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Abstract

This thesis investigates the effect of random initialization on the generalizability of
transformer-based language models by fine-tuning them for Natural Language Infer-
ence (NLI). To this end, the results of thirty instances of RoBERTa are compared to
those of one hundred instances of BERT, each differing only in their random seed.
Three main research objectives are addressed: (1) assessing whether the generaliz-
ability of RoBERTa is less sensitive to changes in the random seed; (2) quantifying the
agreement between models that differ only in their random seed; (3) investigating which
specific linguistic challenges these models encounter when dealing with entailment. The
results reveal that while RoBERTa is more adept at generalizing to out-of-distribution
data than BERT, both models are found to exhibit some degree of reliance on cer-
tain heuristics which may compromise their generalizability. Moreover, it seems that
random initialization has a considerable influence on downstream model behavior in
a way that is not reflected in their accuracy. Furthermore, complex syntactic struc-
tures and high-level semantic information are found to consistently pose challenges for
BERT and, albeit to a lesser extent, RoBERTa. The findings highlight the influence
of the random seed and suggest avenues for future research, including a more granular
analysis of the linguistic capabilities of language models and other technicalities that
could inadvertently affect model performance.
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Chapter 1

Introduction

Large language models have become an indispensable component of many of the most
successful applications in natural language technology. The quality of technologies such
as search engines, machine translation, text predictive software, content recommenda-
tion systems, and many others has rapidly improved in recent years as the development
of larger language models with more optimized training procedures has garnered a sub-
stantial amount of attention. Despite their widespread adoption, these models remain
enigmatic, particularly when trying to decipher their inner workings. While every
part of the internal structure of such models is well understood in theory, the number
of parameters involved in generating the desired output may well exceed several bil-
lion. Therefore, the decision-making process employed by the model to accomplish its
intended task cannot feasibly be interpreted by studying the intricate underlying mech-
anisms. Instead, the broader behaviors and tendencies of such models can be studied
to elucidate what information models base their decisions on. Given the pervasive role
these models have come to play in our daily lives, a thorough understanding of exactly
how they work is important to ensure that they approach their tasks in a fair and
predictable manner.

One task that has been said to require a broad understanding of natural language is
natural language inference (NLI). This task involves taking a ‘premise’ and ‘hypothesis’
and determining whether or not they logically follow one another (e.g., Dagan et al.,
2005; Bowman et al., 2015). It is often regarded as an excellent benchmark for natural
language understanding (NLU), as it requires a model to grasp both the underlying
structures of the two sentences, semantic relations between words within each sentence
as well as between the two sentences, as well as deal with various linguistic phenomena
such as coreference, tense, evidentiality, or conditionality, and work out the entailments
that follow from them (Williams et al., 2018). NLI is among the tasks revolutionized by
the advancements of large language models, which have been reported to perform close
to human control groups. However, there is a growing body of evidence to suggest that
these results might be inflated, as models use approaches that would not transfer well
outside of their experimental setting (e.g., Gururangan et al., 2018). These findings fall
into a larger trend of scepticism about the impressive advancements made by language
models (e.g., D’Amour et al., 2020). Not only have they been found to use strategies
that would inhibit their performance in deployment, seemingly minor changes to the
training set up also appear to affect performance more than might be expected (McCoy
et al., 2020). In other words, the impressive results reported might not accurately reflect
what language models are actually capable of.
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2 CHAPTER 1. INTRODUCTION

1.1 Research Goals

The objective of this thesis is to investigate one potential source of instability in a
language model’s performance on NLI. In particular, the focus is on the influence of
how the random components of a language model are initialized before training on its
performance after training. Previous research by McCoy et al. (2020) has found this
effect to be larger than might be expected. This work looked into the commonly used
language model BERT (Devlin et al., 2019), which has since been improved upon with
various models that introduce slight modifications to BERT’s architecture or training
setup. One such model is RoBERTa (Liu et al., 2019), which chiefly aims to improve
on BERT’s robustness through adjustments to the training setup. This thesis inves-
tigates to what extent RoBERTa mitigates the influence random initialization has on
downstream performance, given its ostensible improvements to robustness. Moreover,
it also aims to provide a deeper insight into what language models are capable of when
it comes to NLI.

The results indicate the RoBERTa generalizes to data that is different from the
data it was trained on more robustly than BERT does. However, RoBERTa does
appear to be more susceptible to changes in random initialization. In terms of overall
performance, the results show that performance drops significantly when models are
employed outside of their experimental setting. An analysis of the results indicate that
the models rely on dataset-specific artefacts, rather than linguistic understanding and
logical reasoning to judge inferences. However, RoBERTa’s improved robustness does
seem to translate to a decreased reliance on such artefacts.

1.2 Structure

The background to this thesis is outlined in Chapter 2, which first explains what lan-
guage models are and how they have come to play the prominent role they play today,
as well as what random initialization is and what role it plays in the training process of
language models. Next, this chapter contains a more complete explanation of NLI as a
task in the field and the role it plays in the broader field of generalizability research. A
concrete view of how the research for this thesis was conducted is given in Chapter 3.
Starting with an overview of the internal processes involved when a language model is
employed for NLI, followed by an explanation of how they were employed and evalu-
ated in this thesis. The next section in this chapter explains how the datasets provide
insight into the linguistic processes that underlie the predictions made by the models.
The results are presented in Chapter 4. This chapter separates results of evaluation on
data that matches the data the model was trained on from data that does not match
the training data, as the latter is particularly informative about language model gener-
alizability. Next, this chapter contains a thorough linguistic analysis of the inferences
made by the models. A reflection on the results and the process that preceded them is
given in Chapter 5, as well as suggestions for future research. Finally, this chapter also
concludes the project in a section that summarizes the main findings.



Chapter 2

Background

The aim of this chapter is to explain language models and the role they have come
to play in the field of NLP. Beginning with the fundamental concepts of language
models, an overview of their evolving complexities and key advancements is presented
to explain how language models have become a cornerstone of modern NLP research.
Next, two important concepts are presented that are important to the problem central
to this thesis: The role randomness plays in the process of training a language model,
and the ability of language models to generalize outside of their training environment.
Shifting focus, Section 2.2 delves into the task of Natural Language Inference (NLI),
outlining the goal of the task and motivating why it was chosen for this thesis. The
chapter concludes with a section that summarizes the goal of this thesis, and presents
the questions this thesis aims to answer.

2.1 Language Models

One of the major challenges in natural language processing (NLP) is to capture the
intricacies of natural language numerically so that computers can work with it. While
the optimal approach depends on the task at hand, language models have proven to
be tremendously helpful in capturing the underlying structure and patterns of natural
language.

In the most basic definition, language models are computational models trained
to estimate a probability distribution over a sequence of words. Given a sentence, a
language model returns a metric that indicates how likely that sentence is, given the
data on which the model was trained. To illustrate, consider the sentences famously
introduced by Chomsky (1957): (a) Colorless green ideas sleep furiously and (b) Fu-
riously sleep ideas green colorless. While speakers of English are unlikely to have ever
encountered either sentence, they would have little trouble identifying (a) as grammat-
ical and (b) as ungrammatical. This example was intended to show the inadequacy
of probabilistic models of grammar, but Pereira (2000) showed that a basic statistical
model of language can indeed capture this distinction.

The type of model used by Pereira (2000) is based on transitional probabilities
between words, which they learn by training on large collections of text. As such,
these models can compute the probability that a sentence starts with colorless, that
the word ideas is preceded by green, or that a sentence ends with the word furiously.
These probabilities taken together allow such a model to calculate the probability of
any given sentence:
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4 CHAPTER 2. BACKGROUND

P(a) = P (end|furiously)P (furiously |sleep) . . . P (green |colorless)P (colorless |start)

P(b) = P (end|colorless)P (colorless |green) . . . P (sleep |furiously)P (furiously |start)

Although Pereira’s (2000) model had never encountered either (a) or (b) during train-
ing, it computed (a) as being 200 000 more likely than (b). Furthermore, a third sen-
tence, syntactically identical to (a) but semantically meaningful would yield an even
higher probability because the words in such a sentence are more likely to follow one
another.

2.1.1 Language Modeling as a Pre-training Task

Since 2000, there have been several significant advancements in the field of language
modeling. A primary example is the introduction of word2vec by Mikolov et al. (2013).
Word2vec is a technique that uses language modeling to map words to numerical rep-
resentations called word embeddings. While Mikolov et al. (2013) were not the first to
use word embeddings, their method made the creation of word embeddings more effi-
cient, and yielded embeddings of higher quality by training on a larger amount of data.
The importance of word embeddings is twofold: First, the continuous representations
it generates allow mathematical operations to be performed on words in a meaningful
way. Second, the representations also capture the semantics of a word, since words
that are similar in meaning are mapped closer to each other in the continuous space.
The ability to capture the meaning of a word numerically has proven to be exceedingly
useful to the entire field of NLP. Word2vec demonstrated how language modeling could
serve as an effective initial step – referred to as pre-training – in preparing models for
more complex tasks. This pre-training essentially equips the model with a foundational
understanding of language patterns, which has proven useful for many NLP tasks, and
helped advance the state-of-the-art in many of them.

Words generally do not exist in isolation; a word like lead can have any number
of meanings depending on its context. With word2vec, this word would be mapped
to the same word embedding regardless of the specific meaning. In 2018, Peters et al.
introduced ELMo (Embeddings from Language Models), a model that generates con-
textualized word embeddings. ELMo does this by modelling words in a sentence bi-
directionally by taking into consideration the words the precede the word in question,
as well as the words that follow it in that particular sentence. These two representations
are then combined to create a single word embedding that represents the word given
the context of its sentence. This approach allows ELMo to capture a deeper meaning
of a word that also includes the context it is in.

Another significant development in the field of NLP was marked by Vaswani et al.’s
(2017) introduction of transformers. Where ELMo models a sequence left-to-right
and right-to-left and then combines those representations to obtain a contextual word
embedding, transformers employ a mechanism known as self-attention. This mechanism
models the entire sequence in parallel to generate a representation of the importance
of all words in the sentence in relation to each other. By doing so, it eliminates the
necessity of processing sequences in a predefined order. This parallel processing enables
transformer-based models to manage diverse context-specific meanings for words and
more effectively capture long-range dependencies between words, resulting in better
efficiency and improved linguistic understanding.
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Building on the idea of transformers and contextualized word embeddings intro-
duced by ELMo, Devlin et al. (2019) proposed BERT (Bidirectional Encoder Repre-
sentations from Transformers). While ELMo generates separate embeddings for forward
and backward context of a word and then combines them, BERT uses the transformer’s
self-attention mechanism to understand the full context of a word in one go. The
training of BERT involves two key tasks. First, masked language modeling, where a
random word in a sentence is obscured, and the model is tasked with using the rest
of the sentence to predict what the obscured word might be. Second, next sentence
prediction, where BERT is given two sentences and must determine whether the sec-
ond would logically follow the first in a real-world context. This approach results in
deeply bidirectional, unsupervised representations of words, providing a comprehensive
understanding of language.

The introduction of RoBERTa (Robustly Optimized BERT pre-training Approach)
by Liu et al. (2019) further improved upon BERT with specific improvements to the pre-
training setup. For BERT, a fixed percentage of words is masked in the masked language
modeling task. Whereas for training RoBERTa, a new masking pattern is generated
every time a new sequence is fed to the model. Moreover, Liu et al. (2019) state that the
effect of the sentence prediction task on model performance after training is contested,
and do away with the task altogether. Taken together, these adjustments have resulted
in a language model that achieves a better performance than its predecessor BERT on
a variety of NLP tasks (Liu et al., 2019).

BERT-like models such as RoBERTa have since become a cornerstone in the field of
NLP and have set the state-of-the-art in the vast majority of tasks other than language
modeling. Throughout this thesis, ‘language models’ will predominantly refer to deep
transformer-based models such as BERT and RoBERTa.

2.1.2 Randomness in the Training Process

In general, many approaches to NLP tasks now involve fine-tuning a pre-trained lan-
guage model to that specific task. That is to say, a model that has been trained
on language modeling first is given a smaller, task-specific dataset. The linguistic
understanding these models attained during pre-training is then leveraged for better
performance on the task at hand. How this is done specifically differs from paper to
paper, but it often broadly follows a similar pattern. D’Amour et al. (2020) provide
a thorough formalization of a standard machine learning pipeline, which can be used
to better illustrate how language models are used in NLP. In this formalization, any
predictive model can be thought of as a function f : X 7→ Y that maps inputs x to
outputs y.

Assume the goal is to train a system to translate English text into French. The
variable x can then be thought of to be a representation of a text in English, and y
the representation of the translation of that text in French. The translation system
may then be said to be a function f , and its attempted translation is written as f(x).
Finding the right value for f requires a so-called loss function ℓ that takes as input the
attempted translation f(x) and the actual translation y, and returns a higher value
the less accurate the attempted translation is. The goal of training the model then
becomes finding a value for f that gives back the lowest value for ℓ(f(x),y), as that
represents the system that can most accurately translate English text into French.

In practice, the transformations applied by the model to an input are too complex
to feasibly capture in a written formula. So for illustrative purposes, assume a simple
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model that applies a linear transformation to the input x by multiplying it with weights
W and adding bias b, i.e., f(x) = Wx + b. The process of finding the right formula
f is an iterative one that involves repeatedly tweaking the values W and b. At each
timestep t, the model f is given an English sentence x. It uses its values for W and b
to arrive at an attempted translation f(x). Next, the value of ℓ(f(x), y) indicates how
accurate the translation is. If having a slightly lower value for W would have resulted
in a lower value for ℓ(f(x), y), its values are scaled down accordingly in t + 1. Ideally,
this eventually results in values for W and b that allow f to determine an accurate
French translation for a given English sentence x.

At timestep 0, the model has not encountered any information about the task it is
supposed to learn, so there is no meaningful way to attribute values to W and b. Instead,
at this point, the values of the weights are sampled from a standard distribution, which
is called random initialization. It is well documented that the way these values are
initialized influences the performance of the model after training (e.g., McCoy et al.,
2020; Khurana et al., 2021). What this means is that – since weight initialization is
a stochastic process – two identical models trained on the exact same data may end
up with different results because their weights had different initial values. When fine-
tuning a pre-trained model, the function f already has values for W and b that were
learned during pre-training. This function is then given data from a different, task-
specific dataset, and the existing values for W and b are modified to allow the model to
do the new task. For the values for W at timestep t+ 1, this can be written as Wt+1 =
Wt + δW , with δW being the suggested change in weights obtained from ℓ(f(x), y).
Using this notation, the function for a fine-tuned model can then be rewritten as f(x) =
α(W0x + b0) + (1 − α)(δWx + δb), where α is a value between 0 and 1 that indicates
what share each part contributes to the value of f(x). The values W0 and b0 represent
the values for W and b the language model learned during pre-training, which – in this
notation – remained frozen during fine-tuning. The values for δW and δb represent the
overall changes in values of W and b during the fine-tuning process, and can be thought
of as the task-specific weights and bias in relation to the pre-trained values of W0 and
b0.

Language model-based approaches to NLP tasks typically do not involve pre-training
the model. Instead, an existing pre-trained model is often used instead. This means
that when different models are fine-tuned using the same base model, the values for
W0 and b0 are identical across all instances. The initial values of δW and δb are not
randomly initialized, but obtained from ℓ(f(x), y). Nevertheless, in such cases, differ-
ent models are still found to perform differently after training, meaning that the values
of δW and δb do differ between instances. This is due to the fact that any number of
parts of the training pipeline might be stochastic, depending on the exact method used.
Examples include the order in which the data is presented to the model during fine-
tuning, or the way in which the values of W and b are updated after each step. These
random processes can be controlled between training instances with what is called a
random seed : Two models that have an identical architecture, use the same training
setup, and share a random seed, are – in theory – identical after training is completed.

2.1.3 Generalizability

The use of language models has resulted in an undeniable improvement over traditional
NLP methods, and advancements since have been rapid. In 2018, Wang et al. intro-
duced GLUE (General Language Understanding Evaluation), a benchmark platform
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consisting of a diverse set of sentence-level and sentence-pair classification tasks. At
the time, accuracies of around 60 and 70 percent were reported. But with the in-
troduction of BERT less than a year later, these already exceeded 80 % or even 90 %
(Devlin et al., 2019). More recently, exceedingly large language models were reported
to consistently attain accuracies of over 90 % (e.g., Chowdhery et al., 2022).

The main constraint in model evaluation is that the data that is used to evaluate
the model has not been used during training already. This is usually achieved by
taking a single data set, and splitting it randomly into one part the model is trained
on, and one part the model is evaluated on, and keeping the latter part separate. This
approach aims to ensure that the training and test data are independent and identically
distributed (i.i.d.), meaning they come from the same statistical distribution. The
performance of neural language models is usually evaluated using i.i.d. methods, but
the implicit assumption that the real-world data the model will eventually encounter is
also i.i.d. with the test data is not always valid. Indeed, there is growing evidence that
this does not always reflect the models’ ability to generalize to new data in the way
a human would (Hupkes et al., 2023). Examples of poor generalization by language
model-based architectures are well documented. One such example was found by Niven
and Kao (2019) who used a BERT-based model to classify argumentative structures
in a text. Their model achieved an accuracy close to that of a human control group,
but was found to do so by relying on the presence of the word not in a given sentence.
While this spurious correlation proved helpful in the experimental setup, reliance on
so-called shortcuts causes models to generalize poorly to real-world data. A focused
overview of this issue within the scope of the task under scrutiny in this thesis is given
in Section 2.2.3. The importance of good generalization is widely recognized in the
field of NLP. Nevertheless, as Hupkes et al. (2023) point out, systematic testing for
generalization is not yet common practice.

2.2 Natural Language Inference

Generalization issues between random seeds can occur regardless of the fine-tuning
task. This section introduces the task under scrutiny in this thesis: Natural Language
Inference, and motivates why this task was chosen in particular.

2.2.1 Task Outline

Natural Language Inference (NLI) is an NLP task that involves determining the re-
lationship between a premise and a hypothesis, which is typically either a relation of
entailment, contradiction, or neutrality. To illustrate, take the premise All dogs have
fur. A hypothesis that it would entail could be My dog has fur, since it is necessarily
true given the premise. An example of a contradiction would be No dogs have fur, since
it cannot possibly be true given the premise. A neutral statement might be Dogs are
popular pets, since the premise is not relevant to the truth value of the hypothesis.

Early approaches to NLI used a variety of techniques. Jijkoun et al. (2005) achieved
significant improvement over random chance with a system that measured lexical simi-
larity between the premise and hypothesis; MacCartney et al.’s (2008) approach relied
on the lexical alignment of hypothesis and premise, and achieved just over 60 % accu-
racy; and Hickl et al. (2006) enriched an approach of probabilistic lexical alignment
with manually engineered, lexico-semantic features to achieve an accuracy of around
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75 %.1 Like with other tasks, the advent of pre-trained neural language models led to a
considerable improvement over traditional NLP methods. The paper that introduced
BERT and RoBERTa respectively report an NLI accuracy of 86.7 % and 90.2 % (Devlin
et al., 2019; Liu et al., 2019).

2.2.2 Datasets

Various datasets are used in NLI research, depending on the specific goal at hand.
However, a general and widely used dataset is MNLI, which contains many natural,
English-language sentence pairs from a wide variety of sources. The MNLI dataset will
be used in this thesis along with HANS, a challenge set that targets the exploration of
prediction heuristics in language model.

MNLI

Williams et al. (2018) introduced the Multi-Genre Natural Language Inference (MNLI)
corpus. At the time, the only large human-annotated corpus for NLI was the Stanford
NLI Corpus (SNLI; Bowman et al., 2015). In their paper, Williams et al. (2018) em-
phasize the role of NLI as a benchmark task for testing natural language understanding
(NLU) in language models. But they argue that the SNLI corpus fails to provide an
adequate test ground for language models in this regard. The SNLI corpus was gen-
erated by showing English-language image captions to human annotators and asking
them to think of three sentences: one that is definitely true given the text; one that
might be true; one that is definitely not true. These sentences were then used as a
hypothesis for the entailment, neutral, or contradiction labels, respectively.

One issue with this technique is that all texts come from the same genre, namely
image captions. As a result, the SNLI corpus is argued to be insufficiently diverse
linguistically. That is to say, various grammatical constructions that a model would
have to be able to deal with are insufficiently present in the training data. In particular,
since image captions describe a static, visual scene, they generally lack sentences that
require displacement, e.g., sentences about hypothetical situations or sentences with
past or future tense verbs. Consequently, the dataset was already too easy for language
models at the time for it to serve as an effective benchmark for NLU. With comparisons
between the strongest models being inhibited by a ceiling effect, as models fell just a
few percentage points short of human accuracy.

The main goal of the MNLI corpus was to provide a large corpus for NLI similar
to SNLI that would also serve as a benchmark for NLU. To this end, Williams et al.
(2018) generated a corpus in a manner similar to what Bowman et al. (2015) did,
but using English-language texts from ten different genres, including both spoken and
written texts and texts with different levels of formality, all to ensure the language in
the corpus is as diverse as possible. The training set involved five of the ten genres, and
models can either be evaluated on a mismatched test set, which has different genres,
or a matched test set, which uses texts from the same genres as the training set. The
corpus has since become a significant dataset for NLI research, as it provides a large-
scale dataset of 433k annotated sentence pairs. The wider variety of language use
cases in the model has additionally provided a more robust testing ground for language
models compared to SNLI.

1Note that both MacCartney et al. (2008) and Hickl et al. (2006) used a setup where the model had
two classification options, rather than the three outlined earlier.
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HANS

The Heuristic Analysis for NLI Systems (HANS) dataset was introduced by McCoy
et al. (2019) with the goal of identifying why language models fine-tuned for NLI make
the predictions they make. Language models had been found to leverage statistical
artefacts in the training data, rather than learn the underlying linguistic generalizations
(Gururangan et al., 2018). However, these artefacts may not be present in real-world
data outside of the experimental setting, and lead to incorrect assumptions. By curating
a dataset around several artefacts language models are known to rely on, a test set can
be created that can help identify which specific artefacts a specific model uses for
its predictions. Each sentence pair in the dataset either has an entailment or non-
entailment label, contrary to the more common three-way distinction used in NLI. The
sentence pairs all contain one of three heuristics:

1. Lexical Overlap

(a) Premise: The lawyer was advised by the actor.

(b) Hypothesis: The actor was advised by the actor

(c) Hypothesis: The lawyer advised the actor.

2. Subsequence

(a) Premise: The judges heard the actors resigned.

(b) Hypothesis: The actors resigned.

(c) Hypothesis: The judges heard the actors.

3. Constituent

(a) Premise: Before the actor slept, the senator ran.

(b) Premise: If the actor slept, the senator ran.

(c) Hypothesis: The actor slept.

Each of these heuristics is intended to yield an entailment labeling by the language
model, but that is not necessarily always the correct label. The premise in 1a entails
the hypothesis in 1b, but not the one in 1c. However, a model that uses lexical overlap
between the premise and hypothesis will fail to recognize the non-entailment between 1a
and 1c, since all words in 1c are also in 1a. Sequential models might rely on the presence
of the hypothesis as an entire sequence in the premise, and may fail to recognize that
2c is not entailed by 2a. Models might also use the presence of the hypothesis as a
constituent in the premise. The hypothesis in 3c occurs as a constituent in both 3a and
3b, but if it is headed by if like in 3b, it does not necessarily entail 3c.

For each heuristic, five more specific subcases were generated where the heuristic
yields an entailment, and five where it does not. Each subcase had 10,000 sentence pairs,
resulting in a dataset of 30,000 items. Sentence pairs were generated automatically
using a fixed template and vocabulary. For example, the template for 3b and 3c would
be ‘If the N1 V1, the N2 V2’ and ‘The N1 V1.’ Possible nouns and verbs were checked
to ensure all sentences were plausible. Each pair was made to evoke an entailment
prediction from models that rely on the heuristic, regardless of whether the hypothesis
is actually entailed by the premise. If a model then consistently predicts entailment
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relations for sentence pairs in a given heuristic, that would indicate the model leverages
that particular heuristic. As such, the HANS dataset can provide a detailed insight into
how language models arrive at their predictions. A detailed overview of the subcases
and the information they provide is given in Section 3.2.

2.2.3 NLI in Generalization Research

Part of the appeal of NLI as a task is that it is considered to require a human-like
understanding of language and reasoning. However, Hupkes et al. (2023) point out
that NLI systems in particular have been found to rely on unintended strategies to
reach their decision, and consequently, that they fail to generalize well.

Ideally, a model learns to use information from a given premise to reason whether
or not it entails a given hypothesis. Poliak et al. (2018) trained a neural language
model only on hypotheses, but found that this did not inhibit the model from outper-
forming a majority baseline. This suggests that reasoning from a given premise is not
required for a model to gain good performance. Gururangan et al. (2018) confirmed
this by discovering that language models rely heavily on artifacts such as the presence
of hypernym relations, word overlap, and negations. Subsequent research found that
this strategy prevented models from generalizing well, as these artifacts seem to be
dataset specific. For example, Talman and Chatzikyriakidis (2019) found that some of
the state-of-the-art models in NLI often failed to reach an accuracy greater than 65 %
when tested on a dataset different from the one they were trained on, even though the
datasets were designed for the exact same task.

Several attempts have since been made to ensure language models use human-like
reasoning. In 2020, Kalouli et al. added a classification step to their NLI system that
classified inferences as being either simple or difficult. By passing the simple inferences
to a neural language model-component, and the difficult inferences to a symbolic engine,
they managed to outperform architectures consisting of just a neural language model
on datasets specifically intended to measure generalizability. More recently, Zhou and
Tan (2021) explored what the effect was of adding explanations to the training data.
That is, in addition to giving the models a premise and a hypothesis, adding a sentence
that explains why the hypothesis follows logically from the premise or not. They found
that language models were able to generate explanations to their inferences quite well,
but that it did not lead to improved generalizability.

Generalization issues in NLI have been investigated by looking at differences in the
datasets and model architecture. But as mentioned in Section 2.1.2, two instances of
the same model architecture trained and evaluated on the same data are still known
to exhibit behavior indicative of poor generalization due to differences in how they
were initialized. McCoy et al. (2020) trained 100 BERT-based classifiers on the MNLI
dataset. The models differed only in the random seed used for fine-tuning the clas-
sifier, but were otherwise identical. Following training, the models were evaluated on
the MNLI development set to evaluate their in-distribution generalizability, and on
HANS to evaluate their out-of-distribution generalizability. The models were found to
generalize to the in-distribution data quite consistently, but they were found to vary sig-
nificantly in the accuracies they attained for the different heuristics captured by HANS.
In other words, different instances of the same BERT-based model were found not to
learn the same task in a manner that was consistent across instances. As stated in Sec-
tion 2.1, model architectures have become more sophisticated since the introduction
of BERT. Like McCoy et al. (2020), Bhargava et al. (2021) trained various models on
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MNLI and evaluated them on HANS to assess their out-of-distribution generalizability,
including a RoBERTa-based classifier. This model was found to generalize much better
to HANS than the BERT-based models. However, unlike McCoy et al. (2020), Bhar-
gava et al. (2021) did not investigate how much their model’s generalizability varied
across random seeds.

2.3 Research Focus

In summary, language models have become abundant in NLP and have led to im-
pressive advancements in the field. However, there is evidence to suggest that these
improvements may be inflated. Many neural language models leverage dataset-specific
artifacts that they cannot use outside of the experimental setting they were introduced
in, which has been reported to be especially true for language models fine-tuned for
NLI. Interestingly, even two instances of BERT-based models that are identical, apart
from their random seed, have been found to vary in how well they generalize to out-
of-distribution data. This is indicative of a degree of instability that is not commonly
captured in evaluation: Firstly, because out-of-distribution evaluation methods remain
less popular than i.i.d. evaluation; secondly, because results are often reported for a
single model instance. Newer language models such as RoBERTa have been reported
to generalize more robustly to out-of-distribution data than BERT does. However, it is
not clear whether this also equates improved robustness to cross-random seed variation.

The goal of this thesis is to assess the degree to which a language model’s random
seed inadvertently affects its ability to judge inferences. Such an analysis could provide
a thorough understanding of what language models are currently capable of when it
comes to NLI. Moreover, comparing the degree to which BERT-based and RoBERTa-
based models are affected by changes to the random seed helps to judge the degree
to which RoBERTa is an improvement over BERT. Finally, an investigation of how
susceptible language models are to changes in the random seed can place the impressive
advancements made by such models into perspective. To this end, several research
questions will be answered:

RQ1: To what degree do the changes in the training setup of RoBERTa-based
models improve generalizability and stability across different random seeds when
compared to BERT?

RQ2: How does the overlap of mistakes made by models differing only in their
random seed vary on the instance-level?

RQ3: What types of inferences are particularly challenging for language models?

In addressing these research questions, this thesis has two main contributions. Not
only does it provide a more thorough understanding of the variance in generalizability
between random seeds as reported by McCoy et al. (2020), it also explores whether the
augmented robustness provided by RoBERTa-based architectures extends to increased
stability across random seeds.
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Chapter 3

Methodology

3.1 Fine-Tuning and Evaluating the Language Models

The process of fine-tuning language models is outlined in Section 2.1.2 using an abstract
formalization. The purpose of this section is to provide a more concrete description of
the fine-tuning process and to explain how it was employed in this thesis. Next, this
section outlines how the models were evaluated. As stated, two different types of models
were used, namely BERT and RoBERTa. The two models share the same architecture,
but they mainly differ in how they are pre-trained (see Section 2.1.1). Therefore, fine-
tuning works the same for both model types. In-distribution and out-of-distribution
evaluation was carried out using the MNLI and HANS datasets, respectively.

3.1.1 Fine-Tuning

Prior to fine-tuning the language model for a more specific task, the model has already
acquired a broad understanding of language by training on masked language modeling
and – in the case of BERT – next sentence prediction. Training models on these
tasks results in models capable of encoding natural language into representations that
are useful for a broad range of downstream NLP tasks. Fine-tuning then teaches the
model how to employ these representations for specific tasks. For NLI, the fine-tuning
process starts with the first premise-hypothesis pair in the training data. This pair of
sentences broken down into a single sequence of tokens — words or subword units. A
classification token ([cls]) is added to the start of the sequence, and separator tokens
([sep]) to separate the premise from the hypothesis and to indicate the end of the
hypothesis are added to the end of each sentence. This sequence of tokens is then
turned into a sequence of word embeddings that represent the tokens numerically in
a way that captures semantic information about the token. Next, this sequence is
enriched with segment embeddings, which indicate the sentence each token belongs to,
and positional embeddings, which indicate the position of each token in the sequence.
This enriched sequence is then fed into the first of a number of so-called transformer
blocks.

Transformer blocks each contain two components: a multi-head attention layer and
a feed-forward neural network. The sequence first passes through the attention layer,
which quantifies the relationship of each token with respect to every other token in
the sequence. For instance, when considering the premise The dog is happy and the
hypothesis The pet is happy, the attention mechanism might assign a high score to the

13
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token dog in relation to the token pet. This is because the semantic connection between
these two words could be useful for recognizing entailment. Each item of the output
sequence then passes through the same feed-forward neural network independently,
which applies some transformation to each item of the sequence. What these neural
networks do exactly is not directly interpretable, but can be broadly understood as
transforming the input representations into a more useful format. For example, the
initial embedding for dog might somehow emphasize the fact that it is a carnivorous
animal. If the attention layer managed to highlight the fact that dog relates strongly to
pet, the feed-forward neural network could then pick up on this relation, and transform
the embedding for dog to shift the focus from it being a carnivorous animal to it
being a domestic animal. The output of the first transformer block then serves as the
input to the next transformer block. With each transformer block, the representation
of the input sequence becomes increasingly abstract. There is evidence to suggest
that the initial block mainly picks up on more local, lower-level features of language,
such as word forms or parts-of-speech (Tenney et al., 2019). The subsequent blocks
progressively capture more complex linguistic patterns, with intermediate layers often
identifying long-range syntactic relations within the text. The final blocks are generally
responsible for encoding high-level semantic information, such as the overall meaning
of a sentence or complex relationships between entities (Jawahar et al., 2019). The
models used for this thesis are bert-base and roberta-base, which each stack twelve of
these transformer blocks.

After passing through all twelve blocks, the output corresponding to the [cls] token
is used to make the prediction. Because of the attention mechanism, this token is carries
information of every other token in the sequence. This output is fed to a simple neural
network that assigns probabilities to each possible class, in this case entailment, neutral,
or contradiction. After the first sentence pair in the training data, this neural network
has not yet learned to reliably obtain probabilities form the [cls] token, and its output
is unlikely to be correct. As explained in Section 2.1.2, the output it generates is
compared to the correct answer, and all components of the model are retroactively
tweaked in a way that would have resulted in an output that would have been closer
to the correct answer. With each new sentence pair, the model should then generate
outputs that are increasingly close to the correct answer.

Barring some minor details, this process is identical for both BERT and RoBERTa.
However, the differences in the pre-training setup mean that RoBERTa’s transformer
blocks encode the sequence in a different – and ostensibly more effective – manner.
What this means is that output corresponding to the classification token might contain
a more complete representation of the input sequence, which allows the final segment
of the model to make predictions more reliably.

For this thesis, thirty distinct instances of RoBERTa were fine-tuned to the MNLI
training set. This number deviates from the 100 instances fine-tuned by McCoy et al.
(2020) due to the computational constraints involved with fine-tuning such large mod-
els. The only variation between the models was the random seed applied during fine-
tuning, which affected the order in which the items of the training set were presented, as
well as the random initialization of the weights of the final segment of the model. Train-
ing lasted for three epochs, that is, the model went over the entire training set three
times. Training parameters were kept in line with those used by McCoy et al. (2020) to
facilitate comparisons with their BERT instances. No BERT models were fine-tuned
for this thesis. Instead, the publicized outputs of McCoy et al.’s (2020) BERT instances
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were used for comparisons between the two model types. A custom script was used to
fine-tune and evaluate the RoBERTa-based models, using the transformers library for
obtaining and handling the pre-trained RoBERTa model, and the datasets library to
obtain the datasets used. Fine-tuning was carried out on the DAS-5 system (Bal et al.,
2016) and took approximately 18 hours per model.

3.1.2 Evaluation

Following the fine-tuning process, each model was evaluated on two datasets, described
in detail in Section 2.2.2. The in-distribution evaluation used the MNLI matched de-
velopment set, as the test set is not publicly available. This set contains the same
genres of text contained in the training set, yet none of the texts in the development
set were encountered during training, effectively making it a test set suitable for i.i.d.
evaluation. Conversely, out-of-distribution evaluation was carried out using the HANS
dataset. With the models having been fine-tuned to the MNLI dataset, the labels they
assign to a premise-hypothesis pair is one of entailment, neutrality, or contradiction.
However, it should be noted that the HANS dataset treats NLI as a binary classifica-
tion task with each pair either representing entailment or non-entailment. As such, the
labels for contradiction and neutral were aggregated into a single non-entailment label
for evaluation on HANS. Evaluation relied on the accuracy — the number of correct
predictions as a share of the total number of predictions.

Evaluation can be broken down into two stages. The first stage involves a compar-
ison between different instances of RoBERTa. Ideally, differences in the random seed
should have little influence on the model after fine-tuning, in which case the models
should attain roughly the same accuracy. However, even if they score similarly, an
evaluation on the instance level is still warranted. If all models attain an accuracy of
0.95, that means they mislabel 5 % of sentence pairs in the evaluation set. However, as
reported by Khurana et al. (2021), it may well be the case that there is little overlap be-
tween the 5 % of sentence pairs mislabeled by each model. If this is found to be the case,
that means the random seed still affects which types of inference the models struggle
with after fine-tuning. The second stage involves a comparison between the RoBERTa
instances fine-tuned in this thesis and the BERT instances fine-tuned by McCoy et al.
(2020). While this necessarily involves a comparison between their overall performance,
the main interest is the differences between cross-instance stability between BERT and
RoBERTa. As Bhargava et al. (2021) report that a RoBERTa-based model fine-tuned
to MNLI generalizes to HANS more robustly than a BERT-based model, it would be
interesting to see whether they are also more robust to changes in the random seed.
This would mean that the RoBERTa-based instances show less variance in the overall
accuracy attained than McCoy et al.’s (2020) BERT-based instances, but also that the
overlap in errors made is greater for the RoBERTa-based models.

The BERT instances were not reported to show much cross-instance variance on
their in-distribution evaluation, and the RoBERTa instances were not expected to do
so, either. Therefore, the core of the analysis lies in the out-of-distribution analysis
using the HANS dataset. As stated in Section 2.2.2, premise-hypothesis pairs in the
HANS dataset are generated from a fixed template that falls under one of three heuris-
tics, which are in turn subdivided into ten subcases. Performance on the HANS dataset
was broken down for each of these subcases to allow for a thorough linguistic analysis
of how language models deal with NLI. The next section delves into the different HANS
heuristics, and how performance on each of them sheds light on the linguistic capabil-
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ities of the models used. Nevertheless, a more thorough instance-level of MNLI is also
warranted. Since the prediction is made based on a single, largely semantic represen-
tation of the sentences, it would be interesting to see what the link is between model
performance and semantic similarity between the premise and hypothesis. Moreover,
with the entire sequence being squeezed into one [cls] token, it is not unreasonable to
assume that models struggle more with longer input sequences. Since HANS sentences
are highly synthetic, these two aspects vary little between sentence pairs in the dataset.
Therefore, MNLI will be used for this purpose, instead.

3.2 Analysis of HANS Heuristics

Each heuristic in HANS is designed around a certain type of linguistic information.
This then allows for an investigation of the extent to which an NLI model uses that
information to arrive at its prediction. One of the goals of this thesis is to find out
which types of inferences are particularly difficult for language models. With this in
mind, this section aims to provide a thorough overview of the different heuristics and
subcases in the dataset, and how performance on each of them is to be interpreted.

3.2.1 Lexical Overlap

This heuristic is built on the assumption that a premise entails all hypotheses con-
structed from words in the premise, and is thought to be especially difficult for models
that use a so-called bag-of-words approach to language representation — models that
forego word order when processing linguistic input. Crucially, while all words in the
hypotheses of this heuristic appear in their respective premises, they do not do so as a
contiguous sequence, as such cases fall under the Subsequence heuristic. As mentioned
in Section 2.2.1, early approaches to NLI often used lexical similarity as a feature or
even as their basis, and achieved above-chance accuracy in doing so (e.g., Jijkoun et al.,
2005; Hickl et al., 2006; MacCartney et al., 2008). Five of the subcases in this heuristic
contain cases where lexical overlap between the premise and hypothesis is consistent
with entailment in various predictable patterns. However, out of those five, four are
paired with subcases where an over-reliance on lexical overlap would yield an incorrect
prediction of entailment.

Two of the subcases deal with passive structures. In one of those two, a premise
The president was advised by the manager entails the corresponding hypothesis The
manager advised the president. Ideally, a model would have acquired knowledge of
passive structures, which it would then use to correctly label this pair. However,
a model based solely on lexical similarity would do so, too, since all words in the
hypothesis occur in the premise. Therefore, the other subcase would have paired this
premise with the hypothesis The president advised the manager. A strictly lexical
model would not be able to differentiate the two, but a model that can adequately deal
with passives would be able to recognize that there is no entailment here. Another
subcase pair deals with conjunctions; the premise The presidents believed the doctor
and the scientist entails the hypothesis The presidents believed the scientist,1 but not
The scientist believed the doctor, for instance. Knowledge of word order is needed to
correctly identify the subject and object of the premise, and to see whether they match

1Note that in this subcase, the subject of the hypothesis is never the first element of the conjunction,
such as in The presidents believed the doctor as that would fit under the Subsequence heuristic.
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in the hypothesis. Moreover, this heuristic tests a model’s ability to recognize how both
conjuncts of and share their syntactic role in these sentences.

Two other subcase pairs test a model’s ability to deal with modifiers on the subject,
either as a prepositional phrase or as a relative clause. For a premise like The judge
behind the authors avoided the scientists, a model would have to recognize that the
noun phrase the authors is contained within a prepositional phrase, and is not an
argument of the main verb. Needless to say, a model would also have to recognize which
syntactic roles the other two noun phrases play in the sentence. The hypothesis that is
entailed by this premise would be The judge avoided the scientists, and an example of a
hypothesis where the label would be non-entailment would be The authors avoided the
judge. A premise that contains a relative clause – such as The artists who encouraged
the scientists introduced the actor – has the additional challenge of differentiating the
verb in the subordinate clause from the verb in the main clause. A model that has
this ability should assign an entailment label when this premise is paired with the
hypotheses The artists encouraged the scientists and The artists introduced the actor.
Conversely, various hypotheses could be generated that should get a non-entailment
label if a model is able to properly identify each of the elements in the premise. For
example, a hypothesis such as The actor introduced the artists might be mistakenly
considered as being entailed by a model that is able to recognize which elements are
arguments of which verb, but not able to recognize which is the subject or which is
the object. On the other hand, a model that is able to correctly identify subjects and
objects, but struggles to differentiate the main clause from the subordinate clause might
consider the hypothesis The artists encouraged the actor as being entailed. While the
dataset does contain these different templates, they all fall under the same subcase,
and are not differentiated in the analysis. Therefore, this subcase tests a more general
ability of models to deal with relative clauses.

One separate subcase that deals with relative clauses tests a model’s ability to un-
tangle them. Each example in this subcase has the entailment label, and pairs premises
like The doctor who the managers admired thanked the secretary with a hypothesis The
managers admired the doctor. What is challenging here is that the object of the verb
admired is moved from its usual position to the top of the clause. Furthermore, the
object of admired in the hypothesis is the doctor, but in the premise, its object is who,
which has the doctor as its antecedent. As such, this subcase is challenging in two dif-
ferent ways: First, a model should be able to deal with the fact that the object is not in
its usual position; and second, the model would have to identify that who and the doctor
have the same referent. Nevertheless, it is unlikely that even basic NLI models would
struggle to identify that The doctor who the students admired thanked the secretary
entails The students admired the doctor, due to the lexical overlap between the two.
Consequently, if models do not find this subcase comparatively difficult when compared
with the arguably easier subcases in this heuristic, it might be a good indication that
the models leverage lexical overlap as a heuristic for identifying entailment.

3.2.2 Subsequence

This heuristic is built on the assumption that a premise entails all of its subsequences,
and is thought to be especially difficult for models that parse language sequentially.
Unlike the Lexical Overlap the hypothesis in its entirety must be a contiguous sub-
sequence of the premise. For subcases where the label is entailment, this is usually
achieved by removing part of the premise that does not add to the truth value. For
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subcases where the label is non-entailment, subsequences usually cross a noncontiguous
part of the premise’s parse tree.

In order for a premise to entail a hypothesis, the hypothesis must be true in all
cases where the premise is true. However, it is possible for the premise to be false and
the hypothesis to still be true. The hypothesis could thus be seen as a larger set of
particular situations. Whenever at least one of these situations holds true, the hypoth-
esis is also true. The premise would then be a subset of the hypothesis, where each
situation contained by the premise is also in the set denoted by the hypothesis. Con-
sequently, whenever at least one situation in the premise set holds true, the hypothesis
is automatically true, too, since this situation is contained by the hypothesis by defi-
nition. In other words, whenever a specific description of a given situation is true, a
less specific version of that description is true, too. This is how the entailment-labeled
premise-hypothesis pairs in this heuristic are formed. For example, the hypothesis The
scientist read is entailed by the premise The scientist read the report because the truth
value of the hypothesis is not contingent on what exactly the scientist read. Similarly,
a verb might have two subjects or objects through conjunction, for instance in The
doctor and the professor recognized the senator. As a premise, this denotes a situation
contained by a larger set of situations that fit the hypothesis The professor recognized
the senator. The other three subcases of this type involve removing some modifying
element from one of the verb’s arguments. with the brackets denoting the hypothesis of
the larger premise, this can either be the adjective, such as in Helpful [athletes arrived ];
a relative clause, such as in [The managers stopped the tourists] who performed ; or a
prepositional phrase, such as in [The lawyers advised the athlete] near the senators.

Pairs where the premise does not entail the hypothesis in this heuristic require the
models to have some degree of knowledge of the underlying structure of the sentence.
An inability to do this is usually due to a misattribution of the syntactic role of one
of the elements in the sentence. For example, with the premise The students heard
the president resigned, the hypothesis The students heard the president would be given
the entailment-label if the president is incorrectly seen as the object of the verb heard.
One other subcase involves having a subordinate clause that ends in a verb that can be
used transitively precede a main clause that starts with a possible object of that verb,
such as in Because [the senators studied the professor ] recommended the lawyers. The
three other subcases involve a modifying phrase on the subject that ends with a noun
phrase, which is then directly adjacent to the subject’s verb. This phrase can either be
a prepositional phrase, such as in The bankers next to [the senator arrived ]; a relative
clause, such as in The author that avoided [the doctor slept ]; or a past participle, such
as in [The students helped in the museum] shouted.

None of the sentences are ambiguous, so the misattribution of syntactic roles nec-
essarily involves an incorrect parsing of the sentence at hand. Therefore, an inability
to recognize a lack of entailment in the latter five types of subcases might be said to
be indicative of impaired knowledge of the structure underlying language.

3.2.3 Constituent

This heuristic is built on the assumption that a premise entails all complete subtrees in
its parse tree, and is thought to be especially difficult for models that use a structural
representation of the sentence pairs. This goes one step further than the Subsequence
heuristic, because a subsequence is not necessarily a complete subtree of the larger
sequence. To illustrate, see Figure 3.1, which displays a parse tree for the possible
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Figure 3.1: Combined parse tree for the sentences If the student stopped, the senator
admired the scientist and Because the student stopped, the senator admired the scientist.

premise [Because/If ] the student stopped the senator admired the scientist. Here, The
student stopped the senator is a valid subsequence, but not a valid subtree, and no
interpretation of the full sentence is possible where the senator is the object of the verb
stopped.

Each subcase of this heuristic comes in a pair, where one is consistent with an
entailment label and the other with a non-entailment label. These subcases are syn-
tactically identical, and the models require lexico-semantic information of the heads of
the subtrees to make the correct prediction. This is also shown in Figure 3.1, where the
sentence does not change structurally depending on whether if or because is used, how-
ever, the change is significant semantically. Take the more general pattern ‘[If/Because]
P , Q’ with antecedent P and consequent Q. A conjunction like if signals a conditional
relationship between P and Q. In the semantics of conditionals, the truth value of the
consequent is contingent on the truth value of the antecedent. However, the truth of
the antecedent is not guaranteed by the conditional statement itself. Therefore, the
hypothesis2 If the student stopped, the senator admired the scientist entails neither The
student stopped, nor The senator admired the scientist. Conversely, the conjunction be-
cause is used to express a causal relationship between an antecedent and a consequent,
and presupposes the truth of both the cause The student stopped and the effect The
senator admired the scientist. A model that suffers from an over-reliance on syntactic
knowledge might miss this lexico-semantic distinction.

This type of knowledge is tested in a number of different ways in this heuristic. A
template with the premise ‘[Perhaps/Of course] Q’ for the hypothesis Q tests knowledge
of whether a given adverb necessitates the truth value of the phrase it modifies, where
it would entail Q if the adverb is of course, but the truth value of Q is unknown if
it is perhaps. The template ‘x [knows/thinks] that Q’ tests knowledge of the level of
evidentiality expressed by the verb introducing the clause that contains Q, where –
assuming the whole statement is true – Q is entailed if the verb is knows, but not if it is
thinks. Finally, the template ‘P [and/or] Q’ tests whether models understand the logical
difference between disjunction expressed by or, and conjunction expressed by and. An
inability to do any of these is indicative of an over-reliance on structural information,
as opposed to the lexico-semantic differences that make these pairs distinct.

2The comma is included for legibility here, but it would not be included in the HANS dataset, as it
would eliminate the need for syntactic knowledge to understand the sentence.
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3.2.4 Overview of Implications

Since all heuristics are designed to trigger an entailment prediction, it is not particularly
informative of model behavior if models frequently correctly identify entailment. That
either means they have acquired the linguistic knowledge that is required to check the
inference at hand, but it may also be the case the model has leveraged the heuristic for
its prediction. Similarly, while it is informative if the models erroneously attribute an
entailment label, it is a clear indication that the models mistakenly used the heuristic
in its prediction and lacks the linguistic understanding necessary to arrive at the correct
label. Instead, it is more interesting when the models assign a non-entailment label,
either correctly or incorrectly. While this was also discussed in the previous sections,
the table below provides a more concise overview of the implications of a non-entailment
prediction for each subcase.

Lexical Overlap
(Consistent)

Untangling Relative Clauses
The athletes who the judges saw called the manager. → The judges

saw the athletes.

Indicates the models fail to resolve that the relative pronoun is
the direct object of saw and/or that it corefers with the subject
of the main clause.

Sentences with PPs
The tourists by the actor called the authors. → The tourists called the

authors.

Indicates that the models fail to properly identify the subject of
the verb. It might indicate the model fails to grasp the under-
lying structure, as the verb is not headed by the noun directly
adjacent to it.

Sentences with Relative Clauses
The actors that danced encouraged the author. → The actors encour-

aged the author.

Indicates that the model fails to identify the subject of the verb
as it is not directly adjacent to it.

Conjunctions
The secretaries saw the scientists and the actors. → The secretaries

saw the actors.

Indicates the model fails to resolve that the conjunct that is kept
in the hypothesis shares its syntactic role with the conjunct that
is adjacent to the verb, using the example above, that both the
scientists and the actors are direct objects of saw.

Passives
The authors were supported by the tourists. → The tourists supported

the authors.

Indicates the model lacks a linguistic understanding of passive
constructions.
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Lexical Overlap
(Inconsistent)

Subject-Object Swap
The senators mentioned the artist. ↛ The artist mentioned the sena-

tors.

Indicates the model successfully identified the subject and the
direct object of the verb.

Sentences with PPs
The judge behind the manager saw the doctors. ↛ The doctors saw

the manager.

Indicates the model successfully identified the syntactic role of
the noun in the PP.

Sentences with Relative Clauses
The actors called the banker who the tourists saw. ↛ The banker called

the tourists.

Indicates the model successfully identified the syntactic role of
the noun in the relative clause.

Conjunctions
The doctors saw the presidents and the tourists. ↛ The presidents saw

the tourists.

Indicates the model successfully identified the syntactic role of
the conjuncts.

Passives
The senators were helped by the managers. ↛ The senators helped the

managers.

Indicates the model has a linguistic understanding of passive
constructions.

Subsequence
(Consistent)

Conjunctions
The actor and the professor shouted. → The professor shouted.

Indicates the model fails to recognize both conjuncts share a
syntactic role.

Adjectives
Happy professors mentioned the lawyer. → Professors mentioned the

lawyer.

Indicates the model fails to recognize the adjectives makes the
premise a more specific description of the action denoted by the
hypothesis, and that if it is true for a given situation, that the
more specific description is necessarily also true.

Understood argument
The author read the book. → The author read.

Indicates the model fails to recognize the presence of the sub-
ject makes the premise a more specific description of the action
denoted by the hypothesis.
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Subsequence
(Consistent)

Relative clause on object
The artists avoided the actors that performed. → The artists avoided

the actors.

Indicates the model fails to recognize the presence of the relative
clause makes the premise a more specific description of the action
denoted by the hypothesis.

PP on object
The authors called the judges near the doctor. → The authors called

the judges.

Indicates the model fails to recognize the presence of the prepo-
sitional phrase makes the premise a more specific description of
the action denoted by the hypothesis.

Subsequence
(Inconsistent)

NP/S
The managers heard the secretary resigned. ↛ The managers heard

the secretary.

Indicates the model understands that the noun to the right of
the verb is the start of a new clause, rather than its direct object.

PP on subject
The managers near the scientist shouted. ↛ The scientist shouted.

Indicates the model understands the noun to the left of the verb
is embedded in a prepositional phrase and cannot be the subject
of the verb.

Relative clause on subject
The secretary that admired the senator saw the actor. ↛ The senator

saw the actor.

Indicates the model understands that the noun to the left of the
verb of the main clause is embedded in a relative clause, and
cannot be its subject.

MV/RR
The senators paid in the office danced. ↛ The senators paid in the

office.

Indicates the model understands the covert passive structure in
the relative clause on the subject, and that the initial noun of
the premise is not the subject of the verb it is adjacent to.

NP/Z
Before the actors presented the doctors arrived. ↛ The actors pre-

sented the doctors.

Indicates the model understands the verb in the hypothesis is
embedded in a prepositional phrase in the premise, and that its
object in the hypothesis cannot be its object in the premise.
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Constituent
(Consistent)

Embedded under preposition
Because the banker ran, the doctors saw the professors. → The banker

ran.

Indicates the model does not understand the preposition signals
causality, and that, consequently, the preposition it heads is en-
tailed.

Outside embedded clause
Although the secretaries slept, the judges danced. → The judges danced.

Indicates the model does not understand that the preposition
outside of the embedded clause is entailed because of the type of
preposition heading the embedded clause.

Embedded under verb
The president remembered that the actors performed. → The actors

performed.

Indicates the model does not understand that a clause headed
by the type of verb in the premise is entailed because of it.

Conjunctions
The lawyer danced, and the judge supported the doctors. → The lawyer

danced.

Indicates the model does not understand a conjunction that ex-
presses logical conjunction entails both of its conjuncts.

Adverbs
Certainly the lawyers advised the manager. → The layers advised the

manager.

Indicates the model does not understand the certainty expressed
by the adverb means the phrase it modifies is entailed.

Constituent
(Inconsistent)

Embedded under preposition
Unless the senators ran, the professors recommended the doctor. ↛
The senators ran.

Indicates the model understands the preposition signals condi-
tionality, and that, consequently, the preposition it heads is not
entailed.

Outside embedded clause
Unless the authors saw the students, the doctors resigned. ↛ The

doctor resigned.

Indicates the model understands that the preposition outside
of the embedded clause is not entailed because of the type of
preposition heading the embedded clause.

Embedded under verb
The tourists said that the lawyer saw the banker. ↛ The lawyer saw

the banker.

Indicates the model understands that a clause headed by the
type of verb in the premise is not entailed because of it.
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Constituent
(Inconsistent)

Disjunction
The judges resigned, or the athletes saw the author. ↛ The athletes

saw the author.

Indicates the model understands a conjunction that expresses
logical disjunction does not entail its conjuncts.

Adverbs
Probably the artists saw the authors. ↛ The artists saw the authors.

Indicates the model understands the uncertainty expressed by
the adverb means the phrase it modifies is not entailed.



Chapter 4

Results

4.1 In-Distribution Evaluation

The models were first evaluated on the MNLI matched development set. This data is
independent and identically distributed with respect to the data on which the model was
trained. In theory, poor generalizability should not inhibit the model from performing
well on this test set. The published results obtained from McCoy et al.’s (2020) BERT-
based models are presented side by side with the results of the RoBERTa-based models
in Figure 4.1. The plot on the left shows the share of model instances that attained a
particular accuracy. The plot on the right shows the different error overlap ratios for
each model type. This is a pairwise metric that is obtained by dividing the size of the
intersection of errors made by two models with the size of the union of errors made.
Two models that make the exact same mistakes will attain an error overlap ratio of 1.0,
whereas for two models where there is no overlap, this value is 0.0. As such, the error
overlap ratio serves as a pivotal metric in assessing the consistency of model instances
across random seeds.

The plot on the left shows that RoBERTa modestly but consistently outperforms
BERT on MNLI. The RoBERTa and BERT instances attained a mean accuracy of
0.86 and 0.84, respectively, with neither model type having much variation between
instances. These results indicate that both models have successfully learned from the
identically distributed training data and that the random seed had little influence on
downstream performance. The error overlap ratio is significantly higher for the BERT
instances. Two instances of BERT usually agree on around two-thirds of mistakes made,

Figure 4.1: Overall and instance-level in-distribution evaluation. Left: Share of model
instances for a given accuracy score for in-distribution evaluation. Right: Boxplot of
the error overlap index for RoBERTa and BERT instances.

25
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Figure 4.2: Share of model instances per accuracy score, broken down per HANS
heuristic, as well as whether the heuristic yields an entailment label (consistent) or a
non-entailment label (inconsistent).

whereas this overlap is only around 50 % for two given instances of RoBERTa. Given
that there are three possible labels in the MNLI dataset, both of these numbers are
well above chance. Fleiss’ kappa was calculated for both groups of models to quantify
the agreement on all predictions, rather than just the mistakes. This metric determines
the level of agreement over what would be expected by chance and can range between
-1 and 1, with a negative value indicating worse agreement than would be expected by
chance, a value of 0 indicating the same level of agreement as what would be expected
by chance, and a value of 1 indicating perfect agreement. These results also show
that agreement is higher among BERT models (κ = 0.76) than for RoBERTa models
(κ = 0.63), though both values show a level of substantial agreement.

In summary, the in-distribution evaluation reveals nuanced insights into the effect
of the random seeds on BERT instances when compared to RoBERTa instances. On
the one hand, RoBERTa demonstrates a slight edge over BERT in terms of accuracy.
Moreover, the random seed was not found to have much influence on the downstream
performance of either type of model. Concurrently, BERT appears to exhibit a greater
degree of agreement between instances, as evidenced by the higher error overlap ratio
and Fleiss’ kappa value. This is indicative of more consistent behavior between instances
of BERT than between instances of RoBERTa. In other words, while RoBERTa con-
sistently finds a superior strategy for identifying entailment, there is more variation
between the strategies it converges to depending on the random seed. BERT, on the
other hand, is more consistent in the method it employs for NLI.

4.2 Out-of-Distribution Evaluation

Out-of-distribution evaluation was carried out on the HANS dataset. An analysis that
goes into the linguistic implications of the performance per subcase is presented in
Section 4.3. More generally, data from a different distribution than what the models
were trained on – such as HANS – tests the models’ generalizability in a way in-
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Figure 4.3: Error overlap ratio between model pairs, broken down per HANS heuris-
tic, as well as whether the heuristic yields an entailment label (consistent) or a non-
entailment label (inconsistent).

distribution data does not. As stated in Section 2.2.2, premise-hypothesis pairs in
HANS contain one of three types of heuristics language models are known to leverage
in NLI. In HANS, these heuristics can either be consistent with entailment, in which
case entailment is the correct label, or inconsistent, in which case the correct label is
non-entailment. Since models have a tendency to overwhelmingly predict entailment
in the entire dataset, results are split between these levels of consistency.

Figure 4.2 shows the share of model instances per accuracy score, broken down
per heuristic and consistency level. For pairs where the heuristic is consistent, both
types of model achieve a near perfect accuracy. This ceiling effect leaves little room
for variation both between model types and between instances of the same type of
model. The Lexical Overlap heuristic appears to have been more difficult, but here too,
there does not seem to be a noteworthy difference between BERT and RoBERTa. This
finding is discussed further in Section 4.3.2.

There are clear differences between the model types for cases where the correct
label is non-entailment. For the Constituent and Subsequence heuristics, both BERT
and RoBERTa score well below chance, with BERT labeling around 10 % of such pairs
correctly, and RoBERTa around 25 %. Moreover, the different instances deviate sub-
stantially from the mean accuracy, which suggests the random seed had a considerable
effect on downstream performance on these types of examples. For the Lexical Overlap
heuristic, most instances of RoBERTa score well above chance, although there is still
a lot of variation between instances. The different instances of BERT do not seem to
exhibit agreement to any meaningful degree. Some instances mislabel nearly all sen-
tences in this category, whereas others score just above chance. Performance on these
types of premise-hypothesis pairs is thus highly dependent on the random seed used.

Figure 4.3 shows the error overlap ratio broken down for each heuristic and consis-
tency with entailment in HANS. When the heuristic is consistent with entailment, the
models rarely make mistakes. The overlap between the errors they do make is gener-
ally quite low, usually ranging between 10 % and 25 %. For the Constituent heuristic,
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BERT and RoBERTa instances have comparable error overlap ratios, though there is
more variation between different pairs of BERT instances. For the Subsequence heuris-
tic, the error overlap ratios are also similar between the two types of models, though
it tends to be higher for pairs of BERT instances. For the Lexical Overlap, where the
accuracy was slightly lower, RoBERTa models have similarly low error overlap ratios,
but instances of BERT have substantially higher overlap ratios.

For sentences where the heuristic is inconsistent with entailment, models generally
scored below chance. Consequently, the error overlap is very high, with little variation
between different pairs. The one heuristic where RoBERTa instances usually did better
than random chance is Lexical Overlap, and here the error overlap is much lower.
Instances of BERT displayed significant variation in their accuracies, but the overlap
is still around 75 % for this category.

BERT RoBERTa
Con. Inc. Con. Inc.

Lexical overlap 0.649 0.653 0.268 0.634

Subsequence 0.722 0.746 0.105 0.875

Constituent 0.573 0.571 0.376 0.873

Table 4.1: Values for Fleiss’ kappa for both model types bro-
ken down per heuristic and whether the heuristic is consistent
or inconsistent with entailment.

Across the board, the error overlap ratios are higher for BERT than for RoBERTa.
However, this is not necessarily indicative of agreement since errors usually constitute
more than half of the labeled sentence pairs. The larger the share of errors made, the
larger the overlap of errors is going to be just by random chance. Fleiss’ kappa measures
the level of agreement over what would be expected by chance, and is consequently not
affected by the large number of mistakes made. Table 4.1 shows the value of Fleiss’
kappa for each model and each category. BERT displays a similar and substantial level
of agreement regardless of whether the correct label is entailment or non-entailment.
RoBERTa, on the other hand, shows only slight agreement for sentences where the
heuristics are consistent with entailment, versus substantial agreement on sentences
where the Lexical Overlap heuristic is inconsistent with entailment, and almost perfect
agreement on the other two heuristics.

To sum up, both models overwhelmingly predict entailment for all sentence pairs
in the dataset, which results in near perfect accuracies on cases where the heuristic is
consistent with entailment, and accuracies below random chance when it is not. This
finding indicates that both types of models leverage the heuristics used in HANS when
recognizing entailment. RoBERTa, however, does so to a lesser degree, which indicates
it has done a better job at acquiring a more general understanding of natural language
inferences. In terms of accuracy, there was a substantial level of variance between model
instances when the correct label was non-entailment, this is particularly true for BERT
instances and accuracy on the Lexical Overlap heuristic.

Interestingly, on the sentence pair-level, variation between model instances was more
noticeable. With errors either being ubiquitous or scarce depending on the correct label,
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the overlap in errors was respectively either substantial or low. As a result, Fleiss’ kappa
is a better metric to use to measure the agreement between model instances. BERT
was found to have a similar and substantial level agreement across the board, whereas
RoBERTa was found to have little agreement on the sentence pairs where mistakes
were rare, but near perfect agreement on sentences where mistakes were common.

4.3 Linguistic Analysis

The goal of this section is to answer the question what types of inferences are particu-
larly difficult for language models. The focus of this analysis lies on the HANS heuris-
tics, as those allow for a thorough investigation of the linguistics involved with judging
inferences. However, the highly synthetic nature of the sentences in HANS make some
worthwhile analyses impossible. As discussed in Section 3.1.2, these analyses check for
the relation between sequence length and the performance, and the semantic similarity
and the performance. The results of these analyses are presented in Section 4.3.1. The
subcase-level performance of the HANS dataset is analyzed in the following sections.

4.3.1 Analyses on MNLI

It might be the case that semantic similarity between the premise and hypothesis
is used by language models in their predictions, given that the [cls] token used in
classification contains high-level semantic information of the entire input sequence.
Moreover, it might be the case that capturing the semantic intricacies necessary for
NLI is more difficult for longer sequences, in which case you would expect to find a
negative correlation between sequence length and model performance. To investigate
this, three numbers were calculated for every item in the MNLI development set: The
length of the sequence in tokens; the share of models of each type that predicted the
label correctly; and the cosine similarity between the premise and the hypothesis. In
NLP, the cosine similarity is used as a metric that captures the semantic similarity
between two embedded texts, as it measures the distance between two embeddings.

The first step was to obtain embeddings for each sentence in the dataset. To this
end, the large, English-language pipeline package en core web lg by spaCy was used.
The sentences were first tokenized, and the tokens were embedded. All tokens were
counted to obtain the length of the sentence. For obtaining the semantic similarity,
however, frequent stopwords were removed from the sentences, as those typically do not
add much to the meaning of the sentence, but would still hold an equal weight in the
sentence embedding. The mean value of the remaining tokens was taken to obtain an
embedding for the whole sentence. The cosine similarity between the premise’s sentence
embedding and the hypothesis’ sentence embedding was then taken to be the semantic
similarity between the two.

The correlation between model performance and semantic similarity and sequence
length was measured by calculating the R2 for both BERT and RoBERTa. This is
a number between 0 and 1 that indicates how well two variables correlate, with 0
being no correlation and 1 being perfect correlation. Neither the sequence length,
nor the semantic similarity was found to correlate with the results of either BERT or
RoBERTa. The R2 was between 0.00 and 0.05 in all cases. A substantial number of
sentence pairs was labeled correctly by all model instances, which may have diluted a
possible correlation. However, removing such cases to focus on examples the models
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did not agree on did not yield a greater R2. Therefore, semantic similarity or sentence
length cannot be said to be a major part of the strategy employed by either BERT or
RoBERTa.

4.3.2 Lexical overlap

Subcase Minimum Maximum Mean Std. dev.

Untangling Relative Clauses 0.98 1.00 0.99 0.00
0.94 1.00 0.98 0.01

The athletes who the judges saw called the manager. → The judges saw the athletes.

Sentences with PPs 0.98 1.00 0.99 0.00
0.98 1.00 1.00 0.00

The tourists by the actor called the authors. → The tourists called the authors.

Sentences with Relative Clauses 0.92 0.98 0.95 0.01
0.97 1.00 0.99 0.01

The actors that danced encouraged the author. → The actors encouraged the author.

Conjunctions 0.77 0.96 0.89 0.05
0.72 0.92 0.83 0.05

The secretaries saw the scientists and the actors. → The secretaries saw the actors.

Passives 0.99 1.00 1.00 0.00
0.99 1.00 1.00 0.00

The authors were supported by the tourists. → The tourists supported the authors.

Subject-Object Swap 0.67 0.99 0.91 0.06
0.00 0.66 0.19 0.17

The senators mentioned the artist. ↛ The artist mentioned the senators.

Sentences with PPs 0.67 0.90 0.83 0.05
0.04 0.76 0.41 0.18

The judge behind the manager saw the doctors. ↛ The doctors saw the manager.

Sentences with Relative Clauses 0.57 0.86 0.77 0.06
0.09 0.67 0.33 0.14

The actors called the banker who the tourists saw. ↛ The banker called the tourists.

Conjunctions 0.53 0.82 0.67 0.08
0.12 0.72 0.45 0.15

The doctors saw the presidents and the tourists. ↛ The presidents saw the tourists.

Passives 0.01 0.41 0.18 0.10
0.00 0.04 0.01 0.01

The senators were helped by the managers. ↛ The senators helped the managers.

Table 4.2: Results for the HANS subcases for which the Lex-
ical overlap heuristic. Results for RoBERTa are in the top
row and results for BERT in the bottom row.
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The Lexical overlap heuristic relies on the full lexical overlap of the hypothesis with
the premise, but not as a contiguous sequence. A detailed breakdown of the accuracies
per subcase in this heuristic is shown in Table 4.2. As discussed in the previous sec-
tion, models were more likely to incorrectly assign a non-entailment label to sentences
of this heuristic than for the others. It appears that this is largely due to the Con-
junctions subcase, e.g., recognizing that the premise The secretaries saw the scientists
and the actors entails the hypothesis The scientists saw the actors. An analysis of
whether sentences with conjunctions co-occur more often with non-entailment labels
in the training data yielded no conclusive results, so these findings are unlikely to be
caused by a statistical artefact related to the presence of the word and. Since the hy-
pothesis specifically does not occur as a contiguous sequence in the premise here, the
task at hand is to recognize that the conjunct that is not adjacent to the verb shares
its syntactic role with the conjunct that is, i.e., that the actors is also a subject of
saw despite not being adjacent to it. Interestingly, the Subsequence heuristic also has
a Conjunction subcase where the conjunct that is adjacent to the verb is the one that
is kept in the hypothesis. As can be seen in Table 4.3, performance on this subcase
in the Subsequence heuristic is much higher. This makes sense, because both BERT
and RoBERTa take sequentiality into account when representing a sequence. For all
other subcases in this heuristic, the premises contain subsequences that could be valid
hypotheses, but those would not be valid subtrees of the hypothesis. For example, the
actor called the authors is a subsequence of The tourists by the actor called the authors.
But since called is not headed syntactically by the actor, viewing it as the subject of
called would necessarily involve misparsing the premise. It might be the case that the
models erroneously reject the hypothesis in this heuristic because there is another valid
hypothesis that is a subsequence of the premise. The fact that they do not struggle
with the other subcases – despite there being valid subsequences that could be the
hypothesis – would then be explained by the fact that models recognize that these are
not valid subtrees of the premise.

For BERT, the Lexical Overlap heuristic stands out in cases where the heuristic is
inconsistent with entailment. As can be seen on page 26 in Figure 4.2, the models are
unusually inconsistent in the accuracies they attain for this heuristic. This is also re-
flected in the high standard deviations shown in Table 4.2. Interestingly, RoBERTa does
not have this same degree of instability. The variance between instances of RoBERTa
is similar for all three heuristics with non-entailment as the correct label. Moreover,
not a single instance of RoBERTa scored below chance on any of the subcases but the
Passives subcase, whereas the mean accuracies of the BERT instances never exceed
random chance for all subcases that are inconsistent with entailment. The Passives
subcase in this heuristic contains examples such as The senators were helped by the
managers and The senators helped the managers. For such sentences, RoBERTa-based
models vary considerably between instances, with the mean accuracy being 0.18. Nev-
ertheless, they still show considerable improvement over their BERT counterparts, as
BERT instances consistently fail to assign a non-entailment label, with the maximum
accuracy being just 0.04. Taken together, these results imply that RoBERTa instances
rely less on lexical overlap between premise and hypothesis when looking for entailment.
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4.3.3 Subsequence

Subcase Minimum Maximum Mean Std. dev.

Conjunctions 0.90 1.00 0.97 0.02
0.93 1.00 0.98 0.02

The actor and the professor shouted. → The professor shouted.

Adjectives 0.98 1.00 1.00 0.00
1.00 1.00 1.00 0.00

Happy professors mentioned the lawyer. → Professors mentioned the lawyer.

Understood argument 1.00 1.00 1.00 0.00
0.95 1.00 1.00 0.01

The author read the book. → The author read.

Relative clause on object 0.99 1.00 1.00 0.00
0.98 1.00 0.99 0.01

The artists avoided the actors that performed. → The artists avoided the actors.

PP on object 0.99 1.00 1.00 0.00
1.00 1.00 1.00 0.00

The authors called the judges near the doctor. → The authors called the judges.

NP/S 0.00 0.03 0.01 0.01
0.00 0.05 0.02 0.01

The managers heard the secretary resigned. ↛ The managers heard the
secretary.

PP on subject 0.34 0.67 0.50 0.07
0.00 0.35 0.12 0.07

The managers near the scientist shouted. ↛ The scientist shouted.

Relative clause on subject 0.31 0.65 0.46 0.09
0.00 0.23 0.07 0.04

The secretary that admired the senator saw the actor. ↛ The senator saw the actor.

MV/RR 0.02 0.10 0.04 0.02
0.00 0.02 0.00 0.00

The senators paid in the office danced. ↛ The senators paid in the office.

NP/Z 0.05 0.18 0.10 0.03
0.02 0.13 0.06 0.02

Before the actors presented the doctors arrived. ↛ The actors presented the doctors.

Table 4.3: Results for the HANS subcases for which the Sub-
sequence heuristic. Results for RoBERTa are in the top row
and results for BERT in the bottom row.

The Subsequence heuristic relies on the presence of the hypothesis in the premise
as a contiguous sequence, but not as a valid subtree. The ceiling effect for evaluation
on sentences where this heuristic is consistent with entailment is more pronounced for
this heuristic than it is for the others, with the RoBERTa-based models attaining the
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lowest mean accuracy of 0.97 on the Conjunctions subcase. BERT-based models score
the second-lowest mean accuracy on that same subcase with 0.98. It is noteworthy
that all other mean accuracies exceed 0.99, and that the Conjunctions subcase is also
the one that proved to be the most challenging for the models in the Lexical overlap
heuristic.

For pairs where the label is non-entailment, RoBERTa models outperform BERT
models in all but one subcase, the NP/S subcase. This subcase contains pairs like
The managers heard the secretary resigned and The managers heard the secretary that
require the knowledge that a verb like heard can introduce a subordinate clause, and
that, in such cases, the noun following the verb is not its direct object. Neither type of
model seems to have picked up on this knowledge during training, given that the mean
accuracy for both groups is close to zero. RoBERTa scores considerably higher on two
of the subcases in this category, namely the PP on subject and Relative clause on subject
subcases. Both of these involve a phrase modifying the subject and separating it from
its verb. Overcoming this non-adjacency requires syntactic knowledge that some of the
RoBERTa instances seem to have acquired, to some extent. The MV/RR subcase also
involves a modifying phrase separating the verb and subject, yet it still proves highly
challenging for the models. An example pair from this subcase has the premise The
senators paid in the office danced and the invalid hypothesis The senators paid in the
office. One reason such examples are difficult to parse is the passive structure in the
modifying clause, given that the models were found to struggle with passives in the
Lexical overlap heuristic, too. Another reason is the fact that the object of the verb
paid is not in the typical object position, but has instead moved up to the start of the
clause. Moreover, the sentence lacks an overt conjunction to indicate the start of a
relative clause in order to ensure the hypothesis is a valid subsequence of the premise.

In summary, these results indicate that models rely a lot on the presence of the
hypothesis as a subsequence of the premise when predicting entailment. Models struggle
little with the subcases where there is entailment, but appear to be largely unable to
identify non-entailment. However, as could also be seen in the Lexical overlap heuristic,
RoBERTa in particular seems to be able to deal with simple relative clauses. This
indicates an improved ability to correctly identify and label the arguments of a verb.
However, this does not extend to complex relative clauses such as those in the MV/RR
heuristic, where the passive structure, the moved object, or the lack of a conjunction
might have inhibited both types of models from correctly labeling non-entailment.

4.3.4 Constituent

Subcase Minimum Maximum Mean Std. dev.

Embedded under preposition 0.88 0.97 0.93 0.02
0.81 1.00 0.96 0.02

Because the banker ran, the doctors saw the professors. → The banker ran.

Outside embedded clause 1.00 1.00 1.00 0.00
1.00 1.00 1.00 0.00

Although the secretaries slept, the judges danced. → The judges danced.
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(Continued)

Subcase Minimum Maximum Mean Std. dev.

Embedded under verb 0.96 1.00 0.99 0.01
0.93 1.00 0.99 0.01

The president remembered that the actors performed. → The actors performed.

Conjunction 0.98 1.00 1.00 0.00
1.00 1.00 1.00 0.00

The lawyer danced, and the judge supported the doctors. → The lawyer danced.

Adverbs 1.00 1.00 1.00 0.00
1.00 1.00 1.00 0.00

Certainly the lawyers advised the manager. → The layers advised the manager.

Embedded under preposition 0.39 0.91 0.60 0.10
0.14 0.70 0.41 0.12

Unless the senators ran, the professors recommended the doctor. ↛ The senators ran.

Outside embedded clause 0.00 0.01 0.00 0.00
0.00 0.03 0.00 0.01

Unless the authors saw the students, the doctors resigned. ↛ The doctor resigned.

Embedded under verb 0.35 0.74 0.54 0.09
0.02 0.42 0.17 0.08

The tourists said that the lawyer saw the banker. ↛ The lawyer saw the banker.

Disjunction 0.00 0.07 0.02 0.01
0.00 0.03 0.00 0.01

The judges resigned, or the athletes saw the author. ↛ The athletes saw the author.

Adverbs 0.04 0.37 0.17 0.10
0.00 0.17 0.06 0.04

Probably the artists saw the authors. ↛ The artists saw the authors.

Table 4.4: Results for the HANS subcases for which the Con-
stituent heuristic. Results for RoBERTa are in the top row
and results for BERT in the bottom row.

The Constituent heuristic targets models that rely on the presence of the hypothesis
as a constituent of the parse tree of the premise. For this heuristic, the subcases come
in pairs where the syntactic structure of the premise and hypothesis is the same, but
a lexical change between the two subcases shifts the correct label from entailment to
non-entailment. Therefore, this heuristic requires lexico-semantic knowledge to deter-
mine whether a premise entails a hypothesis, since syntax is not informative. Somewhat
unsurprisingly, the subcase where models struggled more to correctly assign an entail-
ment label is also the subcase where they most successfully assigned non-entailment
labels, namely the Embedded under preposition subcase. This subcase connects two
propositions with a preposition that either indicates a causative relation, in which case
there is entailment, or a conditional relation, in which case there is no entailment. For
instance, the preposition the tourist danced is entailed in the causative example Be-
cause the tourist danced, the scientist resigned but not in the conditional example If
the tourist danced, the scientist resigned. The fact that the models misclassified pairs
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that did have entailment relatively often indicates that the models do not associate
the syntactic structure used in this subcase with entailment as much as they might
do with those of the other subcases. Conversely, the fact that they correctly identified
non-entailment relatively often might indicate that the models do have some knowledge
of which prepositions express causality and which ones express conditionality.

However, one other subcase uses this exact same structure, yet it proved to be the
most challenging subcase in the entire dataset. In the easier Embedded under preposition
subcase, the hypothesis is the proposition that is embedded by the preposition. But
in the more difficult Outside embedded clause subcase, the hypothesis is the other
proposition, i.e., the scientist resigned in the example above. If the preposition at hand
indicates causality between the propositions, the models recognize entailment without
failure. However, when the preposition indicates conditionality, virtually all models
fail to recognize the lack of entailment. So while RoBERTa in particular seems to have
some knowledge of which prepositions signal conditionality, they only appear to be able
to extend this knowledge to the clause headed by the preposition.

Both types of models demonstrate near-perfect accuracy on all other subcases where
the correct label is entailment. However, this proficiency did not always extend to an
inability to recognize non-entailment as performance is rarely above chance in these
instances. One other heuristic with relatively high performance is the Embedded under
verb subcase, which involves knowledge of evidentiality expressed by verbs. For exam-
ple, the hypothesis The lawyer saw the banker is entailed by the premise The tourists
remembered that the lawyer saw the banker, but not by The tourists said that the lawyer
saw the banker. BERT-based models were quick to label either pair as expressing en-
tailment, but the RoBERTa-based models scored modestly above chance on average
on cases where there was no entailment. This subcase also proved considerably less
challenging for the BERT-based models than other subcases of this heuristic where the
correct label was non-entailment. However, they do still score well below chance.

In summary, these results show that neither BERT nor RoBERTa has sufficiently
acquired the lexico-semantic knowledge necessary to deal with most subcases of this
heuristic. Since syntactic information cannot be used to recognize non-entailment here,
the inability of BERT in particular to correctly assign the non-entailment label might
be indicative of reliance on syntactic structure. If it is true that transformer-based
models such as BERT and RoBERTa capture syntactic information in the earlier layers
and higher-level semantic information in later layers, it might be that larger models
would perform better on this heuristic. If this is the case, poor performance on this
heuristic might be attributed to the models being too small to be able to capture the
semantic information necessary.



36 CHAPTER 4. RESULTS



Chapter 5

Discussion & Conclusion

The objective of this thesis was to investigate the degree to which RoBERTa is affected
by changes to the random seed, especially in comparison to BERT, and to provide a
deeper insight into what such models are capable of when it comes to NLI. Overall,
RoBERTa was found to consistently outperform BERT in terms of accuracy. In HANS,
accuracy on sentences where the correct label was entailment was close to 1.00, which
left little room for meaningful differences between the two models. The performance
on the part of the dataset where the correct label is non-entailment showed RoBERTa
generalizes more robustly to out-of-distribution data, which is in line with the findings
by Bhargava et al. (2021). Nevertheless, in this part of the dataset, its performance
was often still well below chance, and the effect of the random seed on downstream
performance was found to be substantial. The fact that both models attained high
accuracies on MNLI means they both managed to learn from the training data well,
regardless of the random seed. However, the varying performance on HANS indicates
that BERT and, to a lesser degree, RoBERTa tend to leverage statistical artefacts
when making their predictions. The high variation in performance for examples in
HANS where there was no entailment is consistent with the notion that the random
seed has a considerable effect on the degree to which these artefacts are used. So
while different instances of the same model may achieve a similar accuracy, the random
seed still introduces variations in how they approach and complete the task, leading to
differences on the sentence-level.

This conclusion is corroborated by the finding that – even when there is little vari-
ation between instances in terms of accuracy – agreement between instances is still
variable. On MNLI, any given pair of BERT instances shares about two-thirds of their
errors, whereas for RoBERTa, the error overlap ratio is around 50 %. This is above
chance, and Fleiss’ kappa shows a substantial level of agreement for both types of mod-
els, with the agreement for BERT models being higher than for instances of RoBERTa.
The predictions on HANS suffer from an imbalance, as models overwhelmingly assign
the entailment label. What this means is that for the part of the dataset where this is
correct, errors are very rare, whereas for the other part of the dataset, errors are ubiq-
uitous. Consequently, the error overlap ratio in this latter part is very high, since errors
usually make up more than half of the predictions. For the other part, the error overlap
ratio is quite low. As such, Fleiss’ kappa is a more informative metric, as it measures
the level of agreement above what would be expected by random chance. On the part of
the HANS dataset where entailment was the correct label, RoBERTa models showed
only slight agreement, whereas BERT models had a substantial level of agreement.

37
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However, on the part where the correct label was non-entailment, RoBERTa models
had a near perfect level of agreement, whereas BERT was found to have a similar level
of agreement as it had on the other part of the dataset.

In summary, on in-distribution data, RoBERTa makes more correct predictions
than BERT does, but the level of agreement between RoBERTa instances – while
substantial – is lower than that of BERT models. Moreover, the overlap in errors
made is consistently lower for pairs of RoBERTa instances than it is for pairs of BERT
instances. On HANS, the models were quick to assign the entailment label to sentences
in the entire dataset, which indicates that the models leverage the heuristics used
in HANS when recognizing entailment, which is indicative of poor generalizability.
RoBERTa, however, was found to be consistently better at recognizing non-entailment
in the HANS dataset, which may mean that it has learned the task in a more reliable
manner. BERT models were found to have a substantial level of agreement regardless
of the gold label. On the other hand, RoBERTa was found to have low agreement on
the part where mistakes were rare, and high agreement on the part where mistakes
were common.

For both BERT and RoBERTa, the vast majority of premise-hypothesis pairs in the
dataset fall onto the entailment-side of the decision boundaries the models converge to,
regardless of whether there actually is entailment or not. This is not surprising, as the
HANS dataset was deliberately designed to be difficult for language models. In other
words, finding a decision boundary that adequately separates the pairs in HANS with
entailment from the pairs without entailment is not an easy task. The models arrive
at different decision boundaries depending on the random seed, but instances of BERT
are fairly consistent in which examples fall on which side of the boundary. However,
instances of RoBERTa consistently find a boundary that puts the same pairs without
entailment on the right side of the boundary, but the few pairs with entailment that
erroneously fall onto the non-entailment side of the decision boundary are quite variable
between instances.

While this discrepancy is striking – especially since it was not found in BERT –
it is important put into perspective. It is very uncommon for either type of model
to mislabel a sentence pair that exhibits entailment. Therefore, the key finding seems
to be that RoBERTa consistently does better than BERT at correctly identifying non-
entailment in HANS, which points at an improved generalizability to out-of-distribution
data. This finding is strengthened further by the fact that RoBERTa shows a high level
of agreement on this part of the dataset. The fact that BERT struggles on this part
of the dataset is indicative of an over-reliance on the heuristics in HANS. If this is
the case, it is not unsurprising that BERT was found to have higher agreement on the
MNLI dataset. However, in this case, it would not necessarily be correct to take the
higher agreement to mean better generalizability for BERT. So while the random seed
appears to have a larger influence on the strategy RoBERTa converges to, this does
not appear to translate to a larger influence of the random seed on the generalizability
of RoBERTa instances.

The linguistic analysis of the different subcases in HANS found that both mod-
els rely heavily on the presence of the hypothesis as a subsequence of the premise.
RoBERTa did appear to be better at identifying modifying clauses than BERT, which
implies that the model encodes syntactic information more effectively. The Constituent
heuristic was argued to require semantic information as opposed to syntactic informa-
tion. While the models were shown to have acquired this type of information to some
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degree, their capacity to employ this adequately remains limited. To illustrate, given
a preposition that expresses a causality relation between two clauses, many model in-
stances were able to identify that this means the clause embedded by the preposition
is not entailed. However, the models appeared unable to extend this non-entailment
to the other clause, too. Since semantic information is increasingly encoded in the
input representation as the input passes through more layers of a language model, it
might be the case that an increase in model size would result in improved performance
on the Constituent heuristic, in particular. More generally, the models appeared to
mostly struggle with complex syntactic structures and high-level semantic information.
While the RoBERTa models in particular were found to use linguistic information that
goes beyond the surface level, the models appear to lack the depth necessary to judge
inferences in a human-like manner.

5.1 Future Research

The methodology of this thesis built heavily on that of McCoy et al. (2020) and, in the
initial stage, involved swapping the model used. However, this modification turned out
to be less trivial than anticipated. Constraints in computational resources meant that
obtaining the RoBERTa instances took up a larger amount of time than was initially
allocated to this process. Consequently, several ideas for analyses could not be carried
out in time, an overview of which is given below.

The HANS dataset allows for a thorough insight into the linguistic capabilities of
the models evaluated on it. The analysis as presented in this thesis could have been
made even more granular by breaking results down per template, rather than just
per subcase. For example, as stated in Section 3.2.1, the premise The artists who
encouraged the scientists introduced the actor might be paired any of the following
hypotheses, depending on the template:

1. The artists encouraged the scientists;

2. The artists introduced the actor ;

3. The actor introduced the artists;

4. The artists encouraged the actor.

If the model is able to recognize that the premise does not entail hypothesis 3, that
indicates the model is able to distinguish subjects from objects; if it can correctly
identify that hypothesis 4 is not entailed, it shows the model managed to separate
the main clause from the subordinate clause. Another example might be the subcase
that tests a model’s ability to recognize the causality expressed by prepositions such as
because, since, or although. It would be interesting to see whether these prepositions are
equally difficult for the models. Currently, these hypotheses would be grouped together
under the same subcase. As such, breaking the results down even further would have
allowed for more conclusive statements about the linguistic capabilities of the models.

It would also be interesting to see how well the findings from the linguistic analysis
HANS are reflected by performance on MNLI. For example, given that the models were
found to struggle with passives in HANS, it would be interesting to see whether premise-
hypothesis pairs that rely on matching a passive and active structure are equally diffi-
cult. Identifying the presence of certain heuristics in the natural language examples of



40 CHAPTER 5. DISCUSSION & CONCLUSION

MNLI is no trivial feat, and would likely require a substantial amount of manual analy-
sis. However, given the highly synthetic nature of sentences in HANS, such an analysis
on MNLI would likely be more informative about the model’s abilities in deployment.

Another possibility might involve investigating whether performance on one subcase
is a good predictor of performance on another. It is conceivable that if two model
instances converge in local minima that are close to each other, that the types of
instances they struggle with are more similar. If this is true, you would expect to find
patterns where, if a model struggles with subcase A, they likely do well at subcase B,
and vice versa. Such findings might provide insight into a possible link between the
decision space and the linguistic capacity of language models.

On the more technical side, it is worthwhile to investigate the influence of changes in
the GPU unit the model is fine-tuned on. This is known to affect model performance,
and might have been a contributing factor in the lower between-instance overlap in
errors displayed by RoBERTa. On the DAS-5 system, the RoBERTa models were not
consistently fine-tuned on the same GPU unit. If this effect is sufficiently large, it might
be the case that RoBERTa is more robust to changes in the random seed than reported
in this thesis.

5.2 Conclusion

This thesis set out to answer three questions. The first goal was to investigate the
extent to which RoBERTa’s changed setup translated to improved stability and gener-
alizability across random seed when compared to BERT. The RoBERTa models were
found to generalize better to out-of-distribution data than BERT, but cross-instance
variation in overall performance was largely similar between the two. The results of the
evaluation on HANS indicate that both models leverage heuristics which leads to issues
of generalizability. Sentence pairs in HANS where the correct label is non-entailment
were mislabeled in the majority of cases, which means the use of the heuristic misguided
the model. Nevertheless, there were several subcases for RoBERTa in particular where
the models succeeded in recognizing a lack of entailment, which supports Bhargava
et al.’s (2021) finding that RoBERTa generalizes to out-of-distribution data more ro-
bustly than BERT does.

The second goal was to investigate the differences between different instances of
the same base model. While the results show that the random seed has considerable
influence on how the models perform the task, agreement between the models was found
to be mostly substantial. Despite the varying strategies, overall performance was not
found to be affected much. On in-distribution data, agreement among BERT models
was found to be higher. BERT was also found to have a considerably higher level of
agreement than RoBERTa on the few cases where they erroneously assign the non-
entailment label. However, RoBERTa was not only found to be better at identifying
non-entailment, it also did so more consistently across instances. A conclusion that is
consistent with these findings is that BERT picked up on statistical artefacts in the
training data more than RoBERTa did, and did so quite consistently between random
seeds. This would explain why BERT was found to have higher agreement on the
in-distribution evaluation, and why its performance on HANS is worse. If RoBERTa
relied on a more general representation of language, it would have come at the cost of
a greater variation in how the different instances execute the task. This might have
given RoBERTa an edge on examples in MNLI where a reliance on a specific heuristic
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would have led to an incorrect prediction. However, the models would then vary in
which additional examples it would be able to label correctly. In HANS, it would have
allowed different instances of RoBERTa to consistently identify the same sentence pairs
that lack entailment, seemingly at the cost of them agreeing on the few examples where
the model fail to recognize entailment.

The final goal was to analyze what aspects of NLI are challenging to language
models. The models were found to rely on overlap between the premise and hypothesis
on the lexical level, particularly if the hypothesis is a contiguous subsequence of the
premise. Semantic similarity between the premise and hypothesis or the length of the
sequence were not found to correlate with model performance. In general, RoBERTa
in particular was found to be able to deal with basic syntactic structures to some
extent. However, it appears the model lack the lexico-semantic information necessary
to correctly identify certain entailment relations. This seems to indicate the models
are able to leverage basic linguistic information in their decision-making process, but
lack the depth to adequately capture more complex syntactic and semantic information
necessary to learn NLI in a human-like manner.
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