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Abstract

This thesis set out to test whether a semi-supervised learning approach to fine-tuning
a RoBERTa-based classification model fine-tuned on COVID-19 data would procure
good enough results that extensive and costly human annotation would no longer be
necessary to obtain new training and testing data. This was done by assessing whether
it was the quality or the quantity of new training data that improved the classifier’s
performance, for which large amounts of available but unannotated data was labeled
by the classification model, divided into “high” and “low” quality data, and used to
train that same model. Due to the different types of data used to train the model,
however, it seems the model un-learned previously learned patterns when trained on
too much data, and returned more false negatives when trained on “low” quality data.
This thesis also includes suggestions on how to construct a more robust and reliable
model, so that future A-PROOF interns may use the findings of this paper to obtain
more labeled data with ease.
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Chapter 1

Introduction

This thesis was written in collaboration with the A-PROOF1 project at the Amster-
dam UMC (University Medical Centers) as a continuation of previous master students’
theses, as well as a support project for future students working on this project.

The A-PROOF team’s project is building a classifier that can read Dutch healthcare
notes, written by either primary or secondary healthcare providers, and automatically
categorize these notes into the WHO functioning categories of the International Clas-
sification of Functioning, Disability and Health (ICF), together with a corresponding
level of either 0-4 or 0-5. The ICF is a framework used by the WHO to give precise
descriptions and measurements of a patient’s functioning levels. Some of the domains
in there are, for example, energy level, attention functions, walking, and more. Please
see figure A.1 in the appendix for a complete overview of the domains and levels that
were used by the A-PROOF team for this project. The potential use of such a clas-
sifier varies greatly, from observing the long-term effects of diseases or new drugs, to
predicting recovery patterns, and more. The A-PROOF team’s final goal is to create
a patient recovery timeline with this classifier, for recovery functioning and clinical
treatments. By doing it this way, the team can create meta-data for patients outside
of the standardized way of categorizing and may curate a more stream-lined and easily
readable database.

My thesis2 was run on a classifier (built by Kim (2021)) that is an extended, fine-
tuned language model which was developed by Verkijk and Vossen (2021) and was a
pre-trained and fine-tuned version of a RoBERTa-based model. This language model
was eventually titled MedRoBERTa.nl and was fine-tuned in a supervised fashion and
mostly trained on COVID-19 data from secondary healthcare providers, i.e. hospital
notes. Galjaard (2022) and Badloe (2020) then took the classifier by Kim (2021)
and tested and trained it for evaluating primary healthcare notes and non-COVID
healthcare notes, respectively. Although both researchers were able to answer their
research questions, they themselves claimed that their results were unreliable or did
not even pass the baseline experiment. Both researchers stated that this was mostly
due to the lack of annotated training data, which is where I gathered the inspiration for
my own thesis from. Seeing where the previous researchers’ projects could have gone,
had they had enough training data, made me realize what this project needed the
most. The A-PROOF team provided millions of hospital notes, though only a fraction

1https://cltl.github.io/a-proof-project
2The GitHub repository of this thesis can be found at https://github.com/cltl-students/

Cecilia_Schramm_ICF_semi_supervised_learning

1

https://cltl.github.io/a-proof-project
https://github.com/cltl-students/Cecilia_Schramm_ICF_semi_supervised_learning
https://github.com/cltl-students/Cecilia_Schramm_ICF_semi_supervised_learning


2 CHAPTER 1. INTRODUCTION

of those were annotated by human annotators, which makes training a new model
rather difficult. The more data, the more reliable and well performing a model usually
is, but the annotation process is a long and complicated process. However, thanks
to semi-supervised learning methods, classifiers do not always need large amounts of
labeled data to perform well, especially if large amounts of unlabeled data are available.

As mentioned above, there are millions of unlabeled hospital notes available, though
of course each note differs in quality, which is determined by how clearly a note depicts
a certain category and the corresponding level of said category. Nevertheless, there is
no guarantee that semi-supervised learning can improve this classifier’s performance,
since there are many steps and decisions along the way that will heavily determine the
outcome. Not to mention the data itself plays a large role in the outcome, as both
quantity and quality of data influences what the model learns. That is why this thesis
aims to answer the following research question:

Research Question: Does using semi-supervised learning to train a model im-
prove the model’s performance in automatically annotating unlabeled hospital
notes?

In order to fully explore this question, I will also be focusing on these sub-questions
within my main question:

• How much does the quality of the training data influence the model’s perfor-
mance?

• How much does the quantity of the training data influence the model’s perfor-
mance?

• What specific categories do not benefit from semi-supervised learning?

All three of these sub-questions will be answered in a single continuous process that
will be testing all three simultaneously. The process starts by using TF-IDF (“Term
Frequency - Inverse Document Frequency”) on the entire corpus to receive the most
relevant keywords. These keywords will then be used to gather enough relevant notes
from the corpus and, after dividing them into sentences, have a base classifier run over
them and include a confidence score in the predictions. “High” and “low” quality data
will be gathered from that data based on certain confidence score criteria, which will
then be used to further fine-tune the base classifier. This will be done in parallel, once
with with high quality, once with low quality data. The training sets will be divided
into thirds and the base classifier trained one by one with each third, still parallel for
high and low quality data. At the end, one model will be trained with all existing newly
model-labeled data. Each intermediate model will be evaluated on a development set.

Through this process, sub-question 1 and 2 will be examined in a direct comparison,
while sub-question 3 will be explored slowly throughout the whole process. I believe
that these 3 sub-questions will help me investigate my main research question deeply,
as each of them will give me a different insight into whether or not the semi-supervised
learning method did indeed improve the model’s performance in annotating unseen
hospital notes.
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1.1 Thesis Structure

My thesis is structured into 7 chapters, Introduction, Related Work, Data and
Annotation, Corpus Analysis, Experiments, Results and Error Analysis, and
Discussion and Conclusion. Chapter 2 will go into detail regarding the processes of
semi-supervised learning, unsupervised learning, and pseudo-labeling, so that readers
may get an understanding of the processes used in my experiments, as well as the
conception of MedRoBERTa.nl. Chapter 3 will explain the labeled data availability
and annotation process, with detailed explanations regarding previous work on this
project. Chapter 4 is an analysis of the unlabeled corpus provided for this thesis,
especially in regards to how I gathered and what I deemed “high” and “low” quality
data. Chapter 5 is the detailed description of my experiments and how exactly they
were carried out, while chapter 6 will be the reported results of these experiments, as
well as an in depth error analysis of where the system failed on a holistic scale. Chapter
7 will be the discussion and conclusion of my thesis, meaning I will be explaining what
the system’s performance means for my research, and finally I will be summarizing my
thesis and suggesting future work that could be done in order to further improve on
my work.
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Chapter 2

Related Work

This chapter will be describing the general processes that will be used in my thesis. It
will be divided into 3 sub-sections: Section 2.1 will be describing what unsupervised
learning, semi-supervised learning (SSL), and pseudo-labeling are. Section 2.2 will be
briefly explaining the language model this entire project is based on, MedRoBERTa.nl,
while section 2.3 will be explaining how this model was then fine-tuned on medical
notes from COVID-19 patients to be used for ICF classification with levels. This is the
model used in all of my experiments, as my thesis is not only a continuation of previous
students’ work on the project, but also an attempt to improve future works within the
project.

2.1 Unsupervised Learning, Semi-Supervised Learning, and
Pseudo-Labeling

The ideal machine learning process would, naturally, be performed on a plethora of
labeled, varied data and an equally diverse, yet potentially smaller, test set. In super-
vised learning, it has been proven to be the most effective way of training a system and
consistently providing the best results. However, that is the ideal scenario. In truth,
there are many instances where that is simply not the case and the researchers are met
with large amounts of unlabeled data and oftentimes either very little labeled data or
even none at all, mostly because the process of human annotation is expensive, time-
consuming, and complicated. That is where unsupervised or semi-supervised learning
come in. While those two are ways of training a machine on very little to no labeled
data, pseudo-labeling is a process that happens within semi-supervised learning (SSL).

2.1.1 Unsupervised Learning

The idea described above, with lots of labeled training data as well as labeled test
data, is called supervised learning, where a machine is trained and tested on labeled
data only. The opposite of that, so to speak, would be unsupervised learning. Here, a
machine is trained on no labeled data whatsoever, which can be quite useful when no
labeled data exists at all. Though it might seem counterproductive or even impossible
to train a machine on no labeled input – as that would mean no feedback for the system
to compare its predictions to – Ghahramani (2004) argue that unsupervised learning
is about finding patterns in the data that go beyond structureless noise. It is through
these patterns that the machine can construct representations of the input data and

5
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learn from it. Hastie et al. (2017), however, also point out that with this strategy, it is
much harder to judge the outputs of the system, as there is no loss function that can be
applied to the expected and predicted output. Therefore, Hastie et al. (2017) say, one
must resort to experimental approaches for judging the output’s quality and validity,
which has led to a myriad of methods of judging the output of unsupervised learning,
as “effectiveness is a matter of opinion and cannot be verified directly” (Hastie et al.,
2017, p. 487). The method used to verify the quality and validity of the output in this
thesis will be the testing on the same test set as the other experiments will be tested
on.

2.1.2 Semi-Supervised Learning

Semi-supervised learning is often described to lie in the middle between supervised
and unsupervised learning. According to Hady and Schwenker (2013), SSL “refers
to methods that attempt to take advantage of unlabeled data for supervised learning
(semi-supervised classification)” (Hady and Schwenker, 2013, p. 217). What this means
is that SSL strives to improve one of the processes by using information that is normally
associated with the other one, such as using unlabeled data to improve a classification
process (Van Engelen and Hoos, 2020). It is performed with large amounts of unlabeled
data and small amounts of labeled data, which are both used for training.

There are numerous methods of semi-supervised learning, all with their own strengths
and weaknesses based on the task they’re being used for. But, according to Triguero
et al. (2015), no matter the task, there are multiple common properties throughout
all SSL techniques that define them all, starting with their addition mechanism. The
first one they introduce is incremental, which is a method that step-by-step labels
instances of the unlabeled dataset and, given that they pass certain criteria, adds the
most confident of these newly labeled instances to the overall labeled dataset. Natu-
rally, it is highly important in this method how the confidence score for each label is
determined, as all future predictions depend on this threshold. Equally important in
this method, according to Triguero et al. (2015), is the number of training examples
added this way. This could either be defined as a parameter of the method, i.e. a
constant value, that may or may not be independent from the classes of the project,
or it could be defined as a value proportional to the number of classes in the labeled
training set. Though this method trains faster than non-incremental methods, it also
has the potential of adding false predictions to the labeled class labels, since there are
many combinations of datasets and parameters that need to be considered (Triguero
et al., 2015).

The second addition mechanism Triguero et al. (2015) mention is the batch mech-
anism. Here, instead of adding each instance one-by-one once they meet the criteria,
instances are collected and later added to the labeled set as a batch. The advantage
of this method is that these batches can “reprioritize the hypotheses obtained from la-
beled samples” (Triguero et al., 2015), but they also take much longer than incremental
methods.

Lastly, Triguero et al. (2015) describe the amending method, which was originally
introduced as a counter method of the incremental method’s main drawback. In this
method, the entire labeled set is chosen as the set that will be enlarged by the pseudo-
labels and the algorithm can add or even remove instances based on the set criteria.
This means the algorithm allows for amendment of already performed actions, which in
turn means this algorithm focuses most on creating pseudo-labeled datasets with high
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accuracy. The greatest drawback of this method, however, is the large computational
power it requires compared to the incremental and batch approaches (Triguero et al.,
2015).

Another important SSL property Triguero et al. (2015) mention in their paper that
I needed to consider in my thesis was the stopping criteria, which describes the mecha-
nism that signals the self-labeling process to stop. Triguero et al. (2015) mention three
main processes for this; the simplest one being signaling to stop when every instance
from the unlabeled dataset has received a label. The second one is selecting only a set
amount of instances from the unlabeled dataset and labeling those, which tends to out-
perform the first method, but it has a predetermined number of iterations and cannot
be adapted to the number of instances in the dataset. The third stopping method is to
stop the process when the classifier’s hypotheses do not change anymore, i.e. the error
rate has leveled out. Though this method does not keep falsely labeled instances out
of the increasing labeled set, it does limit the amount of unlabeled instances that are
added to the increasing labeled set (Triguero et al., 2015).

2.1.3 Pseudo-Labeling

Pseudo-labeling is a process already touched upon in the previous section, where a
classifier, through various techniques, labels unlabeled data itself (the so called “pseudo-
labels”), adds those to the gold-labeled training set, and then uses that ever increasing
labeled dataset to train itself iteratively. There are various methods to pseudo-labeling,
such as pseudo-labeling with Hermite polynomial expansions, curriculum labeling, and
curriculum pseudo-labeling, but due to time and computational constraints, I will only
be working with the very classic approach Lee et al. (2013) explain in their work. Here,
an instance is added to the labeled dataset if their label confidence score exceeds a
certain predetermined threshold set by me (see chapter 4 for detailed information on
said threshold). It is a rather simple approach that allows for interesting observations
to be made, as instances around the threshold can be inspected and analyzed for further
understanding of the classifier’s performance. Further, there are practical factors that
make it unfeasible for me to run an automated iterative SSL approach, which is why
I will be doing that manually. First, the medical server RAM capacity is not big
enough to repeatedly run large files without interruption, which would be the case
here. Second, the data cannot leave the server due to privacy issues, so I am reliant on
working on the server and do not have constant access to it. Third, I will be using a
large language model, which would increase the automated iterations’ run time by an
impractical amount. And fourth, as this thesis is written within a time constraint of a
few months, I simply do not have the time to explore the rather extensive process of
automatically iterative SSL.

2.2 MedRoBERTa.nl

In an attempt to create a Dutch language model for the medical domain, Verkijk and
Vossen (2021) conducted experiments to find out how to best go about this. In the
end, they found that building a model from scratch through training on “Dutch hospital
notes, sourced from EHRs [Electronic Hospital Records]” (Verkijk and Vossen, 2021)
outperforms general Dutch language models (BERTje, RobBERT, Multilingual BERT),
both in pre-training and fine-tuned.
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To have a greater pool of comparison for their work, Verkijk and Vossen (2021) built
two models, one was an extended version of the RobBERT model that received contin-
ued pretraining on domain-specific text, and one was a model built from scratch with a
random initialization, also trained on domain-specific vocabulary. As mentioned above,
the from-scratch model performed much better and was thus dubbed MedRoBERTa.nl
and presented as the final model.

2.3 Kims (2021)’s Model

In collaboration with the A-PROOF team, working towards the same goal as mentioned
earlier, Kim (2021) fine-tuned the MedRoBERTa.nl model to be able to classify the
sentences in a hospital note as their corresponding ICF category, as well as their level,
which was not something the original MedRoBERTa.nl model was trained for. For
this, Kim (2021) fine-tuned the model on COVID-19 notes from secondary healthcare
providers and curated a pipeline in which the hospital notes fed into it are anonymized,
split into sentences, and returned with their ICF category and level. This was done
in a two-step-process, in which Kim (2021) first fed the individual sentences into a
category identification and classification model, then used 9 different regression models
to determine each labeled sentence’s ICF category level, one model for each category.
Out of the more than 100 ICF categories, the 9 chosen due to their relevance in the
COVID-19 research were: energy level (abbreviation ENR), attention functions (ATT),
emotinal functions (STM), respiration functions (ADM), exercise tolerance functions
(INS), weight maintenance functions (MBW), walking (FAC), eating (ETN), and work
and employment (BER). Each of them came with an ICF code (e.g. b1300 ) and a
functioning level scale from 0-4 or 0-5, where 0 indicates no functioning at all and 4/5
indicates full functioning. It is these 9 categories that my thesis will also be working
with.

For Kim (2021)’s model, around 6000 notes were annotated according to the annota-
tion guidelines described in chapter 3, and split into training, testing, and development
sets. These were then used for both the classification model in the first step, as well as
the regression models in the second step. In the first step, the model indicates whether
a certain domain is present or absent in the current sentence through outputting either
a 1 (present) or a 0 (absent) for each individual domain. The final output would look
something like [0, 1, 0, 1, 1, 0, 0, 0, 0] if, for example, three different domains were
present in one sentence. This sentence was then sent to each corresponding regres-
sion model (three in this example case) and given a level label. Once this process was
done, all sentences of one note were assembled back into their original note and their
sentence-level scores were accumulated into one large note-level score. This note-level
score was important because healthcare providers are more interested in that score.

Overall, this classifier pipeline yielded quite good results in all but two categories,
ATT and BER. With sentence-level F1 scores of 0.58 and 0.35 respectively, it is clear
the model struggled quite a bit with these two categories. For both of them, as well
as all other categories, the precision was higher than the recall, which means that the
model did not often find sentences that should belong to either category, but when it
did, it labeled them correctly. This is not surprising, as both categories had much less
training data than the other ones, due to the low availability of those in the notes chosen
for annotation. The overall high precision scores on all categories, however, show that
the model has understood how to distinguish the different categories from one another,
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but struggles with recognizing all categories in the input data (Galjaard, 2022). As
a note of caution, Kim (2021) mentions in her report that there was an annotation
issue regarding the INS category, as the definition for this category was revised in the
middle of the project. But because of challenges related to resources, this thesis does
not incorporate revised INS instances and the category will be treated as any other,
though low performance scores in this class (both in this and Kim (2021)’s project)
should be regarded with this information in mind.

Overall, Kim (2021)’s model performed quite well in all its classification tasks.
However, when the previous students Badloe (2020) and Galjaard (2022) tried to fine-
tune the model to their tasks, their outcomes were not as good as they had hoped.
Badloe (2020) tried to perform domain adaptation on the model, moving the domain
from COVID-19 data to lung and gastrointestinal cancer notes, but her baseline results
remained the best ones, despite different learning rates and freezing of layers. Badloe
(2020)’s baseline was using Kim (2021)’s classifier without adapting it to the target data
and she herself says in her conclusion “the single most determining factor in model
performance [is]: the ICF- distribution of the source training data” (Badloe, 2020).
Galjaard (2022) wanted to explore something similar, though his domain adaption
went from the secondary healthcare provider notes to primary healthcare provider
notes, which – despite both being about COVID patients – were written in different
language styles. Some of the final remarks were “The most obvious way in which to
increase stability is procuring a larger data set, so the results can be evaluated in
a proper manner” (Galjaard, 2022), which seems to mirror Badloe (2020)’s opinion
regarding the improvement of the process. It becomes quite clear through this previous
research that procuring more labeled data is highly important for the future success of
this project.
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Chapter 3

Data and Annotation

According to Kim (2021), the A-PROOF team provided us with around 8 million
hospital notes from the two Amsterdam UMC locations, the Academic Medical Center
(AMC) and the VU Medical Center (VUmc). Half of those notes were from both
locations from 2017, 2 million of those notes were from 2018 from the AMC location
only, and the last 2 million of those notes were from both locations again, from the first
three quarters of 2020. Since the A-PROOF team had been particularly interested in
studying the effects of COVID-19 on patients, the data was split in notes about COVID-
19 patients (cov-2020) and notes about non-COVID-19 patients (non-cov-2020). Since
annotation is a long, tedious, and expensive process, only a subset was selected to be
annotated for gold labels. This chapter will go into detail regarding the annotation
process (section 3.1) and the final annotated notes (section 3.2), as described by Kim
(2021).

3.1 Annotation Process

As Kim (2021) describes in her report, the goal was to obtain 15,000 labeled notes.
This annotated data was then to be used as the training, development, and test set,
which is why she laid out criteria the notes should ideally have:

• Enough sentences with clear categories and levels (“positive examples”)

• A balanced distribution of all 9 categories

• Diverse wording to capture all possible terminology that could be used to describe
the categories

So as to not have to go through the million of notes by hand to select the notes that meet
these criteria, a keyword-based search system was built. For this, lists of keywords for
each category were created by professional team members using their expertise. Then,
within this system, multiple filters could be determined, such as: the percentage of
the notes that should contain the predetermined keywords (since searching only for
notes with these keywords could risk overfitting), the specific categories that should
be searched (to balance out underrepresented categories), the minimum amount of
categories the note should contain (to make sure enough appropriate sentences are
found), the proportion of COVID-19 patient notes, and the type of note it was, of
which there were 60 in total. Figure 3.1 shows the parameters set for all keyword
searches throughout Kim (2021)’s project.

11
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Figure 3.1: The data settings for each batch, taken from Kim (2021)

After 4 weeks of annotation, the data was analyzed and it was discovered that
the frequency of the obtained labels was greatly imbalanced as, with 41%, the ADM
category was far too dominant, especially next to the 2-4% of the ATT, BER, and
MBW categories. Further, with 49%, the ADM category was vastly over-represented
in the COVID-19 data. Therefore, in order to increase the proportion of the ATT,
BER, and MBW categories while also decreasing the ADM category in the labeled
data, amendments were performed on the parameters. As can be seen in figure 3.1,
the parameters were altered until the percentage of COVID-19 notes was 40%, the
percentage of notes that contain the keywords was back to 80%, the matched categories
were all but ADM, the minimum of matched categories per note were 3, and all note
types were included. The keyword lists for categories ATT, BER, and MBW were also
updated (hence the keyword version column). This process eventually led to around
6,000 annotated hospital notes.

3.2 Annotated Data

Of those 6,000 annotated notes, about 10% were disregarded, according to Kim (2021),
as they contained information not relevant to the project. With around 3%, there were
far less disregarded notes in the COVID-19 dataset than in the other ones, which had
about 15%. The final 5,554 notes were made up of ca. 286,000 sentences, 5% of which
contained at least one category label, which means that – matching the original goal –
indeed around 15,000 sentences with category labels were gathered (Kim, 2021).

Figure 3.2 shows how many sentences per category were gathered in the end, which
makes it quite clear that the ADM category was still greatly over-represented, while
ATT, BER, and MBW were still greatly under-represented. The rest of the categories,
however, were more or less balanced.

Kim (2021)’s analysis went even deeper than this, though, as she also reports on
the statistics regarding the levels of each category. For the ADM category, she reports
that although the overall distribution of ADM levels in all datasets is quite balanced,
the COVID-19 dataset sticks out. Within the COVID-19 dataset, the distribution of
ADM was quite different, as here there were a lot more instances of levels 0 and 1, while
level 4 was not very well represented. For the ATT category, level 2 was consistently
well represented in all datasets, for BER it was levels 4 and 0, for ENR 1 and 2, for
FAC it was 4, and for STM it was 2. There were almost no instances of MBW level 0
in all datasets, and for INS, once again the COVID-19 dataset differs from the others,
where levels 0 and 1 were over-represented and levels 4 and 5 under-represented.

As a final remark, Kim (2021) mentions that in her assessment of random notes ver-
sus keyword-selected notes the keyword-search method does not actually produce more
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Figure 3.2: Final total number labeled sentences, taken from Kim (2021)
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positive examples, as was the motivation behind this idea, though it does “somewhat”
help with acquiring more sentences for the three under-represented categories. Here,
the distribution of labels for these categories is narrowly higher than in the randomly
selected notes.



Chapter 4

Corpus Analysis

In this chapter, a corpus analysis regarding the unlabeled data gathered for this project
will be carried out. Since the experiments in this thesis are based on testing the quality
and quantity of pseudo-labeled data, it is important to distinguish what was considered
“high” and “low” quality data for them. Section 4.1 will be discussing how high and low
quality was gathered and determined, while section 4.2 will be examining that data in
detail in regards to category quantity and distribution. By having a good understanding
of the data the classifier is trained and tested on, a greater understanding of how the
used data effects the performance of the model can be gained. As this experiment
was started to evaluate exactly how different quantities and qualities of data affect
classifier outputs, this detailed examination of the training and testing data is absolutely
essential.

Please see figure 4.1 for a visual representation of the process described in this
chapter, though note that more detailed explanations of it all will be discussed in the
following sections. The process began by running Term Frequency - Inverse Document
Frequency (TF-IDF) over all available annotated hospital notes, which returned the 20
most relevant keywords per category. These keywords were then used in a pre-designed
keyword matching process to gather around 40,000 unannotated hospital notes from
the available corpus that included said keywords in them. These notes, through ran-
dom selection, were then reduced to 405,000 sentences and run through Kim (2021)’s
classifier to receive both a category classification and a confidence score per sentence.
Not-O sentences were divided into 3 batches of high quality data, while the O sen-
tences were assigned the category that received the highest confidence score during the
classification and then divided into 3 batches of low quality data.

4.1 Data Quality

This section will be discussing how data was gathered from the unlabeled millions of
hospital notes we had access to and how these were defined and divided into “high” or
“low” quality data.

The first in step in the process of gathering high quality data was using TF-IDF
(“Term Frequency - Inverse Document Frequency”) on my document corpus, in which
the TF-part divides the number of times a term appears in a document by the total
number of terms in the document. The IDF-part divides the total number of documents
by the number of documents with the term in it and takes the log of that result. The
document corpus here were the annotated sentences for which I grouped sentences

15
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Figure 4.1: The beginning steps of the process

with the same ICF category as one document to measure the spread of terms across
categories. Through this process, I could retrieve which words are the most important
and prominent ones per category. I needed these to perform a keyword-based search
through the unlabeled data to retrieve relevant sentences for the training of my model.
In the end, I collected the 20 highest TF-IDF ranked words. All TF-IDF words per
category can be found in table A.1 in the appendix. The reason I chose 20 words, which
of course meant a lower TF-IDF score each time (i.e. less and less relevant words each
time), was because in this step of the process, I wanted to maximize recall.

Since each keyword used in the process returned which notes included said keyword,
but each note was made up of numerous sentences, it was clear that each of these notes
would also include irrelevant sentences. Either irrelevant to the ICF category the
note got assigned or irrelevant to my training process, as they were perhaps simply
“O” sentences. For example, a note could say “Patient struggles with walking. Loses
appetite when tired. Has an older brother.” Here, due to the first sentence, the note
could be assigned the FAC (walking) category, so the second sentence, regarding the
patient’s eating habits, is not relevant to the FAC classification. The last sentence does
not describe anything about the patient’s medical well-being, so it would be assigned
the O category. However, as I was going to use the next step in the process to increase
my data’s precision, it did not matter that much that the data might include a lot
of potentially irrelevant sentences. Furthermore, changing the process to collect only
the sentences that had a matching keyword in them proved to be too computationally
challenging and was not feasible under the time constraints of this thesis.

The next step in the process was to use the aforementioned keywords to gather
the notes from the unannotated corpus that was available to us, which was done us-
ing Postma (2020)’s KeywordMatcher process. This tool uses a list of keywords (in
this case the TF-IDF keywords retrieved earlier) to go through a list of files (in this
case the unannotated corpus of hospital notes provided to us) and write to a new file
which keywords were found in which file. That way an easy overview of which note
got assigned to what keyword (and therefore ICF category) was compiled. Due to
computational constraints, I gathered only around 40,000 notes in total, with a goal of
10,000 per section of available data (data from 2017, data from 2018, data from 2020,
and data from 2020-Q4&2021-Q1), where I made sure to start collecting data after the
first 10,000 notes, as these were used in the training of the previous students’ projects.
As a consequence of a character limit of 10,000 characters per note, the goal of 10,000
notes per year was not exactly reached, though it was still quite close: 2017 had 9958
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files, 2018 had 9947 files, 2020 had 9933 files, and 20-21 had 9921 files. It was these
final 39,759 files that the keyword matching process was then run over. However, since
the code was not designed to match each note with only one category, there were a few
duplicates, which is why the final note-per-category-per-year amount below does not
add up to the files per year described above: 2017 had 403 duplicates, 2018 had 465,
2020 had 1448, and 20-21 had 2218.

Details on the note distribution after running the keyword search over them and
collecting which of them belonged in which ICF category, based on their keyword match,
are given in table 4.1.

2017 2018 2020 20-21 Total

ADM 1313 1225 1326 1467 5331
ATT 1315 1295 1471 1555 5636
BER 514 524 529 578 2145
ENR 1039 1010 1129 1180 4358
ETN 1425 1420 1557 1591 5993
FAC 1967 1975 2270 2349 8561
INS 926 1033 1027 1158 4144
MBW 1132 1103 1236 1391 4862
STM 730 827 836 870 3263

Total 10,361 10,412 11,381 12,139 44,293

Table 4.1: ICF category note distribution per year using Postma (2020)’s Keyword-
Matcher

Out of these 44,293 notes, 10,066 were assigned only a single category, 11,577 were
assigned multiple categories, and the other 22,650 notes were the duplicates of the
multiple-category notes. After separating these notes into sentences and assigning each
sentence the same category as its note, there were 2,680,977 sentences in total available
to me. Out of these, the category distribution was as follows:

• 458,830 FAC sentences, 17%

• 352,302 ATT sentences, 13%

• 349,546 MBW sentences, 13%

• 343,825 ADM sentences, 13%

• 343,081 ETN sentences, 13%

• 258,436 ENR sentences, 10%

• 241,756 INS sentences, 9%

• 180,231 STM sentences, 7%

• 152,970 BER sentences, 6%

Since over 2 million sentences would have taken far too long to get predictions on
or fine-tune a classifier with, I reduced the number of total sentences to 405,000, as
this was a number that has been proven to be high enough for good results, but low
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enough to not be too computationally complex. These 405,000 sentences were chosen at
random and equally split per category, i.e. 45,000 sentences per category. I furthermore
ensured to only add sentences that were above 100 characters long, as I wanted to make
certain I had long enough sentences that would provide actual learning examples for
the model. However, this resulted in only roughly about 3000 instances for both high
and low quality data, so I repeated this step and this time decreased the character
length to more than 50, rather than 100. This resulted in the desired 45,000 sentences
per category and 405,000 sentences in total.

Although these sentences were already divided into ICF categories through the
keyword matching process, the point of this experiment was to ensure semi-supervised
learning. i.e. training the classifier with data labeled by itself. That is why, once the
keyword matching process was done, I ran these sentences through Kim (2021)’s yet
unchanged classifier to see what categories it would assign them, though I added a
confidence score to the results as well. I needed every sentence’s score for the rest of
my experiments. A confidence score is a score between 0 and 1 that states, per class,
how “sure” the model is that the input instance belongs to this class, with 0 being sure
that it is not that class and 1 being sure that it is. For comparison, after running the
405,000 sentences through the classifier, please see table A.2 in the appendix for the
distribution of sentences per category/categories.

The most noticeable difference is the fact that Kim (2021)’s classifier was able to
assign two or sometimes even three categories per sentence. Due to the attempt to
avoid duplicate sentences, Postma (2020)’s KeywordMatcher could certainly not do
that. Further, where Postma (2020)’s KeywordMatcher actually returned the most
FAC sentences, Kim (2021)’s classifier classified most sentences as STM, which was one
of the lowest ranking categories in the keyword matching process. Something similar is
happening with the ATT category, where Postma (2020)’s KeywordMatcher ranked it
as one of the second highest categories, while Kim (2021)’s classifier classified the least
amount of sentences as ATT. The FAC category seems to have been assigned similarly
often by both processes, while the BER category was similarly rarely assigned in both
cases. The O category, as is the case with most classifiers, was naturally the highest
ranking category assigned by Kim (2021)’s classifier. In fact, it was assigned so often
that it would be the second highest ranking category in the keyword matching process
results. It can be deduced from this comparison that a) simple keywords are not enough
for a classifier to classify an input instance as a certain class – as then both processes
would surely have had at least proportionally similar results – and b) human picked
keywords, i.e. words we as humans would perhaps associate with certain topics, are
not always actually representative of the subject they might stem from. The context
and surrounding words seem to say a lot more about a sentence’s topic than specific
keywords within it.

4.2 Data Quantity

This section will be examining the previously gathered data’s quantity and distribution
regarding categories and confidence scores.

It is at this step in the process that I started dividing the data into “high” and
“low” quality data. As mentioned above, the classifier’s confidence score was vital to
my experiments because I consider data that the model is quite sure about as high
quality data. The reason for that is that I believe this means the data is written and
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presented in a way that is clear and clean for the model to make an easy prediction,
with little to no noise in it. The highest confidence score the classifier displayed for all
classifications was 0.246, while the lowest one was 0.077, whereas the average confidence
score was 0.11. This clearly shows that the scores overall tended to be in the lower
half between the maximum and minimum score. The distribution of the maximum
confidence scores per sentence were as follows:

• 0.11-0.12: 337,831

• 0.12-0.13: 11,748

• 0.13-0.14: 7808

• 0.14-0.15: 5956

• 0.15-0.16: 5044

• 0.16-0.17: 4681

• 0.17-0.18: 4619

• 0.18-0.19: 4445

• 0.19-0.20: 4136

• 0.20-0.21: 4455

• 0.21-0.22: 4534

• 0.22-0.23: 5027

• 0.23-0.24: 3846

• 0.24-0.25: 870

The enormous distribution in the 0.11-0.12 range represents the large distribution
of O classifications, as a low confidence score for a class causes the classifier to not
classify that instance as that class. When this happens with each class, the instance
will be classified as ‘none’ and therefore O.

The distribution of maximum confidence scores in cases where the classifier assigned
a class were as follows:

• 0.15-0.16: 28

• 0.16-0.17: 434

• 0.17-0.18: 4428

• 0.18-0.19: 4445

• 0.19-0.20: 4136

• 0.20-0.21: 4455

• 0.21-0.22: 4534
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• 0.22-0.23: 5027

• 0.23-0.24: 3846

• 0.24-0.25: 870

It becomes quite clear to see here that the threshold for the classifier to change from
‘none’ to ‘not-none’ was somewhere above 0.15, though not always and/or exclusively,
as can be seen in the next bullet list.

The distribution of maximum confidence scores in cases where the classifier did not
assign a class were as follows:

• 0.11-0.12: 337,831

• 0.12-0.13: 11,748

• 0.13-0.14: 7808

• 0.14-0.15: 5956

• 0.15-0.16: 5016

• 0.16-0.17: 4247

• 0.17-0.18: 191

The fact that the scores from when the classifier did and did not assign a category
overlapped in the 0.15-0.18 range shows that it was not the confidence score alone that
caused the classifier to assign a class. For example, the Simple Transformers MultiL-
abelClassificationModel also has an argument called “threshold,” which, according to
their website, means “The threshold is the value at which a given label flips from 0 to
1 when predicting” (Rajapakse, 2020). The base classifier’s threshold argument was
set to 0.5, while my confidence score was calculated using the SciPy library’s softmax
function. This means that there is a chance that the classifier’s internal threshold of
0.5 was not passed by the instance, although the SciPy confidence score was above
0.15. That would explain why some instances in the 0.11-0.16 range were classified and
others in that range were not.

Initially, the plan was to work only with the data the classifier had indeed classified
as not-none, however, as can be gathered from the second bullet list, that was not a lot
of data overall. Especially considering the 405,000 sentences the data had come from.
Therefore, to increase the amount of data and be able to properly train the classifier
later, I decided to label all data classified as not-none as “high” quality data. For the
“low” quality data, I decided to choose only the sentences that had been marked O,
but still had one or more confidence scores between 0.12 and 0.15. The reason for this
was that anything below 0.12 was the majority of the O class, which I deemed to be
quite noisy or short sentences that would not actually be efficient and clear training
data for the classifier (which is why I chose to ignore that data for the purpose of this
thesis). Anything above 0.15 would be the opposite of that, which I did not want in
my “low” quality data. In summary, for my “low” quality data I was looking for data
that would be helpful for the training, but not so good that it would be better than
the “high” quality data. Each sentence was then assigned the category of its highest
matching confidence score, so if a sentence had confidence scores of [0.112, 0.113, 0.11,
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0.13, 0.114, 0.07, 0.115, 0.111, 0.116] while still being classified as O, its new assigned
category would be the fourth one (0.13), which would be ENR.

In the end, after dividing the data into these two sub-sets, I had 32,203 HQ data
instances and 25,882 LQ data instances, totaling to 58,085 combined instances. These
two sub-sets were then equally divided into three further sub-sets; simply their first, sec-
ond, and last third (aptly named hq data1, hq data2, hq data3, and lq data1, lq data2,
lq data3 for future reference). It was these thirds that I would eventually use to train
the different models step-by-step.

For the full distribution of categories among the HQ data, please see table A.2 in
the appendix without the O category. For the distribution among the first and second
third of the HQ data, please see table A.4 and table A.5 in the appendix. For the full
category distribution among the LQ data, please see table A.3 in the appendix; for the
distribution among the first and second third of the LQ data, please see table A.6 and
table A.7 in the appendix.
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Chapter 5

Experiments

In this chapter, a detailed description of the experiments conducted throughout this
thesis will be provided, as well as answers to the research questions “How much does
the quality of the training data influence the model’s performance?” and “How much
does the quantity of the training data influence the model’s performance?” As has
been the focus already so far, the idea was to test whether a classifier performs better
with high quality data or high quantity data, which was investigated through semi-
supervised learning. By training a classifier with different corpora that range in quality
and quantity, it will be easy to see what combination of both produces the highest
performance – high quality and high quantity, high quality and low quantity, low quality
and high quantity, or low quality and low quantity. My hypothesis is that this order
will also be the ranking of highest to lowest performance on the final test set. As an
introductory note to this chapter, it should be mentioned that while the semi-supervised
learning methods described in chapter 2 were automated processes, due to time and
computational restrictions during this thesis, my semi-supervised learning method was
done manually. This means that instead of providing a model with all the data and
having it run the whole training process on it automatically, I repeated the training
and predicting of the models manually.

The chapter will be divided into four sections, where section 5.1 will be discussing
the baseline of my experiments, section 5.2 will be explaining how the quality experi-
ment of this thesis was conducted, and section 5.3 will be explaining how the quantity
experiment of this thesis was conducted in turn. Section 5.4 will be explaining how the
best model was chosen and present its performance and results on the test set.

5.1 Baseline

Before preparing experiments, it is beneficial to have a baseline performance against
which to compare one’s own experiments’ results. In this case, the most useful approach
for this would be testing how the base classifier used in all my experiments would per-
form on the development and test sets without any fine-tuning, so that I could directly
observe whether increasing the data’s quality or quantity improved that classifier’s per-
formance. It should be mentioned here, however, that Kim (2021)’s original machine
learning pipeline did consist of two parts, both of which together eventually constructed
her complete process, while I only made use of the first part of pipeline. Where this
first part classified a sentence’s ICF category (as mentioned throughout this paper), the
second part of her pipeline classified said sentence’s category level. I did not, however,
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focus on a sentence’s level within the scope of this thesis, so that aspect of Kim (2021)’s
classifier remained untouched by me.

5.1.1 Test Sets

Regarding the test and development sets for both the baseline and the rest of my
experiments, I must point to Kim (2021) and Galjaard (2022) and Badloe (2020) once
again, as I used their test sets and data for my test and development sets. However, as
was discovered by Kuan (2023) during her thesis work, any fine-tuned version of Kim
(2021)’s model struggled with identifying positive examples in the input instances at
all. It is for that reason that Kuan (2023) first built a binary classifier trained on Kim
(2021)’s training data to determine which input instances would be classified at all,
simply denoted by either 0 or 1. Therefore, for my own test and development sets, I
used this classifier to first run my desired datasets through there and determine which
of the sentences within them would be useful for my experiments at all. The ones
assigned a 0, i.e. would not be classified by Kim (2021)’s model, were not used in my
experiments, as they were not deemed useful for the experiments. For a distribution
regarding ICF categories within both the test and development set, please see table
A.8 and table A.9 in the appendix. For a visual representation of this process, please
see figure 5.1. The development set was Kim (2021)’s original test set run through the
binary classifier, while the test set was made up of all of Galjaard (2022) and Badloe
(2020)’s datasets combined and then run through the binary classifier. In the end, the
development set had 1148 instances in it and the test set 1965. The development set
was used for evaluation after each fine-tuning of a model, while the test set was only
used for the final best model.

Regarding the distribution among the test sets, it is clear that in both the develop-
ment and the test set, the ATT and BER categories are highly underrepresented, while
both sets are also highly imbalanced. This will be further discussed in chapter 6.

5.1.2 Results

Results from the base classifier on the development set can be seen in figure 5.2 and
results by it on the test set can be seen in figure 5.3.

Comparing these two results, it becomes clear that, except in the O category, the
recall scores for both sets are identical. What this means is that for both sets, the



5.1. BASELINE 25

Figure 5.2: Baseline performance on the development set, support - O: 484, ADM: 182,
ATT: 9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM: 97

Figure 5.3: Baseline performance on the test set, support - O: 470, ADM: 319, ATT:
11, BER: 16, ENR: 113, ETN: 265, FAC: 171, INS: 96, MBW: 145, STM: 134

classifier found the same proportion of true positives out of all positives it should have
found. Given that all recall scores except for two (O and INS) are at least above
0.7, the classifier did indeed manage to find a large amount of that proportion within
the two sets. Such high recall scores indicate that the classifier may have found most
instances of each class, though may have also labeled a lot of other ones with the wrong
classes, i.e. there will be more false positives in this dataset. INS was overall the worst
performing category, though, with an F1-score of 0.46, which could be explained by
the annotation changes that occurred during Kim (2021)’s project, as mentioned in
chapter 2.

Regarding the development set (figure 5.2), the precision scores range from poor
(BER, FAC, and INS), to mediocre (ETN and MBW), all the way to fairly good (O,
ATT, ENR, STM), with ATT having a precision score of 1, meaning the classifier may
not have found all ATT instances, but whatever it did classify as ATT was always
correct. A quick look at figure A.2 in the appendix reveals that one ATT instance was
classified as O, while the other was labeled FAC. Since the ATT category stands for
“attention,” while the FAC category represents sentences related to “walking,” it does
not seem intuitive for a human brain as to how these two got confused for one another,
though perhaps attention is needed to perform walking.

The precision scores in the test set (figure 5.3) were not as high as in the development
set. Here, they range from extremely poor (BER, ENR, ETN, FAC, INS, and MBW) to
mediocre (ADM and STM), with only the O category having a very good precision score
above 0.9. The low precision scores in the six categories mean that these categories
were mostly mislabeled, leading to more false positives. Given that the development
set’s precision scores were so much higher, it is no surprise that its F1-scores are much
higher as well. Though these scores are by no means poor, ranging predominantly
from 0.5 to 0.8, they could still certainly be improved, especially in the BER and INS
categories.

Overall, the base classifier performs somewhat unremarkably on both sets, though
definitely worse on the test set. The reason for this is most likely the different kinds
of data represented in the test and development set. The development set, where the
baseline performed better on, was largely made up of the same kind of data the classifier
was trained on, i.e. a lot of COVID-19 data. The test set, on the other hand, included
far more non-COVID-19 data, taken from Galjaard (2022) and Badloe (2020)’s data.
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This shows and explains the differences in the two evaluations. However, one should not
forget that the training data of the baseline classifier included hundreds to thousands of
instances per categories, while the development and test sets included far less, especially
in the ATT and BER category. What this means is that, since the support is low in
the test sets, the result are rather inconclusive and cannot be fully trusted, especially
in the low represented classes such as ATT and BER. Further testing and comparing
of other fine-tuned models’ performances should provide more clarity.

5.2 Quality – High Quality vs. Low Quality

As can be seen in figure 5.4, the same process was done and repeated on both the high
quality and the low quality dataset that I curated in chapter 4. This was done so that
a direct comparison would be easy to draw from the results, as the procedures and the
base classifier were the exact same each time.

5.2.1 ModelHQ1 and ModelLQ1

The process began by taking Kim (2021)’s classifier and fine-tuning it with the first third
of the HQ and LQ datasets, which resulted in the models ModelHQ1 and ModelLQ1.
These first two models were then evaluated on the development set (Kim (2021)’s
original test set with only the positive examples from Kuan (2023)’s binary classifier),
which lead to the results seen in figure 5.5 and figure 5.6.

It should be noted here that these confusion matrices only focus on the singular ICF
categories, since that was the scope of this thesis within its time and computational
restraints. Further, except for a few outliers, the singular categories were the most
represented ones both in the training and the test sets, which is why I believe it is far
more relevant to focus on these in regards to the evaluation.

Now, even with quick glances at these results, it is clear that the F1 scores, i.e.
the harmonic mean of precision and recall, of the ModelHQ1 model are predominantly
higher than the the F1-scores of the ModelLQ1 model. However, why that is not the
only metric to focus on and which one I used to decide on my best model will be
discussed in section 5.4.

Comparing these two results to the baseline results on the development set (figure
5.2), one can quickly see that the results have not improved that much. In fact, most
of the precision and F1 scores have decreased. Even the poorest precision scores from
the baseline experiment (BER and INS) got worse for the HQ model, although the INS
recall and F1 scores increased slightly for the LQ model. This could be the result of
the higher INS distribution among the LQ training set, as this would have trained the
classifier better to correctly recognize INS sentences. All recall scores (except in the
O category) for the HQ model did, however, increase from the baseline performance,
while for the LQ model, only the BER, ETN, INS, and STM recall scores improved, the
rest got worse. It seems the HQ model’s lower F1 scores stem from the lower precision
scores then, rather than the recall scores, as it does quite extraordinarily in that metric.

Overall, just as with the baseline, the recall scores tend to be higher than the pre-
cision scores for both models, meaning they also classify more false positives. Between
the two models, the HQ one majoritively has higher F1 scores overall, except for the
O, BER, FAC, and MBW categories. With such a high amount of FAC instances in
its training data, it is not surprising that the HQ model’s FAC precision score is that
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Figure 5.4: High quality vs. low quality data experiments
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Figure 5.5: ModelHQ1 results on development set, support - O: 484, ADM: 182, ATT:
9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM: 97

Figure 5.6: ModelLQ1 results on development set, support - O: 484, ADM: 182, ATT:
9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM: 97

poor (0.397), as the model clearly overfitted to this category during training. Its low
precision score means that the model often falsely classified instances as that class.
Two interesting examples for an FAC false positive I would like to point out can be
seen in table 5.1.

Original sentence Translation Gold Predicted

Gesport omgekleed naar
de uitgang gelopen

I got dressed and walked
to the exit

- FAC

Gewoon lopen gaat goed,
maar langzaam

Just walking is fine, but
slow

- FAC

Table 5.1: Interesting false positive FAC examples from ModelHQ1

I wished to point out these two examples because although the human annotators
labeled these two sentences as having no category at all, looking at them myself, I felt as
though they do indeed hold valuable information about a patient’s walking abilities and
should therefore be labeled as FAC. This is not meant as criticism of the annotators,
but rather to point out that sometimes models will perform poorly on paper, if one
only looks at confusion matrices, while in reality a model may have labeled something
with a class a human would agree with, but the gold labels simply did not match. This
should always be kept in mind when evaluating any model’s performance scores. For
another example of my point, please see table A.10 in the appendix.

It is true that both models’ highest precision and F1 scores are in the ATT category,
a category that has only between 100 and 300 instances per training set. This could
suggest that this amount of training instances is a more ideal amount for good training
without overfitting. Especially since the precision and recall score for the ATT category
in the HQ model are identical and still very good for the LQ model. However, this could
also be a comment on the different qualities of the training data of the models. The
LQ model had 219 training instances, while the HQ model had 189, similar enough
amounts in machine learning to not warrant such differences, especially compared to
the baseline, yet the HQ model consistently had higher F1 scores than the LQ model,
i.e. more balanced scores.
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Figure 5.7: ModelHQ2 results on development set, support - O: 484, ADM: 182, ATT:
9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM: 97

Figure 5.8: ModelLQ2 results on development set, support - O: 484, ADM: 182, ATT:
9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM: 97

5.2.2 ModelHQ2 and ModelLQ2

The next step was to fine-tune ModelHQ1 and ModelLQ1 with the second third of the
HQ and LQ training data respectively. This process was identical to the one mentioned
in subsection 5.2.1, only with a different base classifier this time. The results for both
models can be seen in figure 5.7 and figure 5.8.

In this section, I will only be comparing each newly fine-tuned model pair to each
and other and to the baseline. A comparison between all fine-tuned models will be
discussed in section 5.4.

A look at all F1 scores between ModelHQ2, ModelLQ2, and the baseline reveals
that the baseline once again has the highest scores there, except in categories ATT,
BER, and INS. ModelHQ2 has the highest ATT F1 score of all three models, while
ModelLQ2 dominates the BER and INS categories. ModelLQ2 ’s high precision scores
in these categories seems to be the reason for that in the INS category, while all of its
scores are higher than any of the other two’s scores in the BER category. However,
the baseline’s higher F1 scores seem to stem from its overall higher precision scores in
almost all categories.

All three models have two categories where they out-perform the other models in
the recall score, while four times there are ties between two models for the recall score.
Except for the O category, all three models always have a higher recall than precision
score, which means that, just as before, the models predict more false positives for each
category. With such balanced scores throughout each category and metric, neither one
of the two fine-tuned models always or predominantly performs better than the other,
which seems to be suggesting that the quality of the data did not have much of an
impact on the models’ performance.

The highest performing category for the precision and F1 score of each model is
ATT, which is surprising as it is one of the least represented categories in fine-tuned
models’ training data. The highest performing category for the recall score is FAC
for the baseline, STM for the HQ model, and BER for the LQ model. STM is a
highly represented category in the HQ model’s training data, so its high performance
makes sense, but BER is a rather poorly represented class in the training data for the
LQ model, though it seemed enough to have taught the model what a correct BER
sentence looks like. Regarding the precision score of the ATT category, this means that
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Figure 5.9: ModelHQ3 results on development set, support - O: 484, ADM: 182, ATT:
9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM: 97

for this class, all models predicted more false negatives, meaning whenever an instance
was indeed of the ATT category, the models labeled that correctly, though they missed
a large portion of all available ATT instances. An example of such a false negative
from the HQ model can be seen in table 5.2.

Original sentence Translation Gold Predicted

Bij onderzoek verhoogd
afleidbaar, afasie met
gestoorde fluency en
woordvindstoonris, geen
begripsstoornis, en insta-
biel lopen, geen andere
focale neurologische uit-
val

During research increased
distractible aphasia with
impaired fluency and
[wordfindingtoonris], no
comprehension disorder,
and unstable walking, no
other focal neurological
failure

ATT FAC

Table 5.2: False negative ATT example from ModelHQ2

While the human annotators labeled this sentence as ATT (presumably because of
the “increased distractible aphasia” and perhaps the “focal neurological failure”), the
model classified it as FAC, the walking category. My hypothesis here is that the first
half of the sentence involved a lot of content the model had perhaps not encountered
(enough) before, or not with enough clear cut class labels, so it was unsure as what to
classify that. However, the phrase en instabiel lopen (“unstable walking”) included the
word lopen (“walking”), which has been a fairly common word in the FAC category
training instances. This finding suggests that the model not only sometimes still relies
heavily on singular keywords for classification, it also struggles with unfamiliar words
or context and tends to ignore those.

In summary, given the high recall and low precision scores of both fine-tuned models,
it seems the models have learned to recognize certain keywords or phrases as belonging
to a specific class (high recall), though they failed to learn that not every time these
words are mentioned the instance does indeed talk about a patient’s functioning within
that category (low precision). Training with more and higher quality data might eradi-
cate these problems, especially since the quality of the training data between these two
models did not make a big difference in their level of performance.

5.2.3 ModelHQ3 and ModelLQ3

The third step in the process was once again fine-tuning the two already fine-tuned
models with the last third of the HQ and LQ datasets. This process was identical to
the one mentioned in subsection 5.2.2, only with a different base classifier this time.
The results for both models can be seen in figure 5.9 and figure 5.10.
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Figure 5.10: ModelLQ3 results on development set, support - O: 484, ADM: 182, ATT:
9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM: 97

At first glance, one can see immediately that again the recall scores of both models
are much higher than the precision scores, which still indicates more false positives
within the model performance. Though the recall scores of both models are indeed
quite formidable, ranging mostly between 0.7 and 1.0, the precision scores are still
quite poor, ranging predominantly between 0.3 and 0.6. Just like during the last two
steps, high recall and low precision means the classifier returns most of the correct
results, though not as many as there are. In other words, were one to use these models
on unfamiliar data without gold labels, though there would be a large amount of class
A instances returned, one could not always be entirely sure that all of them are indeed
class A.

Compared to the baseline, ModelHQ3 does have either higher or very close recall
scores (higher scores in the ADM, ATT, ETN, INS, and STM categories), while Mod-
elLQ3 only has a significantly lower recall score (-0.23) in the FAC category. The other
scores are also either higher or quite close. In regards to the precision scores, ModelLQ3
actually has a higher score than the baseline in the BER, INS, and MBW categories.
This would indicate an increase in performance compared to the baseline for this model,
as its recall scores are now close or higher than the baseline, and its precision scores
higher than it 3 times, which was not the case in the previous step. ModelHQ3 only
seemed to have improved in its recall scores, all of its precision scores are still lower
than the baseline.

ModelLQ3 ’s precision scores are higher than ModelHQ3 ’s in 6 categories (ATT,
BER, ENR, FAC, INS, and MBW), while ModelHQ3 ’s recall scores are higher than its
counterpart’s in 5 categories (ADM, ENR, FAC, INS, and MBW). They both tie in ATT
and STM. Although ModelLQ3 ’s precision scores are not extraordinary, having higher
precision scores but lower recall scores than its counterpart means that this model has
more false negatives and less false positives than the HQ model. However, compared
to themselves, the models still both have more false positives than false negatives in
their predictions, as mentioned above.

Despite its rather impressive recall scores (6 of them higher than 0.9), ModelHQ3
still displays two precision scores between 0.31 and 0.36 (INS and BER respectively).
Neither of the other two models have any scores that low, the lowest score among them
being 0.411 in the FAC and INS categories in the LQ model. ModelHQ3 also more often
than not has the lowest F1 score out of the three models, thanks to its low precision
scores.

All in all, although the baseline still curated the highest F1 scores overall, ModelHQ3
shows quite impressive recall scores, while ModelLQ3 impresses with precision scores
that majoritively range higher than its HQ counterpart.

Looking at the improvement of all scores in the LQ model, it goes against my
initial hypothesis to see such high scores on a model trained with what I deemed to
be “low” quality data. Given that this data was procured from originally O-labeled
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sentences that were simply assigned their highest confidence score class, it is interesting
to see just how beneficial this data was for training after all. Not only are these scores
quite impressive on their own, were this to be the final model of an experiment, they
are also rather exemplary compared to the baseline, especially in the ATT and INS
categories. The ATT class had only a little less than 600 instances in the training
data, while INS had around 3500 in total. This raises an interesting point regarding
data quantity, as both categories did quite well, despite their very different training
quantities. Perhaps within these two categories, regardless of quantity and despite
the fact that my process labeled these sentences “low” quality, the training data was
still so diverse and clean that the classifier learned quite well how to distinguish these
classes. This makes me believe that it was indeed the training data that caused such
high performance scores in ModelLQ3. However, given that the ATT category only
had 9 instances and INS 36 instances in the development set, this imbalance between
training and test set makes the results rather inconclusive for these minority classes,
as touched upon in subsection 5.1.2.

Regarding ModelHQ3 ; were this to be my final model on another experiment, I
believe I would continue training and/or tweaking the training data, with final results
such as these, especially in the BER and INS category. As much as one always has
to make a choice between precision and recall, I believe precision scores of less than
0.4 in more than 1 category would not let me present this model as a robust one.
BER and INS had between 1300 and 2300 instances (i.e. ∼430 and ∼770 instances
per batch) in the HQ training data, which is well between the numbers for the LQ
model, yet the HQ model performed so much worse in these categories, especially in
the precision metric. This leads me to believe that perhaps the training data, despite
my “high” quality labeling, was not as clean and/or diverse as it could have been and
therefore did not increase the classifier’s ability to distinguish these sentences well.
This hypothesis is supported by the fact that low precision scores in these categories
means more false positives in the model’s predictions, as mentioned before, which would
suggest overfitting, though that seems unlikely, given that the LQ model had much more
INS instances in its training data and still performed less poorly on it.

5.3 Quantity – All Data

This section will be discussing the experiment conducted to answer my sub-research
question of “How much does the quantity of the training data influence the model’s
performance?” After training two different models with different kinds of quality of
data, I then trained one of the models, ModelHQ3 to be precise, with the rest of the
LQ data, in order to evaluate a model’s performance after a high quantity of data.
Please see figure 5.11 for a visual representation of my process.

As can be seen in the figure, the process was basically the same as in subsection 5.2.1
and the following two sections, only with a different base classifier yet again. The only
difference this time, however, is that I did not evaluate each intermediate model. The
reason for that was that I was indeed trying to focus only on data quantity, so it was
more important to evaluate the final model that was trained with all the available
training data, rather than a model that was trained on a section of the data. I did save
each intermediate model, though, as they could still be useful and provide important
and/or interesting findings in the future.

Please see figure 5.12 for the results of this model on the development set. It is



5.3. QUANTITY – ALL DATA 33

ModelHQ1-2-3

Fine-tuning
with LQ1

Fine-tuning
with LQ2

Fine-tuning
with LQ3

ModelHQ1-2-3-
LQ1

ModelHQ1-2-3-
LQ1-2

ModelHQ1-2-3-
LQ1-2-3

Prediction
Jania's test

set

Evaluation

Figure 5.11: Training ModelHQ3 (here labeled ModelHQ1-2-3 ) with the LQ data
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Figure 5.12: ModelHQ1-2-3LQ1-2-3 ’s results on development set, support - O: 484,
ADM: 182, ATT: 9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM:
97

clear here that the model’s overall performance was acceptable, with definite room for
improvement, but no subpar performance either. Especially the recall scores are, as
with all models evaluated so far, quite high, ranging mostly between 0.7 and 0.96, with
only two outliers at 0.55 (INS) and 0.22 (O). The precision scores are lower, with four
scores around 0.4 (BER, ETN, FAC, and INS), and most scores ranging between 0.57
and 0.67. The only exception is once again the ATT category, with a precision score
of 1. With such precision and recall scores, it is no surprise that ModelLQHQ3 ’s F1
scores range predominantly between 0.52 and 0.77, with only one score significantly
higher than that (0.94, ATT) and one score significantly lower than that (0.32, O).

Comparing the model to the baseline, even if they are majoritively lower, the model’s
precision scores are quite often very close to the baseline’s, with only ETN and FAC
having differences of around 0.1 points. INS and MBW are the only two categories
where ModelLQHQ3 ’s precision scores are higher than the baseline’s. Interestingly,
both models’ scores in the BER category are identical for every metric. Regarding the
recall scores, ModelLQHQ3 only surpasses the baseline’s scores in the ATT and ETN
categories, though here by more than 0.1 points. Overall, however, the model’s recall
scores are quite a lot lower than the baseline’s.

ModelLQHQ3 only surpasses the baseline’s F1 score in the ATT category, though
most of the other scores of this metric are quite similar to those of the baseline, with
only two categories (ENR and FAC) having difference of 0.1 or higher. Overall, the
model performs worse than the baseline, though not by much.

The high ATT precision score shows that out of the 9 instances in the development
set, the model found a few of them and despite labeling all of those correctly, it did
miss the rest of the ATT sentences. However, its high recall score (and a look at its
full confusion matrix, not pictured here) also shows that the model only missed 1 ATT
instance, which it falsely classified as FAC. This sentence happened to be the same
one as in table 5.2, which suggests that this model also relied quite heavily on the
word lopen and did not know what to do with the unfamiliar words/context in the
sentence. Regarding other false positives in the FAC category (as it had such a low
precision, together with INS), there seemed to be a pattern of two categories these
sentences would fall into: Either an example as mentioned in table 5.1, where a case for
an FAC label could be made, or sentences such as Onderzoek bij vader van meneer loopt
(“Investigation of sir’s father is ongoing”), that are not related to a patient’s walking
ability, but involve a version of the word lopen.

There is a similar pattern for INS false positives, where the model only ever falsely
classified O-instances as INS, all of which included words such as “active,” “sport,” or
“bicycle.” This shows clear evidence that the classifier has learned to associate certain
words with certain categories. Though I would like to once again make the case that
the model was not always wrong in these assumptions, as some of the instances were
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phrases like “Sport: 3x a week,” which I believe does indeed relay information about a
patient’s exercise functioning.

Diving deeper into the false positives of BER and ETN, the two other categories
with low precision scores, evidence for similar patterns as described above become clear
as well, especially with regards to a reliance on certain keywords. Sentences for which
a case for these categories could be made are rarer, however.

Looking at these results, of a model trained on 58,085 total instances, 32,203 of
which were “high” quality instances, and 25,882 of which were “low” quality instances,
the results are quite representative of such training data. Given that Kim (2021)’s
classifier was trained on around 200,000 instances, it is no surprise that this one (and
the previous models) have not performed as well as the baseline. However, as mentioned
above, the results of this model were not inherently unacceptable, even if improvements
could still be made.

5.4 Best Model

This section will present a comparison of all models created so far against one another,
instead of just compared to the baseline. This is done so that I can best describe how
and why I chose the final best model, which I eventually evaluated on the test set. It
is important to mention here that I decided to find the model that I deem to have
the highest recall performance, rather than trying to focus on precision or F1. The
reason for this is that is that a high recall score, as mentioned above, returns more false
positives, while a high precision scores returns more false negatives. Considering what
the A-PROOF team wishes to uses this project for, i.e. from observing the long-term
effects of diseases or new drugs, to predicting recovery trajectories in patients and the
like, I believe it is far more dangerous to have a false negative than a false positive.
Naturally, in a medical context, neither should ideally ever happen. However, were a
patient to be told they will be healthy again within x amount of time, so their treatment
is stopped after that time and they are sent home, but later it is discovered that the
data was wrong and the patient, despite perhaps feeling better, was by no means ready
to be discharged from the hospital, I believe the consequences for the patient could be
much worse than the other way around. Similar points could be made for the long-term
effects of drugs or diseases; if data suggests a patient can be discharged from a doctor’s
or hospital’s close observation, immediate care in an emergency could come too late.
On the other hand, if a patient is expected to stay in an intensive or emergency care
unit for x amount of time because the model suggested it, but then they eventually
recover much quicker than predicted, health emergency could certainly be avoided. It
is for these reasons that I decided to focus on which model displays the best recall
performance, although my argument of course assumes that the classifier predicted a
low level for the category, as this is an indication of a patient’s poor and/or dangerous
functioning in this category.

It should of course be mentioned that any and all machine learning predictions
in medical (and most other contexts) should never be taken lightly. A careful medical
institute should always conduct vigorous tests regarding their patients and never simply
rely on what a computer suggests. Human judgement should always also be consulted.
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5.4.1 Comparisons

Please see figure A.4 in the appendix for an easier overview of all result tables of all
models. Once again, please note that in these comparisons I will mostly be focusing
on the models’ recall performances, as I have discussed their overall performances and
their performances compared to the baseline in the previous sections of this chapter.

After having made my decision regarding which metric I find most important for
my project, I calculated each model’s average, median, and highest and lowest recall
score, which can be seen in table 5.3.

Model Average Recall Median Recall Highest Recall Lowest Recall

ModelHQ1 0.832 0.945 0.976 0.103

ModelHQ2 0.825 0.921 0.975 0.099

ModelHQ3 0.831 0.926 0.975 0.112

ModelLQ1 0.813 0.909 1.0 0.181

ModelLQ2 0.827 0.913 1.0 0.162

ModelLQ3 0.789 0.871 0.969 0.222

ModelLQHQ3 0.772 0.868 0.959 0.222

Table 5.3: Average, median, and highest and lowest recalls of all models

I decided to consider each model’s median recall as well because I wanted to see
in what general range the model was performing. However, since a median is not a
perfect representation of that (as, for example, the median in [1, 2, 30, 530, 6730] would
be 30, despite not being a good representation of the list), I decided to also include
the average recall and the highest and lowest recall. It should be noted here that the
lowest recall for every single model without exception was from the O category. As
one can see in table 5.3, the model with both the highest average, median, and general
highest recall is ModelHQ1, though ModelHQ3 is quite close, even surpassing the other
in the lowest recall score. Another interesting trend that can be observed from this
table is that for the HQ models, the performance decreases for the second model (at
least in terms of average and median recall), but then increases again for the third
model, though not higher than the first model. The LQ models, on the other hand,
first increase in performance, then decrease even below the performance of the first
model. Therefore, ModelHQ1 is the HQ models’ best performing one and ModelLQ2
the best one for the LQ models. Interestingly enough, ModelLQHQ3, the model trained
on the most data, was the worst performing one out of all the models, both in average,
median, and highest overall recall.

Results such as these, especially in the recall category, with its tendency for more
false positives, suggests a problem of overfitting within the training data. These results
indicate that, if in doubt, the model is more likely to assign a class to the instance
than none. This could also be a direct consequence of the missing negative examples
in the training data, as the models may not have been trained enough to recognize
what a none-sentence looks like. This is also supported by the extremely low O recall
scores throughout all models, which rarely range higher than 0.2, some even as bad
as 0.099 (ModelHQ2 ). Where all models had higher recall than precision scores in the
other classes, the O class always showed higher precision over recall. This means that
the models only found an extremely small amount of the true O sentences, despite it
being the most represented class in development set. One should not forget, however,
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that these models did not receive no negative examples, as their base classifier, Kim
(2021)’s classifier, was indeed trained on those as well during its creation. But it seems
as though the negative examples from this training of the base classifier were not enough
to properly teach my models what a none-sentence looks like, especially since my newly
added training data contained zero negative examples due to the division of high and
low quality data (as described in chapter 4).

Another interesting fact to point out is that the highest recall score of 1.0 can be
found in ModelLQ1 and ModelLQ2 in the BER category. A look at both of their full
confusion matrices (not shown here) reveals that the models predicted all 7 of the BER
instances correctly, which explains the perfect recall score and the rather poor precision
score. I believe it is this perfect score that made the models’ overall average recall score
appear so high, while the rest of their recall scores are rather ordinary.

All models, without fail, have a recall score of 0.889 for the ATT category and all
labeled 8 out of the 9 instances correctly, but then collectively made the same mistake
as mentioned in table 5.2. Reasons and explanation for this were discussed earlier.

Category Highest Recall Score

O ModelLQ3, ModelLQHQ3

ADM ModelHQ2

BER ModelLQ1

ENR ModelHQ1

ETN ModelHQ1, ModelHQ2, ModelLQ2,ModelLQ3

FAC ModelHQ1

INS ModelHQ3

STM ModelLQ1, ModelLQ2

Table 5.4: Highest recall score per category

As can be seen in table 5.4, ModelHQ1 is also the model that has the highest number
of highest recall scores per category, where it alone dominates the ENR and the FAC
category and shares first place with ModelHQ2, ModelLQ2, and ModelLQ3 in the ETN
category. ModelHQ1 has 730 ENR, 1001 ETN, and 1206 FAC training instances in its
training set. For the ENR category, the model managed to label more true positives
correctly than not (51 true positives out of 54 total instances, 28 false positives in class
O), though in the ETN and FAC categories, the model mislabeled more O instances
as the respective class (ETN: 81 true positives, 111 false positive O instances, FAC: 83
true positives, 115 false positive O instances). Given that ENR had the least amount
of training instances, it is not surprising that it showed less signs of overfitting, unlike
the other two categories, which both had over 1000 training instances and caused the
classifier to assign ETN or FAC when in doubt. This did generate higher recall scores
for the two latter categories, though also much poorer precision scores (both around
0.4), while ENR may have a slightly lower recall score, though a much better precision
score (0.62). This leads to far more balanced scores all around, as well as a much better
F1 score (0.75, while the other two have 0.58 and 0.56 respectively). Scores such as
these would be highly desirable for any classifier, as a balance of recall and precision is
often the ideal performance, which is why I believe that the amount of ENR training
instances for ModelHQ1 seems to be the optimal amount for good performance and
less overfitting.

Regarding ETN in the other models, it has a precision score of around 0.41 in all
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models except ModelHQ3, where it is slightly higher (∼+0.01), and a recall score of
around 0.95/0.96 in all models. This category had an extremely high amount of training
instances in every model (starting at 1000 already), which appears to have been enough
to cause overfitting, as represented by the low precision scores in all models. It seems
STM, however, with similarly numerous training instances, was not overfitted for as
much during training, as its precision score may be lower than its recall score, though
nowhere near as low as ETN’s. Interestingly enough, ModelLQ1 and ModelLQ2 had
the highest recall scores in the STM category, a category in which ModelLQ1 had 2081
training instances, and ModelLQ2 had 3921 training instances. This is obviously much
higher than ModelHQ1 ’s ENR training instances, as discussed above, though the two
models perform exceptionally well not only in the recall category, but in the precision
category as well (both between 0.63 and 0.65). A look at all three models’ more detailed
confusion matrices (not depicted here) shows that ModelLQ1 and ModelLQ2 had 96
true positive STM classifications, and ModelHQ1 had 94, so very close. ModelHQ1 and
ModelLQ2 both have 55 false positive instances for the O category, whileModelLQ1 has
51. However, whereModelLQ1 andModelLQ2 have only one false negative instances for
the STM category, ModelHQ1 has 3, which would explain ModelLQ1 and ModelLQ2 ’s
better recall performance in that category. Perhaps the STM training data was a lot
clearer overall and/or aligned well with the STM instances in the test data, since it
seems much less overfitting occurred during training for this category. It seems that
too much training data for any class in the training set leads to overfitting for most
models, though it is important to remember that high training instances amounts
for poorly represented classes in the test set tend to make the results unreliable. As
always, balanced training, development, and testing sets are truly important for a good
assessment of the classifier’s performance.

Throughout all models, the INS category continuously has the worst recall score of
all categories, usually ranging somewhere between 0.55 and 0.69, with a small outlier of
0.75 in ModelHQ3. With equally poor precision scores across all models, it is clearly by
far the worst performing category everywhere. Having rather high amounts of training
instances in all models, it becomes clear that such an amount led to severe overfitting.
A look at some of the models’ more detailed confusion matrices also shows that the
models tended to label an O sentence as INS twice as often as they labeled true INS
instances as such.

Four out of the seven models have an MBW recall score of 0.975, despite having
rather different precision scores across all models in that category (although they all
still range from 0.51 to 0.57). The other three models also display quite formidable
MBW recall scores, ranging from 0.9 to 0.95. MBW has consistently less (even much
less, in the case of the LQ models) training data than INS, which is once again evidence
that imbalanced representations of classes during training simply leads to overfitting
in the higher represented classes, as can be seen by the much poorer INS performance
scores than MBW across all models.

After these comparisons and close observations, it is clear that ModelLQHQ3 per-
formed the worst out of all the fine-tuned models. Its precision scores are more often
than not substandard and its recall scores only cross the 0.9 mark 3 times. It con-
sistently has the worst recall scores out of all models or lies at the lower boundary of
the range, with a small outlier in the FAC category, where it was only second worst.
However, since it was fine-tuned with the most data, which therefore also differed the
most from the original data it was trained on, I do not believe overfitting here to be
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the main problem. Rather, I believe that so much new, dissimilar data made the model
un-learn certain patterns or contexts it had learned about the classes during previous
training. This would also explain its worse performance compared to the baseline.

In conclusion, after learning about how and why each model performs the way it
does and looking more closely at why that could be, I decided that ModelHQ1 is the
best performing one out of all my fine-tuned models and was the one I used on the final
test set. Even though it still did not perform as well as the baseline in terms of precision
scores, the model did display the highest recall score. However, since a balanced model
is important, I also decided to look at the models’ average precision scores. The model
with the highest average precision score was ModelLQHQ3 with a score of 0.57, while
ModelLQ3 was close behind, also with 0.57. ModelHQ1 had an average precision score
of 0.56, so I decided that if this model is still so close to the highest average precision
score of all models, it would still qualify as a well balanced model.

As a final answer to the research questions “How much does the quality of the
training data influence the model’s performance?” and “How much does the quantity
of the training data influence the model’s performance?”, it has become clear from
this investigation that the quality of the data does not seem to influence a model’s
performance much. Both HQ and LQ models were consistently trained on similar
amounts of data, but the LQ models did not perform worse overall, it was only the
recall scores that were poorer in comparison to the HQ models. The precision scores,
however, were predominantly better than the HQ models’. On the other hand, the
data’s quantity did seem to influence the models’ performances, especially in terms of
comparing ModelLQHQ3 to the other models, as adding more dissimilar fine-tuning
data the model appears to have made it un-learn associations it had learned about the
categories in its initial training. This is shown by its poor performance scores and is
not surprising in regards to the fact that the data the base classifier was trained on and
the data from the development set came from the same project, while the fine-tuning
data was a different kind of medical data. Therefore, the extent to which the quantity
of the training data influences the models’ performance depends on the type of data
the models are fine-tuned with, as well as what kind of data they are tested on.
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Chapter 6

Results and Error Analysis

This chapter will be presenting and discussing the results of the best model decided on
in chapter 5, ModelHQ1, on the final test set, as well as conducting a more detailed error
analysis over these results. This test set, as mentioned above, was created through the
same process as in figure 5.1, except this time it was all of Galjaard (2022) and Badloe
(2020)’s data put together to create the final test set. For its ICF category distribution,
please see table A.9 in the appendix. This chapter will summarize the answer to
the previously asked research question “What specific categories do not benefit from
semi-supervised learning?” Section 6.1 will be presenting and analyzing the model’s
results on the test set, including a comparison to the baseline and a comparison to
the performance on the development set. Potential reasons and explanations will be
provided in section 6.2, on the other hand, as well as detailed looks at misclassification
examples, and other interesting outliers or trends among the results.

6.1 Results

This section will be discussing ModelHQ1 ’s results on the test set. Please see figure 6.1
for its full performance.

Right away, it is clear that the overall F1 scores on the test set are far superior than
the ones on the development set. However, for all except the O category, the reason
for this seems to be the higher precision score, rather than the recall score. Only 4
of the categories (ADM, BER, ENR, and INS) had both of their metrics increase, the
other ones showed an increase in precision and a decrease in recall. But most of the
recall scores did not decrease by that much, except for ATT, which decreased by around
0.07 points, and MBW, which decreased by around 0.13 points. Overall, though, the
F1 scores for all ICF categories are quite formidable, ranging predominantly between
0.7 and 0.85, with only two outliers (BER and INS) with scores of around 0.6, and
the O class with a score of 0.27. ModelHQ1 ’s lowest score overall on the test set

Figure 6.1: Results of ModelHQ1 on the test set, support - O: 470, ADM: 319, ATT:
11, BER: 16, ENR: 113, ETN: 265, FAC: 171, INS: 96, MBW: 145, STM: 134
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(if the O class is not counted) is 0.44, for the BER precision score, which is indeed an
improvement over the development set, where the lowest score was 0.35 (if the O class is
not counted) in the INS precision score. On this set as well, the model has higher recall
than precision scores in all categories except for O and ATT, where that is reversed.
Categories the model previously did not do well on in terms of precision (BER, ETN,
FAC, INS, and MBW) did indeed improve by quite a lot in the test set performance.
In regards to recall, the model’s highest score went from 0.976 in FAC to only 0.97 in
STM, whereas its lowest score (if the O class is not counted) increased from 0.69 in INS
to 0.77 in INS, which shows a truly small regression in the highest score and a rather
significant improvement in the lowest score. The model’s performance even increased
in all metrics for the O category, even by 1.0 points in terms of precision, leading to
an increase of 0.9 points in the F1 score. Were one to rank the precision scores in
both the test and development set performances from highest to lowest, the first half
would always include ATT, O, STM, ADM, and ENR, even if their order within that
half would not be the same each time. MBW, ETN, FAC, INS, and BER are always
the worse performing categories, with their order being almost identical for both. This
shows that the model definitely has categories where it generally performs better and
categories where it generally performs worse (especially as this is also the case in the
comparison to the baseline performance).

Compared to the baseline, ModelHQ1 did significantly better in almost all cate-
gories in all scores, except for the O class and the recall score for FAC and MBW. The
recall score of the baseline is more than 1.0 points higher than the one of ModelHQ1
in the MBW category, but only 0.2 points higher for the FAC category, meaning that,
including the O class, the baseline has only two scores across the entire table that are
significantly better than ModelHQ1 ’s scores. Given that the baseline’s performance,
especially in the precision metric, was already so poor, it is not surprising that an-
other model did better in that category, though the baseline’s recall scores were quite
formidable, so higher scores there are indeed an improvement. With the baseline’s F1
scores often ranging only between 0.2 and 0.53, ModelHQ1 ’s F1 scores of between 0.6
and 0.898 (if the O class is not counted) are already much higher.

In summary, ModelHQ1 did much better on the test set than it did on the de-
velopment set and than the baseline did on the test set. Its general scores are also
not subpar at all, with a more balanced performance overall, but still formidable re-
call scores, which is what I did deem the more important metric for this experiment.
Except for a few categories, though, even the model’s precision scores are acceptable,
especially since a balance between recall and precision will always be necessary and with
an increase in one score, one usually has to accept a decrease in the other. Given that
a good classifier should be trained with such a balance in mind, this model would cer-
tainly not disappoint. Therefore, looking at results such as these, as well as all the ones
from subsection 5.4.1, I believe the answer to the question “What specific categories
do not benefit from semi-supervised learning?” is that there are no categories that do
not benefit from semi-supervised learning. Though there indeed certain categories that
tended to have lower scores than others, as mentioned above, there were no scores that
never changed or appeard to be stuck in a local minimum. I therefore believe that with
more training and experiments, the performance scores in all categories could indeed
be improved and the model balanced out more for a more realistic performance.
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Figure 6.2: ModelHQ1 ’s confusion matrix on the test set, support - O: 470, ADM: 319,
ATT: 11, BER: 16, ENR: 113, ETN: 265, FAC: 171, INS: 96, MBW: 145, STM: 134

6.2 Error Analysis

This section will provide a detailed error analysis of ModelHQ1 ’s performance on the
test set, which will include error types, distribution, significance, sources, and sugges-
tions on how to avoid such errors in the future. Please see figure 6.2 for a detailed
confusion matrix of its performance and please note that “pred:” and “true:” stand
for the O class. Further, it should be noted here that a lot of the sentences in the test
(and development) data were often the same sentence twice, such as “Hij heeft moeite
met lopen. Hij heeft moeite met lopen,” though they were displayed only once here,
for space and readability reasons. For further information about this, please see Badloe
(2020).

As is immediately clear from this table, the most common type of error, as men-
tioned in multiple sections above, is false positives. The largest numbers can be found
in the diagonal, i.e. the true positives, and in the first row, which shows that the
model classified none-sentences quite often as one of the other classes. Since most
none-sentences had already been filtered out by Kuan (2023)’s binary classifier, the
ones that did remain in the test set were most likely sentences that would indeed be
difficult to classify as O. There were far fewer confusions among the classes themselves,
as the few and low numbers across the columns suggest. Only within the O category
itself were there a few more false negatives, especially in the ADM and MBW category.
This would make that the second most common type of mistake, although its numbers
are still very little compared to how many false positives the model assigned.

6.2.1 False Positives

I would like to point out a few false positives for the four classes with the two lowest
precision classes, as low precision means that the model overclassified certain classes
when they should not have been assigned to that sentence, which is how false positives
are counted. The four classes discussed in this section will be BER, ETN, FAC, and
INS, as all their precision scores are all below 0.6. Taking a closer look at the mistakes
made in these categories will reveal trends and patterns the model tends to follow when
misclassifying an unseen instance.
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False Positives BER

The false positive BER examples can be found in table 6.1. As argued before, a
possible case for a BER gold label could be made for the first sentence, as it describes
that the patient could only work around 2 hours, was tired, and did not have a lot of
strength in their hands, but perhaps these descriptions are too vague for a concrete
labeling. However, the first and the second sentence included the word werk (“work”)
and “school,” which could be why the classifier assigned it the BER label. Although
the second sentence seems to be more describing a patient’s background in the work
& employment category (which would include school for children), not anything about
their functioning in this regard, the model labeled this sentence as BER, most likely
due to the word “school” in the sentence. The third sentence, labeled INS, as it talks
about the patient’s exercise tolerance functioning, was also labeled BER by the model.
This was the only BER-labeled sentence that was originally belonging to a different
ICF category, rather than the O class. Since it also contains a version the word werk,
it seems likely this is the reason the model labeled it BER instead of INS. All three of
these examples once again show a strong reliance on keywords by the model, as well as
proof of overfitting.

Original sentence Translation Gold Predicted

moe, zwaar werk vandaag
gehad, ook iets langer
dan 2 uur gewerkt, weinig
kracht in handen. gaat

tired, had a hard job to-
day, also worked a little
more than 2 hours, little
strength in hands. go

- BER

Gaat naar 3e klas HAVO,
gaat goed op school Vindt
het leuk om naar buiten te
gaan met vriendinnen

Goes to 3rd grade HAVO,
does well at school Enjoys
going outside with friends

- BER

Lichamelijk onderzoek
Algemene indruk: wat
bleek, wakker en alert
Karnofsky - score: 70 - in
staat tot zelfverzorging.
niet tot werkzaamheden
WHO - classificatie: 2
- in staat voor zichzelf
te zorgen, niet om te
werken.

Physical examination
General impression:
somewhat pale, awake
and alert Karnofsky -
score: 70 - capable of
self-care. not able to work
WHO classification: 2
- able to care for them-
selves, not able to work.

INS BER

Table 6.1: False positive BER examples from ModelHQ1 on test set

False Positives ETN

The false positive ETN examples can be found in table 6.2. As can be seen in figure
6.2, MBW was the category with the most false positive ETN mislabelings (except
for O). This is not surprising, since ETN describes a patient’s eating functioning and
MBW their weight maintenance functioning, which are already heavily related. Three
out of the four examples here include the word voeding (“nutrition,” or in combination
with sonde, “feeding”), while the second example includes the word eten (“to eat”), so
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despite the MBW category describing similar topics as the ETN category, it seems as
though the model was easily swayed by these keywords. This is further proven by the
fact that the O example does not talk about a patient’s functioning at all, only about a
feeding tube shortage. Furthermore, it is quite interesting that the ENR example even
includes the word energie (“energy”), yet the model seems to have given the word eten
more attention. Perhaps this was due to other patterns the model had learnt during
previous training, especially since this does look like a rather ambiguous sentence, that
could potentially fit in either category.

Original sentence Translation Gold Predicted

er is een tekort aan en-
terale sondevoedingsslan-
gen, graag om de 48 uur
vervangen en niet 1x per
24 uur.

there is a shortage of en-
teral tube feeding tubes,
please replace every 48
hours and not once every
24 hours.

- ETN

Eten kost veel energie Eating takes a lot of en-
ergy

ENR ETN

Het gaat verder goed met
patiente, conditie is ver-
betert, heeft geen sonde-
voeding meer nodig

The patient is doing well,
her condition has im-
proved and she no longer
needs tube feeding

INS ETN

Voedingstoestand (snaq
score): 4 Diëtiste nodig
ja, heeft contact met
diëtiste in het OLVG

Nutritional status (snaq
score): 4 Dietitian needed
yes, in contact with dieti-
cian at the OLVG

MBW ETN

Table 6.2: False positive ETN examples from ModelHQ1 on test set

False Positives FAC

The false positive FAC examples can be found in table 6.3. Noticeable here again, as
touched upon already in previous chapters, is that three out of the five examples have
the word lopen in it, which seems to be the reason the classifier labeled these as FAC.
The INS example, although indeed describing a patient’s exercise tolerance and not
including a version of lopen, does describe how patient mobilized herself on a chair, so
it is not implausible that this sentence could also be labeled FAC. The ADM example,
consisting of 3 words only, shows no signs of previous patterns or keywords that could
explain why the model labeled this instance as FAC, especially since it includes the
word ademen (“to breathe”) and, given the model’s previous patterns, should have
alerted the model of the sentence’s belonging to the ADM category, yet it did not
cause that. It is a strange instance indeed.

False Positives INS

The false positive INS examples can be found in table 6.4. Though all of these are false
positive examples. i.e. examples, where the model falsely labeled an instance INS,
all five of these examples do indeed describe something related to a patient’s exercise
tolerance functions. There are mentions of walking, exertion, balance exercises, and
exercise bikes; all of which could be considered related to INS sentences. However, the
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Original sentence Translation Gold Predicted

PPF: D Analyse: - Alge-
meen Looptraining met
rollator -Conclusie uit
subjectieve en objectieve
gegevens

PPF: D Analysis: - Gen-
eral Walking training with
a walker - Conclusion
from subjective and objec-
tive data

- FAC

Piepje bij ademen Beep when breathing ADM FAC

-Dhr uitgedaagd om met
de handen los de knieen
hoog op te tillen tijdens
het lopen.

-Mr challenged to lift his
knees high with his hands
while walking.

ENR FAC

dhr wilde niet met rolla-
tor naar toilet lopen DIG:
redelijke intake, heeft bi-
jna hele avondmaaltijd
opgegeten.

Mr. did not want to
walk to the toilet with a
walker. DIG: reasonable
intake, ate almost the en-
tire evening meal.

ETN FAC

In de middag heeft mw
gemobiliseerd op de stoel
en maakt gebruik van de
fiets trappen van de fysio-
therapeut.

In the afternoon, Mrs.
mobilized on the chair and
used the physiotherapist’s
bicycle pedals.

INS FAC

Table 6.3: False positive FAC examples from ModelHQ1 on test set

ADM example describes when the patient has dyspnoe (“dyspnea”), which is clearly
related to the patient’s breathing levels, yet it is also a rare, uncommon word. The
model may have been unsure about it and instead focused on the word inspanning
(“exertion”), which categorized the instance as INS. The ENR and MBW examples
both seem indeed heavily related to the INS category and could feasibly have been gold
labeled as such as well, so the model’s confusion here is understandable, but perhaps
the words balans (“balance”) and actief (“active”) were what eventually swayed the
model to INS. Regarding the O example, although the model seems to have firmly
associated lopen with FAC, it may be that the word wandeling (“walk”, noun) made
the classifier believe that the INS category is more appropriate in this case, though.

6.2.2 False Negatives

As mentioned above, the ADM and MBW categories are the two categories with the
most false negatives, i.e. instances where the classifier labeled a sentence as not ADM
or MBW, when in fact it was one of these classes. As these mostly happened within
the O category and the other cases were sufficiently discussed above, this section will
only focus on false ADM and MBW instances within the O class.

False Negatives ADM

The false negative AMD examples can be found in table 6.5. Interesting to note here
already is the mention of the word lopen in the first example, and yet the classifier
labeled this instance not as FAC, but as O. The sentence also includes the word adem
(“breath,” noun), but as discussed above, it does not seem to be a trigger word for the
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Original sentence Translation Gold Predicted

Geen adjuvante
chemotherapie A/ Komt
enkel buiten voor een
wandeling en boodschap.

No adjuvant chemother-
apy A/ Only goes outside
for a walk and errands.

- INS

Enkel dyspnoe bij zware
inspanning

Only dyspnea during
heavy exertion

ADM INS

zich fit O covid revali-
datie P HUR, fietsen 80-
120 watt, balansoefenin-
gen

feeling fit O covid reha-
bilitation P HUR, cycling
80-120 watts, balance ex-
ercises

ENR INS

Loopt wat, bukken gaat
niet zo goed, wordt dan
duizelig

Walks a bit, bends down
not so well, then becomes
dizzy

FAC INS

Pre - operatief stabiel
gewicht, actief leefpa-
troon (dagelijks 5 km
wandelen, hometrainer)

Pre-operative stable
weight, active lifestyle (5
km walk daily, exercise
bike)

MBW INS

Table 6.4: False positive INS examples from ModelHQ1 on test set

model to label that instance as ADM. The word was either not prominent enough in
the training data to cause such a correlation – although that is highly unlikely, as it
is basically the title word of the category – or the model simply used other patterns
and context to distinguish ADM sentences from other classes. Given the model’s high
precision and recall score in this category, that one seems the more likely explanation.

Original sentence Translation Gold Predicted

ongeveer 100 meter lopen
op viak terrein moet ik na
een paar minuten stoppen
om op adem te komen

After walking about 100
meters on rough terrain,
I have to stop after a
few minutes to catch my
breath

ADM -

Kan niet meer platliggen
vanwege de pijn, in com-
binatie met de benauwd-
heid.

Can no longer lie flat be-
cause of the pain, in com-
bination with the short-
ness of breath.

ADM -

Hoestte en voelde zich ko-
rtademig na inspanning.

Coughed and felt short of
breath after exertion.

ADM -

Table 6.5: False negative ADM examples from ModelHQ1 on test set

False Negatives MBW

The false negative MBW examples can be found in table 6.6. Similar as with the false
negative ADM examples, all three of these examples include a version of the word
gewicht (“weight”), which is once again a title word of the category, yet none of these
three sentences was labeled as MBW. Based on this, it also seems unlikely that gewicht
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was not prominent enough in the training data, but unlike ADM, the MBW category
does not have such outstanding precision and recall scores, only 6.2 and 8.4 respectively.
Given that two of the three examples include numerical characters, there is a chance
that these confused the model too much to make a decision about this sentence, though
this is also unlikely, as a lot of the MBW instances include numbers and were labeled
correctly. The last sentences includes both voeding and gewicht, yet is also neither
labeled as ETN nor MBW, which is rather hard to explain. All three of these examples
(as well as other, not depicted ones) show all the signs that they should have been
assigned the correct category, or in some cases perhaps the ETN category, yet none of
them are. Further in depth research could be conducted to find an explanation for this.

Original sentence Translation Gold Predicted

mevrouw heeft een goede
voedingstoestand, risico
op ondervoeding obv sta-
biel gewicht.

The lady has a good nutri-
tional status, risk of mal-
nutrition based on stable
weight.

MBW -

GPE verbeterd van 63
naar 85. Huidige voed-
ingstoestand lijkt redelijk
obv stabiel gewicht.

GPE improved from 63
to 85. Current nutri-
tional status seems rea-
sonable based on stable
weight.

MBW -

Slechte voedingstoestand,
totaal gewichtsverlies van
25% waarvan 20% postop-
eratief.

Poor nutritional status,
total weight loss of 25%
of which 20% postopera-
tively.

MBW -

Table 6.6: False negative MBW examples from ModelHQ1 on test set

6.2.3 Conclusion

Overall, the performance of ModelHQ1 on the test set is quite good. It is not only
good compared to the baseline model’s performance on the test set, it is also good on
its own, with F1 scores rarely dipping below 0.7 and recall scores predominantly in
the 0.9-1.0 range. Even its precision scores, which are not quite as high at its recall
scores, are average and although the ENR, ETN, FAC, and INS categories still show
room for improvement, the model still performs adequately. Compared to the baseline,
the model also performs much better, though one should not overlook the fact that
the baseline model performed extraordinarily poorly on the test set. Usually, when
testing classifiers on development and test sets, they tend to perform better on the
development set, given that more tweaks for optimal performance can be done based
on the results. In this case, however, the model performed better on the test set. Since
both sets are noticeably small, though, especially compared to the data the model was
trained on, these results should still be regarded with caution, as small test sets return
unreliable and somewhat inconclusive results. A larger, more balanced test set would
provide more accurate results.

Section 6.2 shows that most errors the classes suffered from where false positives,
especially when it came to classifying O sentences. As these had already passed Kuan
(2023)’s binary classifier and were therefore only the most difficult cases left, this does
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make sense. More often than not, the model labeled these as not-O and seemed to do so
based mostly on certain keywords that often (though not always) appeared to make the
classifier decide on one of the classes, such as lopen for the FAC and werk for the BER
class. Since these are indeed quite indicative words for these categories, there is always
the possibility that it was annotation error, rather than a classifier error, as these cases
passed the binary classifier for a reason. However, the classifier also does not seem
to be able to handle rare or uncommon words, such as dyspnoe or woordvindstoornis,
which it tends to ignore and simply focus on words it seems to be more familiar with
when it comes to deciding what class the sentence should be. However, the model was
not always outright incorrect, as I believe that a minor fraction of the false positives
resulted from to the presence of annotation errors, which is why computing a strict
IAA-score is always advisable.

The false negatives the model showed in its performance data appeared mostly in
the ADM and MBW classes, both of which had strong potential keywords in their
examples that the classifier still did not pick up on. ADM had the most training
instances in the model (over 3000), while MBW only had a bit more than 600, which
could explain the slightly worse recall and precision score for the latter class. ADM also
had more than twice as many testing instances than MBW, once again being the most
represented class, yet it was these two classes that the classifier struggled the most with
identifying correctly and rather labeled them as O. As mentioned above, the small test
set will yield unreliable results.
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Chapter 7

Discussion and Conclusion

This chapter will encompass a discussion and conclusion of the project’s findings. sec-
tion 7.1 will delve into the discussion of the experiments, while in section 7.2, I will
address the project’s limitations and offer recommendations for future research. Finally,
section 7.3 will mark the conclusion of this project.

7.1 Discussion

After experiments and research, three main points solidified: 1) “High quality” data
does not automatically improve a classifier’s performance, 2) High quantities of data
not only do not automatically improve performance, they seem to make the model un-
learn already learned patterns, and 3) Training and evaluation data should be balanced
in terms of type and quantity for accurate results. While this project set out to research
the difference between “high” and “low” quality data versus high and low quantity of
data, it seems that was not quite what was discovered during this task.

7.1.1 Data Quality

As seen in chapter 6, difference in the quality of data mostly influenced precision
versus recall scores. “High” quality data seemed to have increased the models’ recall
scores, while “low” quality data seemed to have increased their precision scores. This
is surprising in and of itself, as one would expect this the other way around, since
normally clear and straight-forward data teaches the model quite precise examples
of what a certain category should look like. This would then lead the model to be
more meticulous when deciding whether an instance of a certain class or not, instead
of assigning the category despite a rather low confidence score. One could argue, of
course, that in my case, since I decided to base my best model on the model with the
best recall scores, the high quality models did indeed perform better and therefore high
quality data does indeed improve performance, but depending on what one’s research
task and focus is, one could decide on either high or low quality data and still create
well performing classifiers for the task. That is why I do not wish to claim that higher
quality data = higher performance scores. Further, one should also remember that
“high” quality data is quite arbitrary, hence the quotation marks, and that is was
decided based on one classifier’s confidence score when labeling this data. That is of
course neither the only, nor the best method to go about this, as the real quality of
an instance should be decided by a human annotator during the data labeling. Only
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a human with the right expertise knowledge could decide whether a sentence is of
accurate quality to be labeled “high” or “low.”

7.1.2 Data Quantity and Similar Sets

Also visible in chapter 6, the quantity of the data stands in strong correlation with the
models’ performance. ModelLQHQ3, the model with the most training data, was one
of the worst performing models in terms of recall, which I believe to be caused by the
addition of too much dissimilar fine-tuning data, both in terms of learned patterns and
alignment with the test set. The base classifier may have been trained on large amounts
of secondary care level COVID-19 data, which is also prominent in the development set,
but the data I added for fine-tuning and the test set included other types of data and
the model was either not able to transfer what it had learned in pre-training to the new
type of data, or the new fine-tuning data altered its learned patterns and associations
too much. This would also explain why ModelHQ1, one of the two models with the
least amount of training data, performed so well in the recall metric, as it was simply
still rather similar to the baseline in terms of what it had learned. Another quantity
issue was the fact that the O category consistently performed so poorly on all models,
most likely because the new training data did not include any negative samples and the
models only had what their base classifier was trained on. However, the O sentences
that were included in the test and development sets were the ones that had passed
the filtering of Kuan (2023)’s binary classifier, so they were the more difficult cases to
classify. All the mentioned issues led to overfitting for all ICF categories or distorted
the results, which is why I believe that either less training data, more evaluation data,
or more similar types of training and testing data would have made for more accurate
results and better performing models.

7.2 Future Work

To improve the future work and research of my project, I would recommend balancing
out the fine-tuning data to prevent overfitting for certain classes. This could be done by
enhancing the set with more annotated data, though that seems like a lot of work when
the data is already available. That is why, after running the data through Kim (2021)’s
classifier the first time to receive the confidence scores, the process could be repeated
until each category has a balanced representation within the training set. Further,
since the amount of fine-tuning data I provided my models with was not nearly as
much as their base classifier had received during training and the added, different data
simply confused my models, more training data should be added in the future, so that
the models can be trained on equal amounts of different types of data and learn all
possible patterns. This is further supported by the fact that, out of the HQ models,
ModelHQ1 performed the best, ModelHQ2 the worst, and ModelHQ3 only slightly
worse than the first. This shows that adding only a little new data to the training
was not enough to confuse the classifier, though adding a medium amount brought in
just enough new and different data that the classifier was starting to un-learn certain
patterns. Once again adding more data gave the classifier more data to also learn
the patterns of the newly added data. ModelLQHQ3 ’s performance shows that adding
too much low quality data simply confuses it again, which is why adding more of the
desired kinds of training data is necessary to further improve performance. Since my
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semi-supervised approach to training a classifier did not fail or produce overall abysmal
results, this should be easily done by retrieving more of the millions of unannotated
hospital notes and using Kim (2021)’s classifier to have them labeled before using them
for training. This would avoid elaborate and costly human annotation. Moreover, the
test and development sets should be made up of equal amounts of the types of data
used in training, as well as be large enough not to present inconclusive results.

Furthermore, I could have used the data with a confidence score lower than my set
low-quality-threshold as negative examples and added it to the training set of both the
HQ and the LQ models. One could also, of course, play around with the threshold of
Kim (2021)’s classifier, of when an instance switches from 0 to 1. Again, it was set to 0.5
during my experiments, but experimenting with that and trying out different thresholds
here could potentially lead to the desired balance between recall and precision.

Lastly, as mentioned in chapter 6, some of the sentences in the test and development
sets were duplicated, which is an error that occurred during Badloe (2020)’s project. At
this point in the project, it is difficult to determine the specific impact and magnitude
of influence on the results these duplications had, but it is important to remember this
error, were this experiment ever be reproduced. For the sake of better comparability
across the whole A-PROOF project, sentences should be single sentences in any future
work. It should also be mentioned that while Kim (2021), Galjaard (2022), and Badloe
(2020) conducted their experiments on both a sentence level and a note level within the
data, this academic year us students focused solely on a sentence level performance.
We had quite ambitious goals for our theses and knew that further experiments for
note level performances could be easily derived by future students from our current
research.

7.3 Conclusion

In subsection 7.3.1, this section will summarize the project’s initial goals and its final
results by referring back to the research questions and sub-questions introduced in
chapter 1. Subsection 7.3.2 will present the project’s conclusion.

7.3.1 Summary

This thesis aimed to answer the question “Does using semi-supervised learning to
train a model improve the model’s performance in automatically annotating
unlabeled hospital notes?” In order to do so, three sub-questions were proposed
that the project focused on answering during the process:

1. How much does the quality of the training data influence the model’s perfor-
mance?

2. How much does the quantity of the training data influence the model’s perfor-
mance?

3. What specific categories do not benefit from semi-supervised learning?

By having a classifier label a large amount of unlabeled sentences, dividing these
sentences into “high” and “low” quality sentences based on the classifier’s confidence
score for each instance, and then training said classifier on different amounts of high
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and low quality data, different models were created that could then each be evaluated
on a development set until a best model was found. This model was then evaluated
on the test set. Each intermediate model was compared to the baseline, which was
the base classifier’s performance on the development set, until the best model was also
compared to the baseline’s performance on the test set.

7.3.2 Conclusion

After all experiments were done and analyzed, the answer to the first question became
clear: The quality of the training data does not influence the model’s performance
by a lot. Precision and recall seemed to be influenced in the sense that LQ models
tended to have higher precision and HQ models higher recall, but neither warrants and
automatic title of “better performing model.” Both models of each training phase still
tended to perform better in some and worse in other categories, also compared to the
baseline. This is equally true for how much data the models were trained with, which
answers the second sub-question, with the only exception that here higher recall scores
meant much worse precision scores due to the constant overfitting of the model. With
higher amounts of training data and the same, rather small development and test set,
a real analysis is hard to conduct, as the results will always be made unreliable by the
imbalanced ratio. Regarding the last sub-question, there seemed to be no classes that
got stuck in a local minimum or never improved scores, it all depended on the previously
mentioned factors. All of my findings make me optimistic that this project could easily
be improved by future A-PROOF interns and then truly result in more labeled data
with much less time and effort from the human annotators. Semi-supervised learning
is a fascinating and promising classifier training technique that holds great potential,
if done right, so I hope the A-PROOF team can make use of it for the continuation of
their project in the future and continue working towards a great tool.
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Figure A.1: Overview of the ICF domains in the project, taken from Kim (2021)

Figure A.2: Baseline performance on the development set, part 2, support - O: 484,
ADM: 182, ATT: 9, BER: 7, ENR: 54, ETN: 84, FAC: 85, INS: 36, MBW: 40, STM:
97

Figure A.3: Baseline performance on the test set, part 2, support - O: 470, ADM: 319,
ATT: 11, BER: 16, ENR: 113, ETN: 265, FAC: 171, INS: 96, MBW: 145, STM: 134
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Figure A.4: Results of all models on the development set
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Category Words

ADM o2, spo2, peep, respiratoire, beademing, ademhalingsfrequentie, fio2, tem-
peratuur, zuurstof, polsfrequentie, saturatie, sat, dyspneu, lengte, bloed-
druk, temperatuurbron, resp, neusbril, insufficiëntie, 96, 94, insufficientie,
ventilatie, 36, bpm, liter

ATT aandacht, trekken, concentratie, behouden, helder, bewustzijn, concen-
tratieverlies, concentreren, afgeleid, ogen, geheugen, alert, concentratieprob-
lemen, reageert, angsten, aanspreken, lezen, concentratiestoornissen, ad-
equaat, vergeetachtigheid, cognitie, kenmerk, spreekt, inattentie, hoofd,
geheugenproblemen

BER gewerkt, uitgevoerde, aanpak, psk, fietsen, trampoline, school, dribbelen,
heuvel, infratechniek, tik, balanseren, hur, stage, uren, vorm, volhouden,
beroep, sociale, waarde, werkte, seconden, th, grond, ziektewet, halve

ENR moeheid, vermoeiend, slaperig, graad, uitgevoerde, aanpak, fietsen, zwak,
vermoeidheidsklachten, fit, suf, uitgeput, hur, vermoeider, gewichtsverlies,
verzwakt, vermoeide, stoel, wakker, czs, slap, balansoefeningen, watt, fitter,
ochtend, indruk

ETN sondevoeding, voeding, sv, dig, protein, nutridrink, sonde, compact, ml, eet,
nutrison, drinkvoeding, tpv, duodenumsonde, gegeten, protino, voedingstoe-
stand, geschatte, maagsonde, arla, eiwitbehoefte, dieet, orale, water, flesje,
kcal

FAC fac, gelopen, meter, toilet, stoel, trap, traplopen, mob, afdeling, supervisie,
rond, veilig, infuuspaal, personen, loophulpmiddel, persoon, krukken, trans-
fers, liep, ondersteuning, ongestoord, gang, looprek, wankel, rondje, buiten

INS stoel, fietsen, inspanningstolerantie, wandelen, gezeten, fietst, sport, bood-
schappen, km, huishouden, mob, wandelt, trap, gelopen, buiten, bedrand,
meter, traplopen, toilet, hond, fitness, fiets, gedoucht, trappen, mobiliseren,
douchen

MBW afgevallen, gewichtsverlies, voedingstoestand, snaq, obv, tov, ondervoeding,
gebruikelijk, eindscore, voeding, inflammatie, agv, afvallen, graad, anorexie,
gerelateerde, gewichtsverandering, bmi, acute, kilo, wb, toegenomen,
nachtzweten, gew, onbedoeld, bewust

STM angst, stemming, angstig, bang, somber, affect, emotioneel, boos, blij, de-
pressieve, depressie, gespannen, angsten, verdrietig, dood, doodswens, stress,
modulerend, paniek, normofoor, depressief, vrolijk, onrustig, gedachten,
gevoelens, sombere

Table A.1: TF-IDF words per ICF category
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Category/Categories Amount

O 372,797
STM 8169
ADM 7094
FAC 4019
ETN 3561
INS 2268
ENR 2125
MBW 2116
BER 1342
ATT 458

FAC & INS 280
ETN & MBW 232
ADM & INS 156
ENR & INS 108
ADM & ENR 88
FAC & STM 29
ADM & ETN 25
ADM & STM 16
ENR & MBW 14
MBW & STM 11
ENR & ETN 11

ADM & INS & FAC 11
ATT & ENR 11
ADM & MBW 10

ENR & MBW & INS 7
ADM & FAC 7
INS & MBW 6
ENR & STM 5
BER & INS 4

ADM & ENR & INS 4
ETN & STM 3

ENR & INS & FAC 3
BER & INS & STM 3

ADM & ETN & MBW 3
ATT & STM 2
MBW & FAC 1
BER & STM 1

Table A.2: ICF category sentence distribution using Kim (2021)’s classifier & high
quality dataset category sentence distribution
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Category/Categories Amount

STM 6410
ETN 5011
ADM 4701
INS 3584
BER 1835
FAC 1732
ATT 582

FAC & INS 487
MBW 416
ENR 224

BER & INS 143
ADM & INS 105
ETN & MBW 82
ENR & INS 78
BER & STM 48
ENR & STM 47
ATT & STM 40
INS & STM 38
ADM & STM 29
BER & ENR 19
ETN & STM 18
FAC & STM 17
INS & MBW 14
ADM & ETN 13
ENR & MBW 11

BER & ENR & INS 11
ATT & FAC 8
ATT & BNR 8
ADM & ENR 8
BER & FAC 7

ENR & FAC & INS 7
ENR & ETN 6

FAC & INS & STM 5
BER & INS & STM 5

MBW & STM 4
ADM & BER & INS 4

ATT & ETN 3
ADM & MBW 3

ADM & FAC & INS 3
BER & FAC & INS 3

ETN & INS 2
ETN & FAC 2
BER & MBW 2
ADM & FAC 2

ENR & FAC & INS & STM 2
ENR & ETN & INS & MBW 2

ATT & ENR 1

Table A.3: ICF category sentence distribution among the low quality dataset
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Category/Categories Amount

ADM 3002
STM 2381
FAC 1206
ETN 1001
ENR 730
INS 716
MBW 629
BER 554
ATT 189

FAC & INS 92
ADM & INS 53
ETN & MBW 49
ENR & INS 36
ADM & ENR 35
ADM & ETN 12
ADM & STM 8
ATT & ENR 6
MBW & STM 5
FAC & STM 4

ENR & INS & MBW 4
INS & MBW 3
ENR & ETN 3
ADM & FAC 3

ADM & FAC & INS 3
ADM & ENR & INS 2

ENR & STM 1
ENR & MBW 1
BER & STM 1
BER & INS 1
ATT & STM 1

ENR & FAC & INS 1
BER & INS & STM 1

ADM & ETN & MBW 1

Table A.4: ICF category sentence distribution among the first high quality training set
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Category/Categories Amount

ADM 2346
STM 2116
ETN 1676
FAC 1519
ENR 802
INS 750
MBW 667
BER 361
ATT 117

FAC & INS 103
ETN & MBW 96
ADM & INS 55
ADM & ENR 36
ENR & INS 31
FAC & STM 9
ADM & ETN 7
ENR & MBW 6
ADM & MBW 6
ADM & STM 5
ENR & ETN 4

ADM & FAC & INS 4
MBW & STM 3
ADM & FAC 3
ENR & STM 3
ATT & ENR 2

ENR & INS & MBW 2
ADM & ETN & MBW 2

ETN & STM 1
ENR & FAC & INS 1
ADM & ENR INS 1

Table A.5: ICF category sentence distribution among the second high quality training
set
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Category/Categories Amount

STM 2081
ADM 1807
ETN 1529
INS 1072
BER 794
FAC 500
ATT 219

FAC & INS 150
MBW 131
ENR 64

BER & INS 55
ADM & INS 37
ENR & INS 33
ETN & MBW 25
BER & STM 17
ENR & STM 15
INS & STM 11
ATT & STM 11
ADM & STM 11

BER & ENR & INS 7
INS & MBW 6
ADM & ETN 6
BER & FAC 5
BER & ENR 5
FAC & STM 4
ETN & STM 4
ATT & BER 4
ADM & ENR 4
ENR & ETN 3
ATT & FAC 3
ENR & MBW 2
ATT & ETN 2

BER & INS & STM 2
ADM & BER & INS 2

ENR & FAC & INS & STM 2
MBW & STM 1
ETN & FAC 1

ENR & FAC & INS 1
ADM & FAC & INS 1

Table A.6: ICF category sentence distribution among the first low quality training set
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Category/Categories Amount

ETN 2149
STM 1840
ADM 1769
INS 1075
FAC 567
BER 484
ATT 157

FAC & INS 136
MBW 127
ENR 91

ETN & MBW 32
BER & INS 32
ADM & INS 29
ENR & INS 22
ENR & STM 19
ATT & STM 12
BER & STM 11
INS & STM 9
BER & ENR 9
ETN & STM 8
ADM & STM 8
FAC & STM 6
ENR & MBW 6
INS & MBQ 3
ADM & ENR 3

ENR & FAC & INS 3
ETN & INS 2
ENR & ETN 2
ADM & FAC 2
ADM & ETN 2

BER & FAC & INS 2
MBW & STM 1
ETN & FAC 1
BER & FAC 1
ATT & FAC 1
ATT & BER 1
ADM & MBW 1

FAC & INS & STM 1
BER & ENR & INS 1
ADM & FAC & INS 1

ENR & ETN & INS & MBW 1

Table A.7: ICF category sentence distribution among the second low quality training
set
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Category/Categories Amount

O 484
ADM 182
STM 97
FAC 85
ETN 84
ENR 54
MBW 40
INS 36

FAC & INS 14
ENR & INS 11

ATT 9
BER 7

ETN & MBW 6
ADM & INS 6
ADM & ENR 5
ADM & ETN 4
BER & INS 3

ADM & FAC & INS 3
FAC & STM 2
ADM & MBW 2
ADM & FAC 2

ADM & ENR & INS 2
ENR & FAC & INS 2

INS & STM 1
ENR & FAC 1
BER & ENR 1
ATT & INS 1

FAC & INS & STM 1
ENR & INS & STM 1
ATT & ETN & INS 1
ADM & ATT & ENR 1

Table A.8: ICF category sentence distribution among the development set
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Category/Categories Amount

O 470
ADM 319
ETN 265
FAC 171
MBW 145
STM 134
ENR 113
INS 96

ETN & MBW 39
FAC & INS 30
ENR & INS 25
ADM & INS 17

BER 16
ADM & ENR 16

ATT 11
ADM & FAC & INS 10
ENR & FAC & INS 7

ADM & FAC 7
MBW & STM 6
ENR & MBW 6
ADM & MBW 6
ADM & ETN 6
BER & STM 5
BER & INS 5
INS & STM 5
ENR & ETN 4
ETN & INS 3
BER & ETN 3
ATT & ENR 3
FAC & STM 2
BER & ENR 2
ATT & FAC 2

ADM & ENR & INS 2
INS & MBW 1
ETN & STM 1
ENR & STM 1
BER & FAC 1
ATT & BER 1
ADM & STM 1

ATT & ETN & INS 1
ATT & BER & ENR 1
ENR & INS & STM 1
ADM & INS & MBW 1
ADM & ENR & MBW 1

ADM & ENR & FAC & INS 1
ADM & ATT & ENR & INS 1
BER & ENR & INS & STM 1

Table A.9: ICF category sentence distribution among the test set
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Original sentence Translation Gold Predicted

[patient]: gaat goed op
school, geen probleem,
ook niet thuis, ze kan zich
concentreren

[patient]: doing well at
school, no problem, not
even at home, she can
concentrate

- BER

Table A.10: Further BER false positive examples from ModelHQ1
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