3.2.2 Frequency features

For the baseline system described in (Yimam et al., 2017a) the following frequency
features were used: Simple Wikipedia, the word in the paragraph of the HIT (Human
Intelligence Task), and frequency in GoogleWeb 1T 5-Grams (Brants and Franz, 2006).
The Google 1T 5-GRam data can be obtained at https://catalog.ldc.upenn.edu/
LDC2006T13. It consists of observed frequency counts of English word n-grams for
around 1 trillion tokens collected from Web Text. However, this data is not freely
available; therefore, an alternative is needed. Instead of this corpus, the Google Ngram
data was used to find word frequencies. This data is freely available, but the corpus is
made up of scanned books and not web text, so the performance is likely to suffer given
the different genres of the data. However, the best performing CAMB system during
the shared task in 2018 used Google Ngram data via the DataMuse API; therefore, it
was evaluated to be sufficient for the baseline system. Three lexical features were used
for the baseline system. These were the number of vowels per word or MWEs, the
number of characters to give the length and the number of syllables. These features
were extracted using the Datamuse API2.

Google Ngram frequency data extraction

Two methods were investigated for obtaining the Google Ngram data, as the research
indicates that word frequency is a crucial feature for the task Wróbel (2016); Shardlow
(2013). The Google Books Ngram Corpus is a compendium of literary works that
exclusively encompasses books. It does not include other forms of literature such as
periodicals, websites, or spoken language. Each edition of a book is represented only
once in the corpus. The corpus predominantly comprises books held in a select number
of major university libraries, with over 40 included in Version 1. The entire Google
Books Ngram Corpus Version 32 is huge; for British English words for all years, there
are just under 2 trillion words.

The first method was done by writing a function to download the raw data from
the Google Ngram site. When creating the raw Ngram data, each file is opened in turn,
and all unique Ngrams with a minimum frequency threshold of 1000 are collected. This
resulted in a large number of raw data files. These files increased in size resulting in
421 2-grams, 5243 3-grams, 4330 4-grams and 10772 5-grams. An example of the raw
3-gram data is shown in Figure 3.1; the raw data contains POS information which is
incorporated Ngram column. This large amount of data for the larger Ngrams takes
quite some time to download. Due to the size of the data for the entire corpus, raw
data was extracted for a period of ten years. The total number of words for 2010-2019
is over 45 billion. This made the downloading of the entire corpus impractical. After
the extraction process, the downloaded files were removed to optimize computational
resources. It is worth noting that, even with default settings in place, the top n-gram
listings per .gz-file still necessitate approximately 36GB of storage space. Version 2 of
Google Ngram data incorporated syntactic annotations that tag words with their part-
of-speech and head modifier relationship (Lin et al., 2012). The corpus consists of over
8 million books, which accounts for 6% of all books ever published. However, working
with these raw data files ultimately proved to be too computationally cumbersome.
Furthermore, it did not produce results for all target multi-word expressions. Therefore,

2https://www.datamuse.com/api/
2https://storage.googleapis.com/books/ngrams/books/datasetsv3.html

https://catalog.ldc.upenn.edu/LDC2006T13
https://catalog.ldc.upenn.edu/LDC2006T13
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this method was not used in the final systems. The alternative approach using the API
was used described in the next paragraph.

The second method investigated for Ngram frequency was using an API1. This API
provides information on Ngrams and returns both an absolute total match count and a
relative total match count. The former is the total sum of absolute match counts based
on the year, while the latter is the absolute total match count divided by the absolute
total match count of all Ngrams of the same length or probability. After a comparison
of the results for both methods, it was decided to use the second method, which uses
the Ngram API. This was because the first method that used raw data was very slow,
and the performance was not considerably better. Both systems were not able to return
frequency data for all MWEs. Both methods failed to have 100% coverage of all target
multi-word expressions. The total match count and a relative total match count were
both used as separate features that were input for the system as separate features. This
method was much more time efficient, which offset the potential gains from the first
method using the raw Ngram data. Ideally, methods would be combined to enable the
maximum number of Ngrams to have frequency values for as many MWEs as possible.
However, this was not able to be achieved.

Figure 3.1: Raw 3-gram data example

Simple Wikipedia Frequency (simple wiki)

For this feature, the simple wiki.txt file was created, including the simplified version
of 10,000 sentences. The target word was then searched for, and the frequency was
counted. Historically, data sets have utilized Simple Wikipedia and edit histories as
the primary means for annotating complex words and are viewed as a ”gold standard”.
However, there has been considerable debate surrounding the appropriateness of using

1https://github.com/ngrams-dev/general/wiki

https://github.com/ngrams-dev/general/wiki
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Simple Wikipedia for text simplification, as evidenced by numerous studies (Amancio
and Specia, 2014). This data is freely available because it is from Wikipedia but can
be obtained from https://cs.pomona.edu/~dkauchak/simplification/ in a readily
usable format.

Frequency in original paragraph (HIT freq)

The last feature for the baseline was the frequency in the original paragraph displayed to
annotators.This feature simply counts to see how many times the target word is in the
original paragraph of text that was used for the HIT on Amazon Turk. The function
checks the word in all sentences with the same ID, as each paragraph displayed to
annotators was given a unique ID in the data.

3.2.3 Description of Classification Algorithms

Both models make use of Sklearn(Pedregosa et al., 2011) for the classification tasks.
To train the models, the Nearest Centroid and Linear Regression algorithms were used
for binary and probabilistic, respectively. These were chosen as they were used by the
best-performing model at CWI-2018. Furthermore, the research showed that the type
of classification algorithms used in 2018 did not hugely affect performance with the
feature based systems.

Binary Classification

To make predictions for new examples, the Nearest Centroid or nearest prototype
classifier summarizes the training data set into a set of centroids (centers).This classifier
work in a similiar way to K-Nearest Neighbours classifier. During training, the centroid
is computed for each target class. Once training is complete, if a point (let’s call it ”X”)
is given, the distance between X and each class’s centroid is calculated. The minimum
distance is then selected from all the calculated distances. The class to which the
centroid of the given point’s minimum distance belongs is assigned to that point.

https://cs.pomona.edu/~dkauchak/simplification/
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Figure 3.2: Visualisation of Nearest Centroid Classifier

In the visualisation of the Nearest Centroid classifier in Figure 3.2, a training data
set has already been clustered into two classes. To classify input data, the distance
is compared in the feature space from the mean position of each cluster. The pluses
and crosses indicate the vector positions of different instances of data in the feature
space, while the filled circles signify the cluster mean positions. The square represents
a vector that still requires classification.

Probabilistic Classification

For the probabilistic classification, identical features are used, and the Linear Regres-
sion algorithm is used to estimate target values from the sklearn.linear model. Linear
regression involves finding the best fitting straight line for a set of scattered data points,
and so is well suited to the task. Multiple linear regression classifiers are trained on
different sets of features extracted from each genre.

3.3 CAMB Model description

The CAMB model was re-implemented using only corpora that were publicly available.
The system creates a model for the classification of single words as used in the baseline
system. If there are multiple words in the word column of the data, the system uti-
lizes three binary classification methods and one probabilistic classification method to
forecast the complexity of phrases. The three binary classification methods for phrases
are: the individual words in the phrase are classified using the single complex word
classifier, and if the total number of complex words is above a ”pre-defined threshold”,
then the phrase is marked as complex. There is no detail in the paper on what the
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threshold was so for this system. I set the threshold to one. The second for MWEs was
an ngram classifier. The frequency of n-grams contained within phrases is obtained
from the Corpus of Contemporary American English (COCA) (Davies, 2009). COCA
is not entirely free; while some functionality is freely available, full access requires a
paid subscription. To classify new phrase instances, I train an AdaBoost classifier using
these frequencies as features. Lastly, the system uses the Greedy algorithm approach
and labels all MWEs as complex.

3.3.1 Lexicon-Based Features

These following lexicons were used in the CAMB system and are publicly available,
and were used as features. The target phrase was searched for in each lexicon, and a
value was returned if the word was present. The four lexicons used were as follows: 1)
Ogden’s Basic English1 (Ogden and Halász, 1935): a list of 850 words from Ogden’s
Basic English list. The idea from Ogden was that 90% of the concepts in English are
covered with this simple list. 2) SubIMDB: a list produced using the SubIMDB2 corpus
(Paetzold and Specia, 2016a). The SubIMDB corpus is a large structured corpus of
subtitles of movies and series. The word frequency in the subtitles of films (Compiled
Corpus of Movies and Series for Children). 3)Simple Wikipedia (SimpWiki): a list of
the top 6,368 words contained in the Simple Wikipedia data. (Coster and Kauchak,
2011). And 4) Word Complexity Lexicon(Maddela and Xu, 2018) A human-rated word
complexity lexicon of 15,000 English words. The complexity score of each word is
determined by combining ratings from several people. The scores range from 1 to 6,
with 1 being very simple and 6 being very complex. The ratings are based on individual
assessments from 11 annotators for each word in the lexicon. A rating of -1 means that
the annotator did not provide a score. Lastly, as with the baseline system, the sentence
length is counted along with the number of words in the sentence where the target word
occurs.

3.3.2 Lexical Features

These were extracted for the baseline system and were used unchanged for CAMB-
inspired re-implementation. They can be summarised as: 1)The word length: the
number of characters in the word. 2) The number of syllables: the syllable count for the
target word. 3) The WordNet Features: number of synonyms, number of hypernyms
and hyponyms for the word’s lemma from WordNet, and lastly, 4) POS tags were
extracted using Stanford Core NLP.(Manning et al., 2014).

3.3.3 Description of MRC Psycholinguistic Database Features

Some adjustments were needed to collect this corpus because the site is limited to a
5000-word output. The full corpus used in this thesis was achieved by filtering the
output by word length and then using multiple enquiries to achieve a complete list.

The following nine features were collected: The number of phonemes (NPHN) ref-
erences how many phonemes are in the target word. These are the 44 sounds that
make up every English word. The next three features originally come from the Brown
Corpus (Kucera and Francis, 1967). The Kucera-Francis written frequency (KFFRQ),

1http://ogden.basic-english.org/
2http://ghpaetzold.github.io/subimdb/
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Kucera-Francis number of categories (KFCAT) and Kucera-Francis number of samples
(KFSMP) are derived from the classic work ”Computational Analysis of Present-Day
American English” (Maverick, 1969), which provided basic statistics on what is known
today simply as the Brown Corpus. The Brown Corpus is divided into 500 samples
of 2000+ words each. These numbers refer to the total number of occurrences in the
corpus and the total number of occurrences in categories and samples. A full list of
the 500 samples and categories is available in the Brown Corpus Manual (Francis and
Kucera, 1979).

The Thorndike-Lorge written frequency (T-LFRQ) is a measure of how often En-
glish words appear in representative general reading material. This information is taken
from The Teacher’s Word Book of 30,000 Words (Thorndike and Lorge, 1944), which
lists words that occur at least once per million words. Each entry in the book is alpha-
betized and includes five columns of data: occurrences per million words, the Thorndike
general count from 1931, the Lorge magazine count, the Thorndike count from 120 ju-
venile books, and the Lorge-Thorndike semantic count used in MRC Psycholinguistic
data.

The Familiarity rating ranging (FAM), Concreteness rating (CNC)and Imageability
rating (IMG) give values from 100-700 and are made from a combination of three scales
(Gilhooly and Logie, 1980; Toglia and Battig, 1978; Paivio et al., 1968). Lastly, the
Age of Acquisition (AOA) (Gilhooly and Logie, 1980) measures for 1,944 words where
subjects rated words on a scale that ranged from 1 (age 0-2 years) to 7 (age 13 years
and older) with 2-year sub-divisions. This number is then multiplied by 100, also giving
a score from 100-700.

3.3.4 Summary of Feature extraction process

For the binary shared task, CAMB’s submission uses a straightforward greedy method
for phrase classification. This was also done of the re-implemented version. The word
features are populated by getting the syllables and word length for each word using the
Datamuse API. The syatem then parses sentences using StanfordCoreNLP It extracts
the relevant linguistic features (POS, dependency, lemma, etc.). Next, the system ob-
tains MRC features (AOA, CNC, IMG, etc.) for each word using the extracted MRC
corpus. The sysstem then gets the additional linguistic features like synonyms, hyper-
nyms, and hyponyms using WordNet. After that it checks if the words are present in
specific word sets (ogden, simple wiki, sub imdb) and adds binary features accordingly.
Lastly, it gives the word frequency from Google using the Datamuse API.

3.4 CAMB A Feature Description

Following is a description of features investigated additionally to the CAMB-inspired
re-implementation described in the previous section. All features were added to the
existing set of features from the previous section. The features described were added
individually, and their individual impact is as shown in the Results section 4.3.

3.4.1 RoBERTa Embeddings

RoBERTa is a self-supervised transformers model pretrained on raw English texts, us-
ing publicly available data to generate inputs and labels. To obtain contextualised
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word embeddings, the RoBERTa base model was used (Liu et al., 2019a) in combina-
tion with PyTorch (Paszke et al., 2019). Initially, each word in the target sentence and
the target word or phrase had embeddings extracted, and then the target phrase or
word was matched against the embedding in the target sentence. However, this method
was insufficient as the embeddings were often different for the target phrase embedding
as for the word in the sentence, as the embedding changed based on the context. What
was remarkable was how many target words had the same embedding when they were
processed in isolation and when they were processed as part of the target sentence.
However, this mistake was rectified to make sure the target word embedding was cap-
tured from the sentence and therefore contained the correct contextual information.
The final script extracts the word embeddings of the target word or MWEs in the con-
text of the given sentence by using the start and end index supplied in the original data.
The start index and end index variables are found in the third and fourth columns, as
shown in Table 2.5. The numbers are used to find the position of the target word in the
sentence and return the contextualised embedding. The return-offsets-mapping param-
eter that enables this is only available for tokenisers that are derived from transformers.
PreTrainedTokenizerFast, which is available from Hugging Face 3. Therefore, Roberta-
TokenizerFast was used instead of the RobertaTokenizer to use this feature. Lastly, the
RoBERTa embedding returned an array which was flattened. By flattening the embed-
ding, there were an additional 763 feature columns added. This way, the model does
not see the ”Embedding” column as a single feature but rather sees each dimension of
the embedding as a separate feature. This allows for compatibility with the scikit-learn
API and models. The embedding extraction and handling of this large dataframe were
done using Google Colab as extracting the embedding was computationally expensive.
To handle this multi-column data BaseEstimator, TransformerMixin were used from
Sklearn (Buitinck et al., 2013) when the model was trained using these features. These
features were then incorporated into the feature union pipeline to include these new
columns as with the existing features.

3.5 Learner Corpora features

Lang-8 Learner Corpus

The Lang-8 corpus (Mizumoto et al., 2012) is correction data of learner English from
Lang-8 4, a site for language learning. The data was crawled in September 2011, and it
can be accessed at https://sites.google.com/site/naistlang8corpora. First, the
data is filtered only to include learners of English. The first feature used for the Lang-8
data was if the English language learner used the target word. This intuition is that
learners will not use a complex word if they are of quite a low level. The learner data
reviewed in this corpus was mainly A1 -B2 level English. The feature is the number of
times learners use the target word. However, this feature does not reflect whether the
word was used correctly, merely that the learner used it. The Lang-8 corpus was used
at the NAACL HLT 2018 shared task by the TMU team (Kajiwara and Komachi, 2018)
and ranked 6th for the NEWS genre data set and had the best-performing system for
the NEWS data in the probabilistic classification results as can be seen in Table 2.7.

3https://huggingface.co/
4http://lang-8.com

https://sites.google.com/site/naistlang8corpora
https://huggingface.co/
http://lang-8.com
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The EF-Cambridge Open Language Database (EFCamDat)

EFCAMDAT is a learner corpus featuring essays from adult learners of English around
the world. EFCAMDAT currently contains over 83 million words from 1 million as-
signments written by 174,000 learners across a wide range of levels (CEFR stages
A1-C2)Geertzen et al. (2013). This corpus was created by refining and modifying the
largest open-access L2 English learner database – the EFCAMDAT. The processed EF-
camdat5 (Shatz, 2020) removed common markup tags and texts with excessive or varied
markup tags. Additionally, they removed ultra-short texts with less than 20 words and
those containing a significant amount of non-English writing. Duplicate material found
in other texts and outlier word counts (i.e. extremely high or low) were also removed
from the sample. Furthermore, they identified the prompt for each text and split them
into two data sets based on whether they were written in response to the original or
second prompt. For use in the CAMB A system, the data was split into five sub-files
based on the CEFR level; there was no data for the C2 level, hence only five files. The
target word or phrase was then searched for, and the number of times it occurred for
the level was returned and added to the existing features. This resulted in a total of
five additional features, one for each CEFR level.

3.5.1 Final System Features

The final system utilized features from the CAMB-inspired model but excluded those
from the CAMB A investigation. The features included syllables, length, dep num,
synonyms, hypernyms, Ogden, simple wiki, CNC, IMG, sub imdb, google frequency,
KFCAT, FAM, KFSMP, KFFRQ, AOA, NPHN, and T-LFRQ. For the binary clas-
sification, the system used the Adaboost algorithm and Logistic regression for the
probabilistic, as described in the CAMB-inspired section. These features were chosen
based on analyzing the results of the previously described models that are shown in
the next section.

5https://corpus.mml.cam.ac.uk/

https://corpus.mml.cam.ac.uk/
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Chapter 4

Results

As in the original CWI-2018 shared task, the tests were run on the WIKIPEDIA, NEWS
and WIKINEWS data set separately. This was done in order to make a comparison
with the systems in the original task. The binary systems are evaluated based on their
accuracy, precision, recall, and F1-score (Equation 2.1) and the probabilistic systems
use the Mean Absolute Error (MAE) (Equation 2.3. The evaluation metrics that were
used in CWI-2018 are explained in the chapter on Related Work 2.2.

4.1 Binary Baseline Models

The features used to obtain these results were: the number of syllables, length of the
word, number of vowels, frequency in the simple Wikipedia corpus, frequency in the
original HIT paragraph and Google frequency, as described in the Method chapter 3.2.

The Tables 4.1, 4.2 and 4.3 show the results of classifiers trained on each genre and
then tested on each of the development data sets. The ”All-data” model was trained
on the combined data. Table 4.4 shows the same classifiers tested on the combined
development data from all three genres.

Model Name Accuracy Precision Recall F-Score

Wikipedia 0.645 0.593 0.864 0.704
WikiNews 0.646 0.592 0.885 0.709

News 0.646 0.592 0.885 0.709
All-data 0.645 0.591 0.882 0.708

2018 Baseline - - - 0.718

Table 4.1: Results of classifiers tested on WIKIPEDIA development data set.

In Table 4.1 it can be seen that there is no difference in performance on the
WIKIPEDIA data between the models that were trained on WIKINEWS and NEWS
training data, and these models attained the highest F-Score on across all of the baseline
models that were tested separately on each genre.

For the baseline models, it was expected that the All-data model trained on all the
data would perform best as it had a larger and more diverse amount of data to train
on. However, this was not the case, with the All-data model only performing best when
tested on the NEWS data. When tested on all the development data, the WikiNews-
trained classifier outperformed the All-data model with an F-1 score of 0.639 compared
to the All-data, which scored an F1-score of 0.669. None of the simple baseline classifiers

35
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Model Name Accuracy Precision Recall F-Score

Wikipedia 0.623 0.521 0.835 0.642
WikiNews 0.613 0.514 0.849 0.640

News 0.612 0.513 0.847 0.639
All-data 0.610 0.511 0.841 0.636

2018 Baseline - - - 0.710

Table 4.2: Results of classifiers tested on WIKINEWS development data set.

Model Name Accuracy Precision Recall F-Score

Wikipedia 0.639 0.524 0.908 0.665
WikiNews 0.635 0.521 0.920 0.665

News 0.635 0.521 0.920 0.665
All-data 0.638 0.523 0.920 0.667

2018 Baseline - - - 0.758

Table 4.3: Results of classifiers tested on NEWS development data set.

Model Name Accuracy Precision Recall F-Score

Wikipedia 0.636 0.539 0.879 0.668
WikiNews 0.631 0.535 0.893 0.669

News 0.632 0.535 0.893 0.669
All data 0.632 0.536 0.890 0.669

Table 4.4: Results of classifiers tested on COMBINED development data.

performed the best on the data that they were trained on. These baseline systems
all performed worse than the baseline system at CWI-2018, which scored an F1 of
0.7579 for NEWS, 0.7106 for WIKINEWS and 0.7179 for WIKIPEDIA, as seen in the
binary classification results from CWI-2018 in Table 2.6. The confusion matrices for
the baseline models are shown in Figure 4.1 Figure 4.2, Figure 4.2 and Figure 4.4. It
is clear from the confusion matrices that all systems exhibit similar errors, particularly
for positive labels in the test data predicted as negative by the models. Overall, the
baseline classifiers all have very comparable or identical performance.
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Figure 4.1: Confusion matrices for the baseline model ,trained on combined data sets,
and the genre specific trained models. Models tested on WIKIPEDIA Develop-
ment data. The total number of labels in WIKIPEDIA development data was 693.
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Figure 4.2: Confusion matrices for the baseline model ,trained on combined data sets,
and the genre specific trained models. Models tested on WIKINEWS develop-
ment data. The total number of labels in the WIKINEWS development data was
869.
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Figure 4.3: Confusion matrices for the baseline model ,trained on combined data sets,
and the genre specific trained models. Models tested on NEWS development
data. The total number of labels in the NEWS development data was 1763.
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Figure 4.4: Confusion matrices for the baseline model ,trained on combined data sets,
and the genre specific trained models. Models tested on COMBINED develop-
ment data.
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4.1.1 Probabilistic Baseline Models

The results for the probabilistic complexity prediction are shown in Table 4.5. The
models use the same simple features of syllables, length, vowels, simple wiki freq,
’HIT count’ and Google frequency as used for the binary systems, the same features as
for the binary classification. These results are comparable to the probabilistic baseline
system used in the shared task. As with the binary models, the News-trained baseline
model scored best across all test sets apart from the WIKIPEDIA data, where the
All-data trained model beat it.

Model Name WIKIPEDIA WIKINEWS NEWS ALL DATA

News 0.1180 0.1136 0.1364 0.1267
WikiNews 0.1178 0.1115 0.1497 0.1331
Wikipedia 0.1192 0.1135 0.1527 0.1355
All-Data 0.1128 0.1128 0.1418 0.1293

2018 Baseline 0.1112 0.1053 0.1127 -

Table 4.5: Mean Absolute Error (MAE) per model - Tested all three data sets individ-
ually and all genres combined.

4.2 Results for CAMB-inspired system

4.2.1 Initial results for binary single word classifier

Table 4.6 shows the first results with a model called MYCAMB This model was trained
and tested on single word data only. This data had all of the MWEs removed from
training and the development set that was used for testing. The model named MY-
CAMB MWEs had the the full data set for testing and training and set all of the
MWEs to be classified as complex.

Model Name Precision Recall F-Score

MYCAMB Single word 0.800 0.785 0.793
MYCAMB MWEs (Greedy)* 0.809 0.796 0.802

Original 2018 CAMB - - 0.873

Table 4.6: New CAMB Model Trained on all train data and tested on all Dev (MWEs
removed)*Result for training on NEWS Train and Testing on NEWS Dev.

4.2.2 Results for CAMB-inspired model including MWEs

Table 4.7 presents performance metrics of two models, the CAMB influenced model
Without any learner corpus features and the scores for the original CAMB model from
2018 that used CEFR level in the Cambridge Advanced Learners Dictionary (CALD) as
a feature. The models were evaluated on a data set containing Multi-Word Expressions
(MWEs) using Greedy classification, where all MWEs were classified as complex. The
results show that the original CAMB model outperformed the new CAMB model.
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Figure 4.5: Single word CAMB classifier results trained on all single word train data
and tested on all dev data.

Model Name Precision Recall F-Score

MYCAMB (Without learner corpora) 0.841 0.820 0.830

Table 4.7: New CAMB Model Trained on all train data and tested on all Dev data
with MWEs using Greedy classification.

4.2.3 Results for Genre specific classifiers

The results in Tables 4.8, 4.9 4.10 and 4.11 are for the CAMB influenced system using
the original system’s features without the any learner corpora feature. The MWEs
were set to Greedy and all set to complex. It is noticeable that the model trained on
WIKIPEDIA data does not perform better on WIKIPEDIA than the model trained on
all data. The F-Score for the model trained on all the data performed best across all
the genres.

Model trained on
Tested on WIKIPEDIA

Precision Recall F-Score

WIKINEWS 0.826 0.770 0.797

NEWS 0.833 0.767 0.799

WIKIPEDIA 0.821 0.784 0.802

All Data 0.843 0.821 0.832

Table 4.8: Results for Genre specific Model tested on WIKIPEDIA data.
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Model trained on
Tested on WIKINEWS

Precision Recall F-Score

WIKINEWS 0.820 0.826 0.823

NEWS 0.831 0.802 0.816

WIKIPEDIA 0.766 0.824 0.794

All Data 0.861 0.842 0.851

Table 4.9: Results for Genre specific Model tested on WIKINEWS data.

Model trained on
Tested on NEWS

Precision Recall F-Score

WIKINEWS 0.800 0.866 0.832

NEWS 0.876 0.866 0.871

WIKIPEDIA 0.751 0.864 0.803

All Data 0.874 0.875 0.874

Table 4.10: Results for Genre specific Model tested on NEWS data.

Model trained on
Tested on combined data

Precision Recall F-Score

WIKINEWS 0.804 0.858 0.830

NEWS 0.867 0.853 0.860

WIKIPEDIA 0.754 0.856 0.802

All Data 0.871 0.868 0.870

Table 4.11: Results for Genre specific Model tested on ALL data.
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4.2.4 Non-native and Native Results

The CAMB model performs significantly worse on both data sets when the testing data
is split into non-native and native, as shown in Table 4.12. These are for results using
a classifier trained on all data. The Non-native Dev sets used for testing contained a
total of 588 labels for WIKINEWES, 1254 labels for NEWS and 420 for WIKIPEDIA.
The native set has 619 for WIKINEWS, 1254 for NEWS and 459 for WIKIPEDIA.
Tables 4.13 and Table 4.14 show results for classifiers trained on Non-native and native
data and then tested on each split set of data. The confusion matrices are shown in
Figure 4.7 and 4.6.

Data Set Precision Recall F-Score

NATIVE 0.622 0.670 0.645
NON-NATIVE 0.596 0.681 0.635

Table 4.12: New CAMB model results for Native and Non-native data splits with
MWEs using Greedy classification.

Figure 4.6: Results for new CAMB tested on Non-native speaker data.
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Figure 4.7: Results for new CAMB tested on Native speaker data.

Data Set Precision Recall F-Score

NATIVE 0.855 0.695 0.767
NON-NATIVE 0.802 0.542 0.647

Table 4.13: Results for new CAMB trained only on Non-Native training data.

Data Set Precision Recall F-Score

NATIVE 0.793 0.636 0.706
NON-NATIVE 0.784 0.681 0.729

Table 4.14: Results for new CAMB trained only on Native training data.

4.2.5 Probabilistic CAMB-inspired results

Table 4.15 provides a comparison of mean absolute error values for different models
and their performance on different datasets using the Logistic Regression classifier.
Lower mean absolute error values generally indicate better model performance, as they
indicate that the model’s predictions are closer to the ground truth values. When
compared with the Original CAMB model that was submitted in 2018, it is clear to
see that the models produced perform significantly worse. It is noticeable that in the
original CAMB results, their model performs substantially better on the NEWS data,
and the models produced for this thesis do not have that difference, scoring 0.0558 in
contrast to the 0.0997 for the model trained on all the data. The results do show that
the worst performing score for the original model was on the WIKIPEDIA data, and
this is the same as the results with the newly created models as well.
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Model Name WIKIPEDIA WIKINEWS NEWS ALL DATA

News 0.1028 0.0974 0.1037 0.1018
WikiNews 0.1027 0.0954 0.1008 0.0998
Wikipedia 0.1031 0.0964 0.0994 0.0993
All data 0.1015 0.1015 0.0997 0.0989

Original 2018 CAMB 0.0739 0.0674 0.0558 -

Table 4.15: Mean Absolute Error (MAE) per model with CAMB inspired features -
Tested all three dev data sets individually and all dev data combined.

4.3 Results for CAMB A

The CAMB A system results show is the models that include additional features from
the Lang-8 Learner Corpus, EFCAMDAT learner corpus and RoBERTa contextual
feature information.

4.3.1 Lang-8 Features

The following results shown in Table 4.16 are the results for the model with the Lang-8
learner feature added. This is a simple frequency of if the target word or words occur in
the Lang-8 learner corpus. The model was trained on all three genres with the Lang-8
frequency and then tested the combined data and the non-native and native split data.

Data Set Precision Recall F-Score

All data 0.839 0.868 0.853
NATIVE 0.531 0.782 0.633

NON-NATIVE 0.477 0.738 0.580

Table 4.16: Results for classifier with Lang-8 frequency information added.

4.3.2 EFCAMDAT Features

Table 4.17 shows the performance with the five features added from the EFCAM-
DAT corpus. As can be seen, the non-native annotations perform worse on the NON-
NATIVE data than the NATIVE data but better than the performance of the Lang-8
feature in Table 4.16. Figure 4.8 shows the confusion matrix for the added five EF-
CAMDAT features for all data. Figure 4.9 and Figure 4.10 show the confusion matrices
for the NATIVE and NON-NATIVE data splits.

Data Set Precision Recall F-Score

All data 0.860 0.855 0.858
NATIVE 0.656 0.810 0.725

NON-NATIVE 0.606 0.803 0.690

Table 4.17: Results for EFCAMDAT for all five CEFR levels as features.
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Figure 4.8: Confusion Matrix for CAMB features plus five EFCAMDAT features for
all data.

Figure 4.9: Confusion Matrix for CAMB features plus five EFCAMDAT features tested
on NATIVE data.
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Figure 4.10: Confusion Matrix for CAMB features plus five EFCAMDAT features
tested on NON-NATIVE data.
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4.3.3 Results for model with RoBERTa feature added

Results with the RoBERTa embedding information added to the CAMB features are
shown in Table 4.18. Total features for this model were: word length, tag,dep num,
hypernyms, hyponyms, synonyms, syllables, Ogden, simple wiki, Google frequency,
Subimdb, aoa, conc, fam), IMG, NPHN, Embedding and Lexicon score. The Figures
4.11, 4.12 and 4.13 show the corresponding confusion matrices. From the error analysis
of these, it can be seen that all three model had the same number for predicting that the
word was not complex correctly, which was 1605. Additionally, it can be seen in Figure
4.13 that when all the data was combined, the correctly predicted complex phrase went
up to 750 from the very low scoring 110 and 134 for the NON-NATIVE and NATIVE
data respectively. These results are surprising and possibly point to some issues with
the data division.

Data Set Precision Recall F-Score

All data 0.756 0.725 0.740
NATIVE 0.356 0.565 0.437

NON-NATIVE 0.313 0.516 0.389

Table 4.18: Results with RoBERTa contextual features added.

Figure 4.11: Confusion Matrix for RoBERTa features tested on NON-NATIVE data.
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Figure 4.12: Confusion Matrix for RoBERTa features tested on tested on NATIVE
data.

Figure 4.13: Confusion Matrix for RoBERTa features tested on tested on ALL data.
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4.4 Results for the Final Model

The following results are all using the test data that was used in the original CWI-
2018 completion. Table 4.19 below shows the results for the final system tested on
all genre test data combined and the results for all test data split into NATIVE and
NON-NATIVE. The confusion matrix for the combined test data is shown in Figure
4.14.

Data Set Precision Recall F-Score

All data 0.819 0.763 0.790
NATIVE 0.440 0.603 0.509

NON-NATIVE 0.425 0.550 0.480

Table 4.19: Results for final system.

Figure 4.14: Confusion Matrix for final system tested on ALL genres test data.

4.4.1 Probabilistic results

As can be seen in Table 4.20, the WikiNews Final model and the All data Final models
have the worst performance on the WIKIPEDIA data set, as both models have a score
of 0.1061, which is higher than the scores of the other models. The News Final mode
and Wikipedia Final models have slightly better, but the best probabilistic performance
is achieved by the All data final model tested on the NEWS test data.
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Model Name WIKIPEDIA WIKINEWS NEWS ALL DATA

News Final 0.1079 0.1008 0.1014 0.1025
WikiNews Final 0.1061 0.0973 0.0981 0.0995
Wikipedia Final 0.1070 0.0988 0.0980 0.1001
All data Final 0.1061 0.0982 0.0981 0.0997

Table 4.20: Mean Absolute Error (MAE) per model for the final systems.
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Discussion

For the baseline models, it was expected that models trained on all the data would
perform best when tested on each data set as they had a larger amount of data to train
on, and the genres all contained similar types of text. However, this was not the case,
with the baseline models only performing best when tested on the News data. When
tested with the combined development data from all three genres, the WikiNews data-
trained classifier outperformed the baseline model with an F-1 score of 0.640 compared
to the Baseline model trained on all the data, which scored an F1-score of 0.669. None
of the simple baseline classifiers performed the best on the data that they were trained
on. The baseline models may have done worse than the one used in the 2018 task due to
the method of extracting Google Frequency information. In the original baseline model,
this was achieved by using Google 5T. However, for the baseline model in this paper,
Google Ngrams was used. Word frequency in Google 5T was one of the most important
features. The Google Ngram frequency data used for the baseline models in this thesis
was taken from books rather than the web. As the CWI-2018 task data is web data, this
likely negatively affected performance. Further, the ”search for hyphenated phrases”
feature in Ngram was never made functional by the programmers. Instead, Ngram was
instructed to transform requests for plots of hyphenated words into requests for plots
of advanced Ngram comparisons of the component words or phrases within the original
hyphenated word or phrase. For example, the phrase ”bore unusual vertebrae” from
the Wikipedia development data produces zero in Google Ngram, but the phrase ”bore
a resemblance” scored high. This would be labelled as complex in the CAMB system as
the 3gram contains two words labelled complex. However, this phrase was not labelled
complex by the annotators in the data by the non-native or native annotation. Multiple
word phrases in the data are not annotated logically and have apparent contradictions
that are not easy to make allowance for when making a human rule-based system.

Models trained on a particular genre did not perform best when tested on the same
genre as was expected. Furthermore, it would be logical to suspect that data trained
on all sets would be the highest performing when tested on all data. In short, for
this data, the models trained on specific genres did not consistently perform better on
the genre that it was trained on. This could be because the genres are not extremely
different, and with the size of the data, any genre differences between models were not
distinct enough. However, the poorer results on the Wikipedia data were congruent
with the original CAMB system, which also performed worse in this genre. Features
in the original model were changed for the Wikipedia genre data, and this data set did
perform worse with the CAMB-inspired re-implementation. The model trained and
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Tested on the News data scored higher than the model tested and trained on all data,
with scores of 0.875 Precision, 0.866 Recall and 0.870 F-score, compared to the model
trained on the combined genre training data, which scored 0.837 Precision, 0.816 Recall
and 0.827 F-score. The News data trained model could have performed worse on the
News data because of the way hyphenated words are treated. And this is the data set
with the highest prevalence of hyphenated words, containing 213 in the training set.
When examining the Google frequency scores for hyphenated words, the API did not
return a score and had the default zero score. Lastly, setting the MWEs to Greedy was
used by the CAMB system, and this worked to improve the performance, but it did not
improve the understanding of the task. The lack of research on how to handle MWEs
was a problem, and the solution to apply the Greedy algorithm to all MWEs, although
simple, does not take the research forward. The CAMB-influenced model also suffered
a significant drop in performance when the data was split into non-native and native.
The model performed significantly worse across both sets.

When reviewing individual errors that were consistently made by all systems, it is
worth noting that the same word that is repeated in a target sentence multiple times
is not always labelled as complex. For example, in the WIKIPEDIA data, the word
”metres” appears four times in the same sentence but is only labelled as complex once
by a single native annotator giving the complex probabilistic score of 0.05. Contradic-
tions such as this were difficult for the models to distinguish. A study by (Finnimore
et al., 2019) found that across all data sets in the 2018 task, 72% of MWEs contain
at least one single word with the opposite label. Every single word instance in 25%
of MWE instances has the opposite label. For example, ”numerous falsifications and
ballot stuffing” is not annotated as complex, despite its SWs ”numerous”, ”numer-
ous falsifications”, ”falsifications”, ”ballot”, ”ballot stuffing”, and ”stuffing” all being
complex.

For the models that were trained only on the non-native and the native data, it
was surprising that the results showed that the non-native trained model improved the
performance on the native data but not on the non-native data, as would be expected.
Overall, the split data performed worse in all cases. There was a consistent drop in
performance for both data sets compared with models that used the original data.
Across all models, the non-native data also suffered more than the native. This could
be due to the low inter-annotator with non-native data. The higher inter-annotator
with the native data may be responsible for the smaller fall in performance when the
data was split.

The CAMB A models consisted of models built by adding extra features from the
Lang-8 Learner Corpora, EFCAMDAT Corpus and contextual features from RoBERTa.
Adding the Lang-8 corpora feature did not improve the F-score from the previous
model’s score. The F-score for all data fell slightly to 0.853 and fell considerably for
the Non-native and Native split data. The EFCAMDAT features did improve slightly
on the Lang-8 features, but the pattern was the same, with these features improving the
Native data more than the Non-native data. On reviewing the errors in the confusion
matrices in Figures 4.8, 4.9 and 4.10, it is noticeable that the model for all models
performed the same for correctly predicting words that were not complex but that the
model performed much better at correctly predicting words correctly as complex with
the combined data.

The best-performing system at CWI-2018 was implemented in a context-independent
way; thus, the intuition to improve performance was to add these missing contextual
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features. This was done by adding RoBERTa embedding information that aimed to give
context to the target word or phrase in the sentence presented to the annotators. The
results for the RoBERTa features saw a fall for the binary classification to an F-score
of 0.740 when tested on all data combined. However, the most striking result was the
very low score that the non-native and native split data scored, which was 0.389 and
0.437. These results were surprising, and it is unclear why the system would perform
this badly on the split data. The fact that the results were so low indicated that there
was some issue with the process, but no explanation for this drop in performance could
be established.

In summary, contextual features from RoBERTa and additional learner corpus word
frequency information did not improve the performance with the CWI-2018 data. None
of these additional features beat the performance of the previous models that achieved
an F-score of 0.870.

Although the investigation of the three sets of extra features shown in the CAMB A
models was hoped to improve performance, this was not the case. The highest F-score
across all data was achieved in the original CAMB-influenced model trained on the
News data as shown in Table 4.10. This model scored an F-score of 0.874. Thus this
model was chosen as the model to implement for the final model. However, when this
model was tested with the final test data, it suffered a large drop in performance to an
F-score of 0.790, as shown in Table 4.19.

For the three sets of results that were achieved for the probabilistic classification,
shown in Table 4.5 for the baseline, Table 4.15 for the CAMB-inspired and Table 4.20
for the final systems, the results did not mirror the binary systems for the order of
performance. Overall, the probabilistic results for the baseline systems performed only
slightly worse than the baseline systems used at CWI-2018. However, the difference
was for the NEWS data set, which performed much worse. The 2018 baseline scores
for all the genres were quite similar. Although the NEWS data did score very slightly
worse in 2018, the difference was the MAE scores for WIKIPEDIA and NEWS were
0.112 and 0.1127 compared with the All-Data baseline that scored an MAE of 0.1128
for WIKIPEDIA and 0.1418 for NEWS. The probabilistic CAMB-inspired results also
performed worse than the original CAMB model. With these models, the WIKIPEDIA
data performed worse for both the original and the CAMB-inspired models, and the
model trained on all data scored the best with the NEWS data, which was the same as
the original 2018 CAMB model. Lastly, the final probabilistic models only performed
slightly worse than the CAMB-inspired model that was tested using development data.
This was in contrast to the results for the binary classification, which suffered a sig-
nificant drop in performance. As a further step would have been to train probabilistic
models for the non-native native split data, but after poor results with the binary data,
this was not done.

To sum up, it was possible to build a system based on the best-performing CAMB
system from CWI-2018, using open, publicly available resources. However, it was not
possible to recreate the exact performance that the original researchers achieved. The
original F-score for the News, WikiNews and Wikipedia data was 0.874, 0.840 and
0.811, respectively. The best-performing models were achieved by making genre-specific
classifiers, as shown in the results for the genre-specific classifiers in section 4.2.3. These
results that were achieved during development led to the choices for the final model,
which performed considerably worse on the test set. This could be due to differences
in the test data or problems during the development stage. Some drops in performance
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were expected as the re-implementation of CAMB did not use the exact same features.
These difference in performance is likely to be because of the differences in the Google
frequency and CALD learner corpora feature data.



Chapter 6

Conclusion

First of all, during the recreation of the CWI-2018 competition and the process of
creating a baseline system, it was evident that MWEs and single-word classification
posed a different challenge than for creating a single-word classifier. For the baseline
models, trying to create an overall universal rule-based system that would deal with
single words and MWEs added many technical complications. It is clear why these
tasks were separated into sub-tasks at SemEval LCP 2021. Secondly, splitting the
target words and phrases into non-native and native annotations caused performance
to drop significantly. The results from this thesis suggest that with the amounts of
annotations that were used in 2018, the features that were successful on the combined
data suffered a significant drop in performance when the data was split into native and
non-native. A useful further direction could be to have annotated data that used solely
non-native annotators from a particular learning background to try and increase inter-
annotator agreement. The split of non-native and native data did show a noticeable
difference in performance, with the non-native data performing considerably worse
across all models.
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Appendix A

Data Statement

This data statement is written for the purposes of considering bias with the data used,
as put forward by Bender and Friedman (2018) to help alleviate issues related to ex-
clusion and bias and lead to better precision in claims about how natural language
processing research can generalize. The CWIG3G2 (Complex Word Identification Task
across Three Text Genres and Two User Groups) data set used was taken from the
SemEval Complex Word Identification (CWI) Shared Task 2018 site1. The data is
publicly available, and the shared task report and the system description papers are
published in the BEA Workshop 2018 proceedings (CWI-2018)(Tetreault et al., 2018).
Although the data sets used at CWI-2018 were in German, Spanish and French, only
the English data was used in this research. The English CWIG3G2 data was col-
lected by Yimam et al. (2017a) and covers three text genres (NEWS, WIKINEWS,
and WIKIPEDIA) annotated by both native and non-native English speakers. Infor-
mation on age, gender, race/ethnicity, specific native language, socioeconomic status
and background education were not available. However, in the creation of the data,
annotators were asked if they were native or non-native English speakers and what
their proficiency levels were (beginner, intermediate, advanced). Other than the total
number of annotators used, there is not much detailed further information available.

A.1 License

The data is distributed under CC-BY 4.0 license, see https://creativecommons.org/
licenses/by/4.0/fordetails.

1https://sites.google.com/view/cwisharedtask2018/
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Appendix B

Links to data sets and resources

Text simplification data sets - 500 complex words each with 50 candidate simplification
https://cs.pomona.edu/~dkauchak/simplification/

SemEval-2016 Complex Word Identification
https://alt.qcri.org/semeval2016/task11/

Complex Word Identification (CWI) Shared Task 2018
https://sites.google.com/view/cwisharedtask2018/

Lexical Complexity Prediction 2021
https://sites.google.com/view/lcpsharedtask2021/call-for-participation

Lang-8 Learner Corpus
https://sites.google.com/site/naistlang8corpora

EFCAMDAT Corpora
https://ef-lab.mmll.cam.ac.uk/EFCAMDAT.html

GitHub Repository Adam Tucker Masters Thesis CWI
https://github.com/Ad262/Adam_Tucker_Masters_Thesis_CWI.git
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