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Abstract

When humans read a text, their eye movements are influenced by linguistic character-
istics of the input. For example, readers tend to fixate longer on infrequent and mor-
phologically complex words, and regress to previous material if a syntactic structure
is difficult to parse. Such effects have been observed in many different languages (e.g.
Russian (Laurinavichyute et al., 2019), German (Kliegl et al., 2004), Finnish (Bertram
and Hyönä, 2003)). Eye movement patterns of reading thus provide important clues
about linguistic complexity. Recent studies have shown that transformer-based lan-
guage models are remarkably good at predicting human reading behaviour, even for
languages that are not seen during training (Hollenstein et al., 2021b). This suggests
that such models are cognitively plausible and process linguistic complexity in a similar
way as humans.

This thesis investigates if a multilingual transformer model (XLM-RoBERTa, (Con-
neau et al., 2020)) develops a sensitivity to linguistic complexity when it learns to pre-
dict patterns of human reading behaviour. After training the model on eye-tracking
data of English readers, we find that it can accurately predict eye movement behaviour
associated with 1) sentences that are more complex than those seen during training,
and 2) languages that are not seen seen during training. These generalization abili-
ties indicate that the model established a link between linguistic complexity and eye
movement patterns, and that the learned correlations can be transferred to other lan-
guages. We provide further evidence for this by probing the linguistic knowledge that
is encoded in the model’s final-layer representations, both before and after fine-tuning
on eye-tracking data. We find that features associated with the structural complexity
of a sentence are better encoded after fine-tuning.
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Chapter 1

Introduction

Reading is a foundational skill for acquiring new information. Many sources of infor-
mation are only available in written form, including educational material, news paper
articles and letters from municipalities. Although many people learn how to read as a
child, not everyone becomes equally skilled at it. In the Netherlands alone, more than
2.5 million people are low-literate, which means that they have trouble with reading
or writing.1 This hinders them from succeeding in education, applying to jobs, and
staying informed about the news.

One way to alleviate this problem is to address text complexity. Texts that contain
many infrequent words and long sentences are difficult to read, especially for low-literate
people or language learners. By estimating text complexity, we can select texts that are
sufficiently easy for a particular target audience. Natural Language Processing (NLP)
technologies allow for the automatic assessment of text complexity. Given a corpus
of texts that are annotated with their respective level of complexity, NLP models can
learn correlations between textual characteristics and complexity levels. Such models
can then be used to automatically assess the complexity of large amounts of unseen
texts.

While this sounds promising, it is not straightforward to design a training corpus
with an appropriate annotation scheme for text complexity. Many corpora divide their
texts into discrete categories of complexity (often on a scale), but it is not straight-
forward to decide on the granularity of such categories. A large amount of categories
makes it hard for annotators to determine the boundaries between them. Only using
a binary distinction between easy and difficult texts, on the other hand, might not be
fine-grained enough. A model trained to predict binary complexity labels might solely
learn that easy texts are shorter than difficult texts, thus overlooking more sophis-
ticated features of text complexity. Finally, the annotations need to be provided by
trained annotators, which may be expensive and hard to find, especially for low-resource
languages.

An alternative way of assessing which parts of a text cause reading difficulty is to
examine how the eyes move during reading. Decades of psycholinguistic research have
shown that people look longer at words that require more cognitive processing effort
(e.g. infrequent or ambiguous words), and that the eyes regress to previous material if
a grammatical structure is difficult to parse. As an illustration, Figure 1.1 shows how
long English readers fixate on each word of the sentence He lived at home while pursuing
literary ambitions, taken from the Ghent Eye-tracking Corpus (Cop et al., 2016). We

1https://www.lezenenschrijven.nl/reading-and-writing-foundation

1
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2 CHAPTER 1. INTRODUCTION

see that the final words “pursuing literary ambitions” are fixated much longer than the
previous words, and the preposition “at” is even entirely skipped. This shows that the
cognitive effort it takes to process a word is reflected in fixation durations. Eye-tracking
data recorded during reading can thus serve as a proxy for linguistic complexity.

He lived at home while pursuing literary ambitions.
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Figure 1.1: Eye movement pattern for an example sentence from the Ghent Eye-tracking
Corpus. The fixation durations are averaged over readers (n=14).

Certain elements of linguistic complexity trigger consistent eye movement patterns
across languages. For example, word length and word frequency influence fixation
durations regardless of the language (Kliegl et al., 2004; Laurinavichyute et al., 2019).
When we control for such factors, cross-lingual reading behaviour exhibits striking
similarities. To illustrate, Figure 1.2 shows that native speakers of five typologically
different languages fixate equally long on the sentence The ancient Greeks had no
equivalent to Janus, whom the Romans claimed as distinctively their own, translated
to their own language. Since the sentence has approximately the same content and
linguistic complexity in each language, the amount of cognitive effort it takes to process
the sentence remains stable. The fixation durations reflect this. Thus, speakers of
different languages respond to linguistic complexity in a rather universal way.

Modern eye-trackers capture eye movements with a temporal accuracy of millisec-
onds. Eye-tracking data recorded during reading therefore provides a very fine-grained
image of the linguistic properties that cause processing difficulty during reading. Such
data can be obtained from native speakers directly and alleviates the need for expert
annotators. In addition, low-cost eye-trackers are increasingly available and improving
in quality. Collecting eye-tracking data might therefore become as easy as having a
native speaker read a text from a mobile phone, tablet or laptop (Krafka et al., 2016).

By learning to predict how readers will move their eyes over a text, a computational
model might develop a similar sensitivity to linguistic complexity as humans. In other
words, eye movement data can adjust a model’s inductive bias (i.e. the set of assump-
tions that the model relies on to map an input to an output) to become more like
human language processing. When a model learns to predict eye movement patterns,
it needs to learn correlations between linguistic characteristics and increased fixation
durations or regressive eye movements. This relationship needs to be established for
rather small linguistic units. Therefore, learning to predict eye movements should lead
to more sophisticated knowledge about linguistic complexity than learning to predict
single text complexity labels for long texts.
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Figure 1.2: Total fixation durations for the sentence The ancient Greeks had no equiv-
alent to Janus, whom the Romans claimed as distinctively their own, translated in five
languages. The data is taken from the Multilingual Eye-tracking Corpus and the fixa-
tion durations are averaged over readers (32-46 per language).

In fact, there is evidence that learning eye movement patterns associated with
reading facilitates the process of predicting text complexity. González-Garduño and
Søgaard (2017) find that models that simultaneously learn to predict sentence-level
eye-tracking metrics and complexity labels perform better than models that merely
learn to predict complexity labels. Similar results have been found for other languages.
Evaldo Leal et al. (2020) show that sequentially training the same model on complexity
labels and fixation durations of Portuguese sentences leads to a better performance than
when eye movement behaviour is not learned. Both results indicate that neural models
can pick up fine-grained information about text complexity from eye-tracking data
recorded during reading, and that this information cannot be learned from discrete
complexity labels alone.

More recently, studies have found that transformer-based language models are re-
markably good at predicting eye movements associated with reading, even outper-
forming linguistically motivated models that receive explicit features correlating with
eye movement patterns as input (Hollenstein et al., 2021b; Sarti et al., 2021). This
suggests that these models are cognitively plausible, i.e. they seem to process linguis-
tic complexity in a similar way as humans. Multilingual transformer models are also
able to accurately predict eye movements for unseen languages, possibly resulting from
the fact that certain linguistic phenomena trigger consistent eye movement behaviour
across languages. However, the exact linguistic knowledge that is picked up by mul-
tilingual language models as a result of learning to predict reading behaviour has not
been analysed yet.

1.1 Research questions and objectives

In the current project, we investigate how well a state-of-the-art multilingual trans-
former model (XLM-RoBERTa, Conneau et al. (2020)) can predict eye movement pat-
terns associated with reading across different domains and languages. We then analyse
whether its performance can be explained by a newly acquired sensitivity to linguistic
complexity. The following research questions are addressed:

Antske Zwirello



4 CHAPTER 1. INTRODUCTION

1. Cross-domain abilities: Can eye movement patterns be predicted for sentences
that come from a different domain and are linguistically more complex than those
seen during training?

2. Cross-lingual abilities: Can eye movement patterns be predicted for languages
that are not seen during training?

3. Sensitivity to linguistic complexity: Can high prediction accuracy for eye
movement patterns be explained by an increased sensitivity to linguistic complex-
ity?

1.2 Contributions

The project is novel in the following ways:

• We focus on the linguistic features underlying eye movement patterns during
reading, and provide a thorough analysis of the relationship between linguistic
complexity and several eye-tracking metrics in two different corpora. We show
that the distribution of eye-tracking metrics depends on the linguistic com-
plexity of the reading materials, and not on the language in which the reading
materials were written, highlighting the universal tendencies of cross-lingual read-
ing behaviour;

• We examine whether XLM-RoBERTa picks up the universality of cross-lingual
reading behaviour by training it on English reading data and evaluating it on a
range of typologically diverse languages from the newly released Multilingual
Eye-tracking Corpus (Siegelman et al., 2022), which contains eye movement
data for parallel texts in 13 different languages. By using the MECO corpus,
we rule out the possibility that different prediction accuracy across languages is
caused by differences in semantics of the reading materials;

• We contribute to the growing field of interpretability in NLP by analysing
the linguistic knowledge that is encoded in XLM-RoBERTa’s sentence represen-
tations, both before and after learning eye movement patterns of reading. In
addition, we examine if the encoded linguistic information differs depending on
the representational variants of the model.

1.3 Outline

Chapter 2 provides the reader with the necessary background information about eye-
tracking research, and explains how eye-tracking data has been utilized for NLP. In
addition, it discusses how linguistic knowledge can be analysed in large pre-trained
language models. Chapter 3 provides an analysis of the eye-tracking corpora that we
use for training and evaluating XLM-RoBERTa, focusing on the linguistic complexity of
the reading materials and the corresponding distribution of several eye-tracking metrics.
Chapter 4 discusses the experiments that were carried out to test XLM-RoBERTa’s
abilities to predict eye movement patterns across domains and languages. Chapter 5
analyses whether XLM-RoBERTa acquired a sensitivity to linguistic complexity as a
result of learning to predict eye movement patterns (which should explain the results
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reported in Chapter 4). Finally, the thesis ends with conclusions and suggestions for
future work.
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Chapter 2

Background and Related Work

Eye movement behaviour during reading has been studied for more than a century. The
very first eye-tracking studies date back to the late 1800s. Back then, reading patterns
were detected by placing a rubber tube on the eyelid and subsequently recording the
sounds that were produced when the eyes moved forward and backward over a text
(Hyönä et al., 1995). Nowadays, eye movements can be recorded with a temporal accu-
racy of milliseconds, which allows for the careful examination of textual characteristics
and language processing during reading.

In recent years, NLP researchers have recognised that eye-tracking data recorded
during reading provides important clues about human language processing. Such data
can either be used to improve the performance of NLP models, or to compare the
language processing strategies of computational models and humans. This chapter
discusses the linguistic information that eye movement patterns of reading provide,
and analyses studies that have incorporated such information in NLP models.

2.1 Basic notions in eye-tracking research

The eye-mind hypothesis states that “there is no appreciable lag between what is fixated
by the eye and what is processed by the mind” (Carpenter and Just, 1983). This
hypothesis suggests that fixation patterns on a text reveal which linguistic units are
being processed. By recording eye movement patterns during reading and linking them
to specific linguistic phenomena, we can develop theories about the processing of written
language by the human brain. The following sections provide an overview of some the
most foundational findings from eye-tracking research.

2.1.1 Eye movements during reading

When we read a piece of text, we might feel as though our eyes move smoothly from line
to line. In reality, however, the eyes alternate between rapid, abrupt motions called
saccades and relatively stable periods called fixations. Saccades typically last 20-40
ms, while fixations last 200-250 ms on average. Intake of visual input only happens
during fixations, since the eyes move so fast during saccades that only a blur can be
seen. However, we do not perceive this blur since the brain is still processing input
that is available before and after the saccade. This phenomenon, where a reader is
temporarily blind to visual input, is called saccadic suppression (Rayner, 1998; Hyönä
and Kaakinen, 2019).

7
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Saccades usually go in the normal reading direction, e.g. from left to right for
English reading. Saccades can also go in the opposite direction and are known as
regressions. Regressions typically occur when there is a misunderstanding or ambiguity
at the current position of the text that can only be resolved with previous information.
A regression can also correct a saccade that was launched too far ahead in the text
(Rayner, 1998; Hyönä and Kaakinen, 2019).

There are several concrete eye-tracking metrics that are designed to capture lan-
guage processing at different stages. These metrics are usually calculated at the word
level, but can also cover larger linguistic units such as phrases or sentences. Early
metrics target low-level processes such as word recognition, while late metrics aim to
capture high-level processes such as syntactic integration (Hyönä and Kaakinen, 2019).
For early processing, researchers often measure first-pass duration, which is the dura-
tion of the very first fixation on a target region. During late processing, target regions
may be refixated. Researchers thus measure the total fixation duration (also known as
gaze duration), which is the sum of all fixation durations on a target region. Late pro-
cessing can also be measured by fixation count, defined as the total number of fixations
on a target region.

To capture contextual effects, researchers often measure go-past time, which quite
literally measures the time it takes to “go past” a target region. Concretely, this
metric is the sum of all fixation and regression durations before the reader progresses
to the right of the target region. A variation of this metric is selective go-past time,
which excludes regressions that are launched from the target region. When subtracting
selective go-past time from go-past time, one is left with regression duration.

Eye-tracking studies are usually conducted with multiple participants. This allows
for transforming absolute eye-tracking metrics into probabilities. For example, one can
measure the fixation probability for a target region by averaging boolean values (i.e. 1
if the region was fixated at least once, 0 if not) over participants. Eye-tracking metrics
that are averaged across participants are more robust to individual differences between
readers and thus capture reading behaviour in a more generalized fashion.

2.1.2 Linguistic properties affecting eye movements

As shown in Figure 1.1, fixation durations vary from word to word and some words
are entirely skipped. This can be explained by the amount of cognitive effort it takes
to process the linguistic input (Vasishth et al., 2013). Certain linguistic properties in-
crease the processing effort required to understand a text. Psycholinguistic research has
carefully examined the correlations between specific linguistic properties and specific
eye movement patterns during reading.

At the word level, a well known factor that influences both early and late processing
is frequency. Infrequent words are fixated longer and more often than frequent words
(e.g. Hyönä et al. (1995); Kliegl et al. (2004)). (Rayner and Duffy, 1986). A similar
effect is caused by age of acquition: words that are acquired earlier in life are read
faster than words that are acquired later in life (Dirix and Duyck, 2017; Juhasz and
Sheridan, 2019). These effects have been attributed to lexical access, which “refers to
the retrieval of words from the mental lexicon, both in recognition and in production.”
(Taft, 2001). Words that are frequent or acquired at a young age can easily be retrieved
from the lexicon and therefore take less time to read than words that are infrequent or
acquired later in life.

Antske Zwirello
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2.1. BASIC NOTIONS IN EYE-TRACKING RESEARCH 9

Orthographic features can also affect fixation durations. An important factor is
word length: longer words receive longer fixations than shorter words, simply because
there are more letters to be processed. It should be noted that word length and word
frequency often go hand in hand. For example, function words such as prepositions
and determiners are skipped more often than content words (Carpenter and Just, 1983;
Duffy et al., 1988) since they tend to be short, but also because they appear frequently
in the text. Nonetheless, the length effect has also been observed when frequency
remains constant (Liversedge et al., 2004) and vice versa (Kliegl et al., 2004).

Moving beyond the word level, contextual factors also affect eye movement be-
haviour. One such factor is predictability: words that are highly predictable from
the context are read faster than unpredictable words and are often entirely skipped.
The predictability of a word increases as a function of the constraints given by previous
words. For example, the verb eat is most likely to be followed by an eadable object
such as cake, while a verb such as move can be followed by a larger variety of objects
(Altmann and Kamide, 2000). Relatedly, Morris (1994) finds that fixation durations
decrease when previously read words are semantically related to the current word, be-
cause the preceding words increase the predictability of the current word. Finally,
lexical ambiguity can also result in longer fixation durations, but polysemous words
are only fixated longer when both meanings of the word are equally likely in the given
context (Rayner and Duffy, 1986; Duffy et al., 1988).

Syntactic ambiguity can also trigger specific eye movement patterns. Interesting
effects have been found for so-called “garden-path” sentences (Frazier and Rayner,
1982). Consider the famous example The horse raced past the barn fell (Bever, 1970).
During first-pass reading, a reader initially adopts the simplest syntactic structure,
where raced is the main verb and the prepositional phrase past the barn is attached to
that verb. When encountering the final word fell, however, the reader realises that the
initial analysis was wrong and that a re-analysis of the syntactic structure is needed.
In eye-tracking research, this materializes as regressions towards the ambiguous region
and an increase of fixations on that region (Clifton Jr and Staub, 2011).

Besides syntactic ambiguity, there are many other types of syntactic complexity
that can cause processing difficulty. For example, Gordon et al. (2006) find that object-
relative clauses such as The banker that praised the barber climbed the mountain are read
more slowly and with more regressions than subject-relative clauses such as The banker
that the barber praised climbed the mountain. Interestingly, they find that this effect
is reduced when the object (the barber) is replaced by a name (Sophie). The authors
speculate that this is caused by a reduced burden on a reader’s working memory,
since the subject and object are less similar in the latter case – Sophie is not similar
to the banker and thus takes less effort to process than a highly similar object like the
barber. Effects of “Chomskyan”1 complexity, such as the number of nodes in a parse
tree, have been less observed in eye-tracking studies. Nonetheless, sentences with a
more complex tree structure are also less frequent and introduce more memory load,
which does in fact influence eye movement patterns (Clifton Jr and Staub, 2011).

To summarise: linguistic features affecting text complexity, such as word length,
frequency, predictability and ambiguity, as well as cognitive factors such as age of

1Chomskyan linguistics is a term that is commonly used to refer to the linguistic theory developed
by Noam Chomsky, which is most famous for the idea that humans are born with an innate knowledge
of linguistic structure, and that the grammar of all natural languages can be captured by formal
mathematical descriptions.
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acquisition and working memory constraints all affect cognitive processing effort, which
in turn leads to variation in eye movement behaviour.

2.1.3 Cross-lingual differences

Effects of word length, frequency and predictability have been demonstrated in multiple
languages (e.g. Russian (Laurinavichyute et al., 2019), German (Kliegl et al., 2004),
Finnish (Bertram and Hyönä, 2003)). Only few studies, however, perform a systematic
cross-lingual comparison, in which semantic variation is controlled. Liversedge et al.
(2016) compare reading behaviour in English, Chinese and Finnish, which differ con-
siderably in both linguistic and orthographic respects. Nonetheless, the authors find
that sentences that are matched for content are read at a similar speed in all languages
(which is in line with the data shown in Figure 1.2). This suggests that there is a com-
mon cognitive process that underlies constructing the meaning of a sentence, regardless
of how that sentence is represented on paper.

Within sentences, the authors do find deviating eye movement behaviour for the
three languages: Finnish readers make the most and shortest fixations, and launch
the furthest outbound saccades. Chinese readers show the opposite behaviour, and
English readers are inbetween. This reflects the average word length of the languages:
Finnish has the longest words, followed by English, and then Chinese. Further, the
Chinese script is much more visually dense than the alphabetic script, resulting in
longer fixations and saccades that move to positions relatively close to the current
word.

Very recently, Siegelman et al. (2022) add to these findings by comparing read-
ing behaviour in a grand total of thirteen languages, using texts that are carefully
matched for content. They find that fixation probability varies considerably across
languages, which they also attribute to word length distributions in different languages
(e.g. fixation probability is much higher for Dutch than for Korean). This suggests
that universal eye movement patterns are more likely to be observed in sentence-level
eye-tracking metrics. For the current study, this leads to the hypothesis that it will be
easier for a multilingual language model to predict cross-lingual eye-tracking metrics
at the sentence level than at the word level.

2.2 Using eye-tracking data for NLP

Eye movement data recorded during reading provides important clues about human
language processing, which can potentially be picked up by NLP models. As men-
tioned in the introduction, it has been shown that learning eye movement patterns
associated with reading facilitates the process of predicting text complexity (González-
Garduño and Søgaard, 2017; Evaldo Leal et al., 2020). Similar results have been found
for other NLP tasks, namely part-of-speech tagging, grammatical error detection, sen-
timent analysis and hate speech detection (Barrett et al., 2016a,b, 2018). In the fol-
lowing section, we describe these studies and analyse what their results imply about
the specific linguistic information that eye movement data of reading provides. We
then describe different modelling approaches that have been proposed for the direct
prediction of eye movement patterns. Feature-based approaches provide insight in the
linguistic features that are predictive of eye movement patterns, and neural approaches
show which architectures are good at implicitly learning the features underlying eye
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movement patterns.

2.2.1 Improving NLP models with eye-tracking data

Barrett et al. (2016a) augment a part-of-speech tagger with a range of eye-tracking fea-
tures and find that this leads to a better performance than just using textual features.
Interestingly, performance also improves when the textual features are completely left
out and the tagger bases its predictions on the eye-tracking features alone. This indi-
cates that human fixation patterns are influenced by parts of speech, and that these
patterns can be used to classify words into part-of-speech categories. A follow-up study
by Barrett et al. (2016b) finds that English eye-tracking features also improve a French
part-of-speech tagger, which suggests that correlations between parts of speech and eye
movements are consistent across languages. In the current study, we examine if this
result extends to linguistic complexity.

A downside of incorporating eye-tracking data as features is that the eye-tracking
features also need to be available at test time. An alternative approach is to employ
multi-task learning, where eye movement behaviour is learnt as an auxiliary task. For
example, in a study by Barrett et al. (2018), eye movement behaviour is learnt as an
auxiliary task for three sequence labeling tasks: grammatical error detection, sentiment
analysis, and hate speech detection. They train a bi-directional LSTM using an alter-
nating training approach: either the model’s parameters are updated in favor of a data
point from the “main” corpus, or attention weights are altered in favor of a data point
from an eye-tracking corpus. This way, the model’s attention weights are regularized
using eye movement behaviour. This approach significantly improves performance on
all three sequence labeling tasks. Human fixation patterns can thus help a model to
assess which parts of a text are important for a certain classification (e.g. humans look
longer at the word horrible in the sentence that movie was horrible, which helps the
model to assess that the sentence has negative sentiment).

2.2.2 Directly predicting eye movements

The CMCL 2021 Shared Task on Eye-Tracking Prediction (Hollenstein et al., 2021a)
challenged researchers to predict five word-level eye-tracking metrics of the Zurich Cog-
nitive Language Processing Corpus (ZuCo, (Hollenstein et al., 2018)), which contains
eye-tracking data recorded from English native speakers during reading. For each word
w, participating teams needed to predict: 1) the total number of fixations on w ; 2) the
duration of the first fixation on w ; 3) the total fixation duration on w ; 4) go-past time,
i.e. the time it takes to move the eyes to the right of w ; and 5) the proportion of par-
ticipants that fixated w. For metrics 1-4, the average over all participants needed to be
predicted. The submitted solutions were evaluated by calculating the Mean Absolute
Error (MAE) (i.e. the absolute difference between predicted (y) and actual (x ) values)
for all five eye-tracking metrics. In addition, the solutions were compared to a mean
baseline.

Interestingly, the best results were obtained using traditional machine learning algo-
rithms trained with explicit features. Bestgen (2021), who submitted the best perform-
ing system, finds that surface features regarding the length and position of a word within
a sentence are the most predictive for all eye-tracking features, followed by frequency
features obtained from external corpora. In addition, bigram information (assumed to
capture next word predictability), behavioural measures (e.g. reaction times during
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lexical decision or naming tasks), and lexical features (capturing orthograpic and mor-
phological information) were proven to be helpful for the task. The second best solution
(Dary et al., 2021) also finds that surface and frequency features perform very well on
their own, and that syntactic features (i.e. part-of-speech and dependency information)
only add modest improvements. Nonetheless, their system outperforms Bestgen (2021)
in predicting the total number of fixations, go-past time and total fixation duration per
word, which indicates that the syntactic features are helpful for the prediction of eye
movement behaviour during late processing.

Other teams approached the task with state-of-the-art language models based on
the transformer architecture (Vaswani et al., 2017). Li and Rudzicz (2021) fine-tune
RoBERTa (Liu et al., 2019) in two stages: first on data from an external English
eye-tracking corpus (Provo, Luke and Christianson (2017)), and then on the target
data from ZuCo. The fine-tuned representations are then fed into per-token regression
heads, which simultaneously predict the five eye-tracking measures. This approach
achieves third place in the shared task. Importantly, the authors also show that the
RoBERTa-approach outperforms a simple linear regression baseline trained on four
token-level surface and frequency features. This indicates that the fine-tuned RoBERTa
representations encode more information than just simple surface and frequency cues.

Several lower-ranked submissions experiment with concatenating explicit features
to transformer representations that are fine-tuned on the ZuCo data (Vickers et al.,
2021; Oh, 2021; Choudhary et al., 2021; Yu et al., 2021). Interestingly, they all find
that adding an explicit word length feature improves prediction accuracy, indicating
that word length is not well encoded in the transformer representations after fine-
tuning. This might be explained by the fact that the employed models split words into
subwords, and that all teams used the representation of the first subword as input for
the final prediction layer. In addition, Yu et al. (2021) find that concatenating a range
of linguistic and behavioural features to fine-tuned BERT embeddings (Devlin et al.,
2019) leads to more accurate predictions of the eye-tracking metrics than only using
fine-tuned BERT embeddings. This indicates that the BERT embeddings do encode
those features after fine-tuning on the ZuCo data. However, it remains unclear whether
this is true for all of the concatenated features or only a subset of them.

As mentioned in the introduction of this thesis, Hollenstein et al. (2021b) show
that transformer-based language models can successfully predict a range of eye-tracking
metrics in four Indo-European languages: Dutch, English, German and Russian. To
investigate the relationship between the complexity of the input sentences and the
prediction accuracy for the eye-tracking metrics, they measure the correlation between
the Flesch Reading Ease2 (Flesch, 1948) and models’ prediction accuracy before and
after fine-tuning. They find that pre-trained models predict eye-tracking features more
accurately for sentences with a lower Flesch score, and that this correlation disappears
after fine-tuning. This suggests that the models learned a correlation between sentence
complexity and eye movement patterns during fine-tuning. However, the authors note
that the Flesch Reading Ease may not be a good proxy for complexity, since it only
operates on word length and sentence length. Further research is needed to establish
if sophisticated features of text complexity are captured by transformer models after
fine-tuning on eye-tracking metrics (which is the goal of the current study).

2The Flesch Reading Ease is a measure of text complexity that captures average word length and
average sentence length in a single number.
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To summarise, the submissions for the Shared Task show that word-level eye-
tracking metrics can be predicted using a combination of length, frequency, behavioural,
lexical and syntactic features. While fine-tuned transformer models also yield high ac-
curacy, they do not always outperform feature-based models and the addition of explicit
features can improve their accuracy. Nonetheless, it has not been systematically anal-
ysed which linguistic information is (not) encoded in transformer representations after
fine-tuning on eye-tracking metrics.

2.3 Linguistic knowledge in pre-trained language models

Current state-of-the-art language models are pre-trained on massive amounts of textual
data. The idea is that such models implicitly learn about linguistic structure through
pre-training, which would explain why they perform so well on many NLP tasks. As
discussed in the previous sections, fine-tuning pre-trained language models on eye move-
ment patterns of reading potentially leads to a better encoding of features associated
with linguistic complexity. By analysing the linguistic knowledge that is acquired from
pre-training alone, we can better understand the additional linguistic information that
language models can pick up from eye-tracking data.

2.3.1 Probing implicit linguistic knowledge

A popular way of analysing the implicit linguistic knowledge that is encoded in language
model representations is probing. When probing, a simple supervised model (often
called a diagnostic classifier (Hupkes et al., 2018)) learns to predict a value for a given
linguistic property based on a learned representation of a neural model. If the probe
can accurately predict values for the linguistic property, the researcher may conclude
that the property is encoded in the representation of the neural model.

More formally, probing can be defined as follows (Belinkov, 2022): Given a model
f : x → ŷ that maps an input x to an output ŷ, we can denote intermediate representa-
tions of model f at layer l as fl(x). A probe takes such an intermediate representation
as input and maps it to a particular property of interest ẑ, i.e. g : fl(x) → ẑ. If g can
accurately predict property z given the representation fl(x), we may conclude that z is
implicitly encoded in fl(x). Information-theoretically, probing is rather described as es-
timating the mutual information between representation fl(x) and property z (Pimentel
et al., 2020). Examining such information is especially valuable for model developers,
since it can reveal which linguistic knowledge a model is lacking and how it can be im-
proved. In the current study, we use probing to investigate the linguistic information
that is encoded before and after fine-tuning a multilingual transformer model on eye
movement patterns of reading.

Observed linguistic phenomena Pimentel et al. (2020) investigate the encoding of
part-of-speech information and dependency relations in the pre-trained representations
of multilingual BERT. They obtain sentence representations of eleven typologically
diverse languages from the BERT model and feed them into a Multi-Layer Perceptron
(i.e. the probe), which then has to predict the part-of-speech tags and dependency
labels of each sentence. The probe achieves 76 and 65 percent accuracy for part-of-
speech tagging and dependency labelling respectively, suggesting that BERT encodes a
decent amount of syntactic information after pre-training. However, the BERT inputs
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only yield slight gains in probing accuracy as compared to baseline inputs (one-hot
and fastText encodings (Bojanowski et al., 2017)), which unlike BERT do not capture
contextual information and are therefore unable to know syntax.

Miaschi et al. (2020) probe 68 sentence-level linguistic features in pre-trained BERT
representations. They use Support Vector Machines (SVMs) as probing models for each
linguistic feature individually. The probes are best at predicting values for syntactic and
morpho-syntactic features of English sentences, as represented by the [CLS] token of
BERT. Although many of these features are related to sentence length (e.g. parse tree
depth), the BERT representations always outperform a correlation baseline between
sentence length and a given linguistic feature. This suggests that BERT’s syntactic
knowledge goes beyond surface-level information.

Hall Maudslay and Cotterell (2021) are sceptical about the syntactic knowledge
encoded in several English pre-trained language models (BERT, RoBERTa and GPT-2
(Radford et al., 2019)). To test if the model knows about grammaticality as a distinct
property, they construct a corpus of “Jabberwocky” sentences, i.e. sentences that
are syntactically well-formed, but semantically nonsensical. They extract pre-trained
representations both for the Jabberwocky sentences and normal sentences and feed them
into several probes that predict the dependency relations in each sentence. They find
that all probes perform worse on the Jabberwocky sentences as compared to the normal
ones. In addition, they confirm the results found by Pimentel et al. (2020) and show that
the pre-trained representations only yield slight improvements over uncontextualized
baselines.

While the above studies all give some indication about the syntactic knowledge that
is encoded in pre-trained language models, it clearly remains a challenge to estimate
the exact amount of linguistic structure that is encapsulated in their representations.
Therefore, our aim is not to measure the exact amount of linguistic knowledge that is
acquired through learning eye movement patterns of reading. Rather, we investigate if
there is an improvement in the encoding of certain linguistic properties as a result of
fine-tuning on eye-tracking data, as compared to the pre-trained model.

Fine-tuning on eye-tracking data To the best of our knowledge, there is cur-
rently only one study that uses probing to investigate the linguistic knowledge that is
acquired after fine-tuning on eye-tracking data of reading. Sarti et al. (2021) fine-tune
ALBERT (a lightweight alternative to BERT (Lan et al., 2020)) on four sentence-level
eye-tracking metrics: first-pass duration, total fixation duration, fixation count and re-
gression duration. The authors extract these metrics from the Ghent Eye-Tracking
Corpus (Cop et al., 2016), which contains eye-tracking data of English participants
reading an entire novel. They then use the fine-tuned model to represent sentences
from three English treebanks, and feed them into n probes to predict a value for one
linguistic feature each. They repeat this with the pre-trained model. Since many of
the probed linguistic features correlate with sentence length, the authors also probe
ALBERT representations that are only fine-tuned on sentences containing 10 tokens.
Interestingly, their results indicate that the fine-tuned representations, both with and
without length-binning, have a better encoding of syntactic features (e.g. parse tree
depth, number of prepositional chains) as compared to the pre-trained representations,
while lexical and morpho-syntactic features (e.g. type-token ratio, lexical density)
remain unaffected by the fine-tuning process. This suggests that sentence-level eye-
tracking features contain information about syntactic complexity that can be picked

Antske Zwirello



2.3. LINGUISTIC KNOWLEDGE IN PRE-TRAINED LANGUAGE MODELS 15

up by transformer-based language models. The current study investigates whether this
result extends to other languages.
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Chapter 3

Data Analysis

Reading materials used for eye-tracking corpora vary in terms of linguistic complexity.
Together with individual differences between readers, this leads to divergent distribu-
tions of eye-tracking metrics across eye-tracking corpora. A language model predicting
eye-tracking metrics, then, should know about the correlations between linguistic com-
plexity and eye movement patterns of reading to be able to generalize to different
distributions of eye-tracking metrics across corpora.

This chapter assesses which particular features of linguistic complexity account
for the varying distributions of eye-tracking metrics in two corpora: The Ghent Eye-
tracking Corpus (Cop et al., 2016) and the Multilingual Eye-tracking Corpus (Siegelman
et al., 2022). After describing how the eye-tracking data were collected for each corpus,
we examine the linguistic complexity of the reading materials and analyse how the
distribution of several eye-tracking metrics relates to it. This will show which linguistic
knowledge should be acquired by a language model in order to accurately predict eye-
tracking values for sentences of varying linguistic complexity.

3.1 Ghent Eye-tracking Corpus

The Ghent Eye-tracking Corpus (henceforth GECO) contains eye movement recordings
of Dutch bilinguals and English monolinguals reading an entire novel (The Mysterious
Affair at Styles by Agatha Christie, or the Dutch translated version De zaak Styles).
The English group read the entire novel in their native language, while the Dutch group
read half of the novel in their first language and the other half in their second language
(English). Thus, GECO allows for comparing monolingual reading behaviour in two
different languages. It also allows for comparing monolingual and bilingual reading
behaviour in a single language. In addition, it shows how readers process language
while reading a longer narrative in a non-restricted, naturalistic setting.

For the current project, we focus on the monolingual parts of GECO. It contains
reading data of fourteen English monolinguals and nineteen Dutch(L1)-English(L2)
bilinguals reading in their first language. Each participant read the entire novel in four
sessions of maximally 1.5 hours. After each session, participants had to answer a set
of comprehension questions, ensuring that they understood the reading material. The
novel was presented on a computer screen, in paragraphs of maximally 145 words at a
time. Participants could read the passages at their own speed and proceed to the next
passage by pressing a button. Their eye movements were recorded by a high quality
eye-tracker. Further information about the size characteristics of the reading materials
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are presented in Table 1.
Since the novel contains many dialogue-style sentences such as “Certainly, Aunt

Emily” and exclamations such as “Oh, this fellow!”, we remove sentences that are
shorter than 5 words. This ensures that the training data contains a balanced amount
of shorter and longer sentences, and that a model trained on this data sees an adequate
amount of complex syntactic structures. This filtering resulted in the exclusion of 1259
English sentences and 1003 Dutch sentences.

Dataset Language #Words #Sentences Avg. sent. length Avg. word length

GECO English 52131 4041 12.90 4.60
Dutch 56654 4187 13.53 4.74

MECO English 2092 99 21.13 5.32
Dutch 2226 112 19.88 5.54
German 2019 115 17.56 6.38
Finnish 1462 110 13.29 8.19
Norwegian 2106 116 18.16 5.62
Greek 2082 99 21.03 5.67
Spanish 2412 98 24.61 5.01
Russian 1827 101 18.09 6.53
Hebrew 1943 121 16.06 4.89
Korean 1699 101 16.82 3.21
Turkish 1696 104 16.31 6.92

Table 3.1: Size characteristics for the reading materials of GECO and MECO. GECO
sentences which are shorter than five words are removed.

3.2 Multilingual Eye-tracking Corpus

While GECO allows for direct comparisons between English and Dutch reading be-
haviour, it does not allow for eye-tracking research across typologically diverse lan-
guages. The Multilingual Eye-tracking Corpus (henceforth MECO) fills this gap by
providing eye movement data of reading in 13 languages, covering a wide range of
typologies and language families.

The reading material consists of 12 short Wikipedia-style texts about various topics,
which participants read in their native language. All texts were selected in English first,
after which matching texts were collected for the other languages. Five of the 12 texts
were directly translated from English to the other languages. The remaining 7 texts
were carefully matched for topic, genre and complexity, but were not direct translations.
Back-translations to English showed that the translated texts were more semantically
similar to the English originals (mean cosine similarity = 0.88) than the matched texts
(mean cosine similarity = 0.66). By including both direct translations and more loosely
matched texts, MECO allows for analysing cross-lingual eye movement patterns across
different levels of semantic control. Detailed information about the number of words
and sentences in each individual text per language can be found in Siegelman et al.
(2022), but averages are presented in Table 1.

The data was recorded in many different eye-tracking labs across the world. There-
fore, the experimental setup was slightly different for each language (e.g. screen and
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font size, number of lines used to present a text). Nonetheless, each of the 12 texts
was always presented on a separate screen and in the same fixed order in all languages.
The number of participants ranged from 29 to 54 per language (45 on average). They
could read the texts at their own speed and proceed to the next text by pressing a
button. After each text, participants had to answer four comprehension questions. Eye
movements were recorded by a high quality eye-tracker.

3.3 Selected eye-tracking metrics

As discussed in Chapter 2, previous research suggests that universality in cross-lingual
eye movement patterns is more likely to be observed at the sentence level than at the
word level. Therefore, we hypothesize that cross-lingual transfer will work better for
sentence-level eye-tracking metrics than for word-level metrics. Since the GECO an-
notations for all eye-tracking metrics are provided at the word level, we sum-aggregate
them at the sentence level. MECO already provides annotations at the sentence level.

Following Sarti et al. (2021), we select four eye-tracking metrics that cover both
early and late language processing. Given a sentence s, we measure:

• First-pass duration: the duration of the first reading pass over s;

• Fixation count : the total number of fixations on s;

• Total fixation duration: the total duration of all fixations on s;

• Regression duration: the total duration of all regressions within s.

Regression duration is not directly provided in the datasets, but is calculated by
subtracting selective go-past time from go-past time. To obtain generalized eye move-
ment patterns, we average all eye-tracking metrics over participants.

3.4 Distribution of eye-tracking metrics

When comparing the distribution of our selected eye-tracking metrics across datasets,
we observe that MECO values are generally higher than GECO values. For example,
Figure 3.1 shows that the majority of values for total fixation duration is higher in
MECO as compared to GECO. We also observe that there is almost no difference in
the distribution of total fixation duration in the Dutch and English parts of GECO,
while MECO does exhibit some variation across languages. We attribute this to the
fact that the reading materials of GECO are direct translations of each other, while
MECO also contains more loosely matched texts. Thus, since the reading materials
per language differ more in semantic content, the eye movement patterns in MECO
may deviate more across languages. Another factor that may play a role is the average
sentence length of each language. For example, Spanish has longer sentences than the
other languages in MECO (see Table 3.1), which might explain why Spanish has higher
fixation durations on average. The English and Dutch sentences in GECO on the other
hand, are very similar in length. While the current study focuses on universals of
cross-lingual reading behaviour, further research is needed to examine the factors that
trigger differences in reading behaviour across languages.
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Figure 3.1: Comparison between GECO and MECO: Distribution of total fixation
duration across languages, averaged over participants.

To make sense of the different distributions of the eye-tracking metrics in GECO
and MECO, we compare the linguistic complexity of the reading materials of the two
datasets. We limit this analysis to English since the reading materials are closely
matched for linguistic complexity across languages in MECO. We consider four cate-
gories of sentence-level complexity features: length, frequency, morpho-syntactic, and
syntactic.1 The morpho-syntactic and syntactic features are computed using the Profiling-
UD tool (Brunato et al., 2020), which allows for the extraction of more than a 100
linguistic features and can be applied to many different languages. Selected features
are described below and summarized in Table 3.2.

Length features For each sentence, two length features are calculated: sentence
length and average word length. Sentence length is measured in terms of tokens, and
word length is measured in terms of characters. We do not count punctuation as tokens,
since eye-tracking participants do not fixate punctuation separately from the attached
word. For this same reason, we count attached punctuation as extra characters when
calculating word length. This experimental choice is also employed in the study by Sarti
et al. (2021). We already know from Table 3.1 that MECO words and sentences are
longer on average than GECO words and sentences, but we also include these features
here to analyse the overall distribution.

Frequency features We consider two sentence-level frequency features: average
word frequency and number of low frequency words. Frequencies are obtained us-
ing the Python package wordfreq (Speer et al., 2018). The package is built on several

1It would also be interesting to consider cognitive features affecting linguistic complexity, such as
age of acquisition. However, such features need to be extracted from psycholinguistic databases, which
do not exist for all languages considered in this study. Therefore, we focus on linguistic features only.
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frequency databases, including SUBTLEX lists (e.g. Brysbaert and New (2009)) and
OpenSubtitles (Lison and Tiedemann, 2016).2 We opt for Zipf frequencies, which have
been standardized according to a logarithmic scale that ranges from 1 to 7. The ad-
vantage of Zipf frequencies is that they are not dependent on corpus size, like absolute
frequency counts (van Heuven et al., 2014). Words with a Zipf frequency below 4 (i.e.
the central value of the Zipf scale) are considered to be low-frequency words. Again,
punctuation is excluded when calculating these features.

Morpho-syntactic features To quantify morpho-syntactic complexity, we calculate
lexical density, which is defined as the ratio of content words (nouns, proper nouns,
verbs, adjectives, adverbs) over the total number of words in a sentence. For example,
the MECO sentence A national flag is a flag which represents and symbolizes a country
has a lexical density of 0.5, since six out of twelve words are content words (i.e. national,
two times flag, represents, symbolizes, country).

Syntactic features To quantify syntactic complexity, we obtain the dependency tree
for each sentence and derive four features from it: parse tree depth, average dependency
link length, maximum dependency link length, and number of verbal heads. Parse tree
depth is defined as the longest path (in terms of dependency links) between the root of
the dependency tree and some leaf. Dependency link length is defined as the number
of tokens that occur linearly between a syntactic head and its dependent (excluding
punctuation) – we calculate both the average length and the maximum length for each
sentence. As a final measure of syntactic complexity, we count the number of verbal
heads per sentence. Consider the following examples from MECO:

1. In ancient Roman religion and myth, Janus is the god of beginnings and gates.

2. He has a double nature and is usually depicted as having two faces, since he
looks to the future and to the past.

Sentence 1 has one verbal head (is), while sentence 2 has four (has, is, having,
looks). Sentence 2 therefore has a more complex syntactic structure than 1. Empirical
evidence for this is reported in Brunato et al. (2018), who found that the number of
verbal heads correlates with the perceived complexity of a sentence (even for sentences
that have the exactly the same length).

Complexity distributions The distributions of the linguistic complexity features of
the English GECO and MECO sentences are presented Figure 3.2. We see that MECO
sentences are generally more complex with respect to all four categories of features.
Compared to GECO sentences, they tend to have more and longer words, deeper parse
trees, and longer dependency links. Their lexical density is also higher, and they contain
more low-frequency words.

2A complete overview of all frequency databases included in wordfreq is given on the following page:
https://pypi.org/project/wordfreq/

https://pypi.org/project/wordfreq/
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Figure 3.2: Distribution of linguistic complexity features in English sentences of GECO
and MECO.
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Category Linguistic Feature

Length Sentence length (tokens)
Average word length (characters)

Frequency Average word frequency
Number of low frequency words (below Zipf=4)

Morpho-syntactic Lexical density
Syntactic Parse tree depth

Average dependency link length
Maximum dependency link length
Number of verbal heads

Table 3.2: Sentence-level features capturing linguistic complexity.

We attribute the longer fixation durations measured for the MECO sentences to
the fact that they are generally more complex than the GECO sentences. Nonetheless,
we also note that there is much overlap between the complexity features of the two
datasets. For example, lexical density ranges between 0.2 and 0.8 for GECO, but only
between 0.4 and 0.7 for MECO. Thus, when a model is trained on GECO sentences,
it will have seen example sentences of the same linguistic complexity as the MECO
sentences. This should make it easier for the model to accurately predict eye-tracking
values for MECO.

3.5 Predictors of eye-tracking metrics

As a final analysis of the relationship between linguistic complexity and eye movement
patterns, we assess which linguistic features are the best predictors for our selected eye-
tracking metrics. With this information, we can hypothesize which features will most
likely be picked up by a neural model when it is trained on eye-tracking metrics. To
this end, we calculate the Spearman3 correlation between the nine linguistic complexity
features presented in Table 3.2 and the four eye-tracking metrics described in Section
3.3. The results for the English GECO sentences (i.e. the training data) are shown in
Figure 3.3.

We see that sentence length is the best predictor for all four eye-tracking metrics,
followed by length-related syntactic features, i.e. maximum dependency link length,
parse tree depth, and number of verbal heads. In contrast, features in which sentence
length is factored out (average word length, lexical density and average word frequency)
have a much weaker (yet significant) correlation with the eye-tracking metrics. It is
therefore likely that a neural model will mostly rely on length-related information when
learning to predict eye-tracking metrics.

With regard to the eye-tracking metrics individually, we see that first-pass dura-
tion, total fixation duration and fixation count are uniformly correlated with the nine
linguistic features. Regression duration, on the other hand, exhibits less strong corre-
lations with the linguistic features. Thus, not all variance in regression duration can
be explained by the nine linguistic features presented here. Therefore, we hypothesize
that regression duration will be harder to predict for a neural model than the other

3The Spearman correlation measures the monotonic relationship between two variables. We select
Spearman rather than Pearson since these relationships might not be linear.
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Figure 3.3: Spearman correlations between linguistic complexity features and eye-
tracking metrics of English GECO sentences. All correlation coefficients have p <
0.001.

eye-tracking metrics, especially if the model learns to rely on features that are good
predictors for the other three eye-tracking metrics.

We now examine the correlations between the linguistic complexity features and
eye-tracking metrics for the English MECO sentences (i.e. the evaluation data). As
shown in Figure 3.4, the correlations are generally weaker than those measured for the
GECO data. This might be explained by the amount of sentences per dataset: GECO
contains 4041 English sentences, while MECO contains only 99 English sentences. In
addition, the GECO sentences were read by 14 participants, while the MECO sentences
were read by 46 participants. Therefore, the MECO data contains more noise caused by
individual differences between readers. The smaller amount of sentences and the larger
amount of readers make it harder to observe strong correlations between linguistic
complexity and eye movement patterns in MECO.

Another possible explanation for the different correlations measured for GECO and
MECO is that some eye-tracking metrics might be domain-sensitive. Literary texts
contain very different words than encyclopedic texts, which might influence fixation
durations and trigger regressions that cannot solely be explained by linguistic complex-
ity. Thus, a model that learns to rely on linguistic complexity might not be able to
predict eye-tracking metrics across domains. We speculate that this will be the case
for regression duration and first-pass duration especially, which exhibit the weakest
correlations with the complexity features.
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Figure 3.4: Spearman correlations between linguistic complexity features and eye-
tracking metrics of English MECO sentences. All correlation coefficients have p <
0.001.
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Chapter 4

Eye Movement Prediction

Previous research has shown that multilingual transformer models are capable of pre-
dicting eye movement patterns across domains and languages (Hollenstein et al., 2021b).
This leads to the hypothesis that such models are cognitively plausible and rely on lin-
guistic complexity to make their predictions. In this chapter, we examine if these
results extend to another multilingual transformer model, other eye-tracking datasets,
and other languages. We then try to form hypotheses about the linguistic characteris-
tics that the model implicitly relies on, and examine if this is comparable to humans.

4.1 Experiments

Firstly, we examine eye movement prediction across domains, where the test data
(English MECO) is linguistically more complex than the training data (English GECO)
and is thus paired with larger eye-tracking values. If a multilingual transformer model
is capable of linking linguistic complexity to larger eye-tracking values, it should be able
to accurately predict eye movements associated with sentences that are more complex
than the majority of training sentences. By evaluating the model on the same language
it was trained on, we specifically target its cross-domain abilities. As a control, we also
report the model’s prediction accuracy on in-domain data.1

Secondly, we explore eye movement prediction across languages. Here, we again
use the model trained on English GECO data, but evaluate it on the MECO data in
other languages. This way, we can test if the model learned that certain linguistic
features trigger universal eye movement patterns across languages. Previous research
suggests that cross-lingual transfer works best for typologically similar languages (Pires
et al., 2019). However, Figure 3.1 shows that the distribution of eye-tracking metrics
in MECO is rather consistent across languages, even across typologically distant ones.
If the transformer model picks up this universality of eye movement patterns, there
should not be large differences in prediction accuracy depending on typology.

We also examine how well the MECO eye movement patterns can be predicted
from explicit features. This will shed light on the features that are most informative
for predicting eye movement behaviour, and which might be implicitly utilized by the
transformer. To this end, we train several feature-based regression models on vectors
of the sentence-level features presented in Table 3.2. We train four of these models
for each eye-tracking metric respectively, using different subsets of features each time:

1We train all models described in this thesis on 90 percent of the GECO data. We use the additional
10 percent to evaluate XLM-RoBERTa’s predictive qualities for in-domain data.
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1) only the two length features, 2) only the two frequency features, 3) only the five
structural (i.e., morpho-syntactic and syntactic) features, and 4) all nine features. We
expect the model trained on length features to perform especially well, since sentence
length has the strongest correlation with all eye-tracking metrics.

4.1.1 Models

Multilingual Transformer We select XLM-RoBERTa (Conneau et al., 2020) as
our multilingual language model. The model is based on the Transformer architecture
(Vaswani et al., 2017) and was pretrained on 2.5TB CommonCrawl data containing 100
languages using the Masked Language Modelling objective. This means that, given a
piece of text, the model randomly masks 15% of the tokens in the input, after which
the entire piece of text (including masked tokens) is ran through the model.2 The
model then predicts which words belong in the masked positions. Since the model sees
both the tokens preceding and following the masked token, it learns a bidirectional
representation of the text. In other words, it learns to take context into account. At
each iteration, the model is trained on batches of 64 texts sampled from one of the 100
languages. The texts are not parallel across languages.

The model splits the raw texts into tokens using subword tokenization (Sentence-
Piece, Kudo and Richardson (2018)). It uses a shared vocabulary for all languages,
consisting of 250k subwords. This means that a subword such as normal can be used
both for the English word normally and for the German word normalerweise.

Feature-based Regressors We use Support Vector Machines (SVMs) as our feature-
based regression models. We employ the SVR implementation from scikit-learn (Pe-
dregosa et al., 2011) with all default parameters and a linear kernel.

4.1.2 Fine-tuning procedure

We select the Huggingface checkpoint xlm-roberta-base as our pretrained model and
add a linear dense layer on top of it to predict four sentence-level eye-tracking metrics.
We employ multi-task learning with hard parameter sharing to fine-tune the model on
all eye-tracking metrics simultaneously.3 This means that all model parameters are
shared except for the task-specific regression heads in the final prediction layer. More
specifically, one and the same sentence representation (encoded by XLM-RoBERTa)
is fed into each of the four regression heads, which then predict their respective eye-
tracking metric. Finally, a joint loss is computed by summing the individual mean
squared error (MSE) loss scores of the four regression heads (i.e., the mean of the
squared differences between the predicted values and the actual values). This is then
used to optimize the model parameters jointly for all regression tasks. We scale each eye-
tracking feature to fall in the range 0-100, so that the loss can be calculated uniformly
for durations and counts (Hollenstein et al., 2021b). The procedure is illustrated in
Figure 4.1.

2XLM-RoBERTa received continuous streams of 256 tokens as input during pretraining, instead of
sentence pairs as in the original training objective for BERT (Devlin et al., 2019).

3The code for multi-task learning was adapted from the FARM framework (Deepset, 2019) by
Sarti et al. (2021) and can be found in the following repository: https://github.com/gsarti/

interpreting-complexity

https://github.com/gsarti/interpreting-complexity
https://github.com/gsarti/interpreting-complexity
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Figure 4.1: Multi-task learning with hard parameter sharing for prediction of four
sentence-level eye-tracking metrics.

We train the model for 15 epochs with early stopping after 5 epochs without an
improvement on the validation accuracy. We use 10% of the training data as validation
data and evaluate every 40 steps. We employ a batch size of 32 and a learning rate of
1e-5. We set the maximum sequence length to 128 – shorter sentences are padded and
longer sentences are truncated (although truncation never happened in our particular
dataset). To obtain sentence representations from the model, we take the average of
all token embeddings (i.e. mean pooling) as an alternative to the [CLS] token. This
choice was motivated by the results reported in Mosbach et al. (2020), which indicate
that RoBERTa-models encode more sentence-level information in the average token
embedding as compared to the [CLS] token.

4.1.3 Evaluation

The Mean Absolute Error (MAE) measures the mean of the absolute differences be-
tween the predicted values xi and actual values yi, as shown in the following formula:

1

n

n∑
i=1

|xi − yi| (4.1)

Since all eye-tracking metrics are scaled to the range 0-100, we can interpret the
MAE as a percentage error (Hollenstein et al., 2021b). This allows us to derive predic-
tion accuracy as 100–MAE. We use this metric to evaluate the accuracy for the four
eye-tracking metrics individually. In addition, we calculate a mean baseline for each
eye-tracking metric and report the accuracy improvement of the trained models relative
to this baseline.
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4.2 Results

This section discusses how well the fine-tuned XLM-RoBERTa model could predict
the different eye-tracking metrics. We analyse the model’s cross-domain and cross-
lingual abilities, and try to form hypotheses about the linguistic features that the
model implicitly relies on.

4.2.1 Cross-domain abilities

Table 4.1 shows how much XLM-RoBERTa improves over a mean baseline for each eye-
tracking metric, both for the cross-domain data (English MECO) and the in-domain
data (English GECO).4 We see that the model yields consistent results across domains
for two out of four eye-tracking features, i.e. fixation count and total fixation duration.
For first-pass duration and regression duration, on the other hand, the in-domain results
are more accurate than the cross-domain results.

Cross-domain (MECO) In-domain (GECO)

First-pass duration 5.52 10.18
Fixation count 8.68 8.94
Total fixation duration 9.78 9.45
Regression duration 1.48 4.04

Table 4.1: Improvement on prediction accuracy of XLM-RoBERTa relative to a mean
baseline for cross-domain and in-domain English evaluation data.

Our results nicely fit the correlational analysis presented in Section 3.5. Firstly, we
found that fixation count and total fixation duration strongly correlate with structural
complexity features (i.e. length-related and syntactic features). These correlations
are quite consistent across domains. Secondly, we found that first-pass duration and
regression duration are domain-sensitive: these eye-tracking metrics strongly correlate
with the structural complexity features in the in-domain data, but not in the cross-
domain data. XLM-RoBERTa’s behaviour is exactly in line with these two findings:
it can accurately predict fixation count and total fixation duration for both domains,
but it is much better at predicting first-pass duration and regression duration for the
in-domain data as compared to the cross-domain data. Therefore, it is likely that the
model learned to rely on the structural complexity of sentences for the prediction of all
eye-tracking metrics.

4.2.2 Cross-lingual abilities

The cross-domain results reported in the previous section indicate that XLM-RoBERTa
learned a correlation between the complexity of English text and eye movement be-
haviour of English readers. As discussed in Section 2.1.3, similar correlations have
been observed in reading behaviour of other languages. Therefore, we tested whether
XLM-RoBERTa would be able to apply the learned correlations to other languages.
Figure 4.2 shows that this is the case: XLM-RoBERTa predicts total fixation duration

4The absolute accuracies can be found in the Appendix, i.e. Table A.1.
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with 90 to 95 percent accuracy for all languages from MECO.5
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Figure 4.2: Prediction accuracy of fine-tuned XLM-RoBERTa and the mean baseline
for total fixation duration for each language in MECO.

Interestingly, we see that XLM-RoBERTa performs slightly better for unseen lan-
guages than for English (the training language), even when they are typologically dif-
ferent or have different scripts. For example, the model reaches the best performance
for Russian, which makes use of the Cyrillic script. This is in contrast to the results
reported in Hollenstein et al. (2021b), who found that XLM models transfer better
within scripts than across scripts. This could be a result of the fact that our model
predicts sentence-level eye-tracking metrics, which are more consistent across languages
than word-level metrics.

Another explanation is that Hollenstein et al. (2021a) did not use eye-tracking data
associated with parallel texts for their cross-lingual evaluation. In fact, the reading
materials of the corpora they used were quite different in terms of semantic content.
The English corpus consisted of a combination of literary text, newspaper articles,
movie reviews and Wikipedia articles; the Dutch corpus consisted of literary text; the
German corpus consisted of college-level biology and physics textbooks; and the Russian
corpus consisted of naturally occurring sentences from various sources. As discussed
in Section 4.2.1, some eye-tracking metrics are domain-sensitive. Such eye-tracking
metrics are difficult to predict across domains, regardless of the language. Thus, the
cross-lingual results reported in Hollenstein et al. (2021a) might have been influenced
by domain differences. It would be interesting to examine if the multilingual models
tested in their study achieve better cross-lingual results on the parallel texts of MECO.

We now take a closer look at the predictions that were generated for Russian and
Spanish, i.e., the languages for which XLM-RoBERTa was the most and the least
accurate, respectively. Predictions versus true values for total fixation duration of these
two languages are plotted in Figure 4.3. When comparing the mean of the true and

5The results for the other three eye-tracking metrics can be found in the Appendix, i.e. Figure
A.1. The cross-lingual similarity in prediction accuracy that is shown for total fixation duration can
be observed for the other eye-tracking metrics as well.
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predicted values for each language, we see a closer correspondence for Russian than for
Spanish. However, we also see that the predictions for Russian always stay very close
to the mean. This shows that XLM-RoBERTa was not able to learn the entire range
of values for total fixation duration, and that the prediction accuracy of 95 percent
measured for Russian does not show the full picture of the model’s performance.
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Figure 4.3: True versus predicted values for total fixation duration of the Spanish and
Russian parts of MECO. Predictions are made by fine-tuned XLM-RoBERTa.

4.2.3 Implicit usage of complexity features

So far, our results indicate that XLM-RoBERTa learned a correlation between linguistic
complexity and eye movement behaviour. However, the exact complexity features that
the model implicitly relies on remain unclear. To form hypotheses about this, we
examine how well the eye-tracking metrics can be predicted from different groups of
explicit features.

Figure 4.4 shows how several feature-based SVM models perform on the English
MECO data, as compared to the fine-tuned XLM-RoBERTa model. We find that all
feature-based models improve over the mean baseline for all eye-tracking metrics, except
for regression duration.6 This shows that regression duration is hard to predict based
on our selected complexity features (which is in line the finding that regression duration
is only weakly correlated with the complexity features, see Figure 3.4). Nonetheless,
XLM-RoBERTa does improve over the mean baseline for regression duration. There-
fore, we speculate that it predicts regression duration based on a different combination
of features than the combinations that were used to train the SVMs.

6The absolute accuracies can be found in the Appendix, i.e. Table A.2.
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Figure 4.4: Improvement of prediction accuracy of the five different models relative
to the mean baseline for each eye-tracking metric. The models are evaluated on the
English part of MECO.

Another observation is that the length-based SVM performs almost identically to
the SVM trained on all features from Table 3.2. Both of these models outperform the
SVMs trained on frequency features and structural features. This highlights the fact
that length is the best predictor for eye-tracking metrics, and suggests that structural
and frequency features do not provide much additional information to the SVM models.
We therefore hypothesize that XLM-RoBERTa also heavily relies on length to make its
predictions.

Figure 4.5: Correlations between complexity features and predicted versus true eye-
tracking metrics for the English part of MECO. A darker color represents a stronger
correlation.
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To test this hypothesis, we calculate the Spearman correlation between XLM-
RoBERTa’s predictions and each complexity feature. Figure 4.5 shows the results.
As hypothesized, we see that the predictions for all eye-tracking metrics strongly cor-
relate with sentence length. The predictions also show moderate correlations with the
syntactic features and the number of low frequency words, but this might be because
those features are sensitive to sentence length as well.

Finally, we observe that the correlations between XLM-RoBERTa’s predictions and
the complexity features are nearly the same for all eye-tracking metrics. This highlights
the effect of multi-task learning: since the loss is computed jointly over all tasks,
accurate predictions for three out of four tasks already lead to a very small loss. Since
first-pass duration, total fixation duration and fixation count can all be predicted from
similar complexity features, the model learns to rely on those features and applies them
to regression duration as well. This explains why the predictions for regression duration
are inaccurate, because the true values of this metric are only weakly correlated with
the complexity features. Further research is needed to better understand the linguistic
features underlying regression duration.

4.2.4 Comparing length bins

Since XLM-RoBERTa seems to strongly rely on sentence length for the prediction of all
eye-tracking metrics, we examine how it behaves on sentences of the same length. This
will show if the model considers other features of linguistic complexity when length is
not a differentiating factor anymore. Consider the following two sentences that both
have 14 tokens (including attached punctuation):

1. The most popular colours used for national flags are red, white, green, and blue.

2. During the late nineteenth century, the monocle was generally associated with
wealthy, upper-class men.

Intuitively, we can see that the first sentence is easier to read than the second one.
This difference in reading ease is quantified in Table 4.2.

Category Linguistic Feature Value of S1 Value of S2

Length Average word length (characters) 4.86 6.43
Frequency Average word frequency 5.76 5.20

Number of low frequency words 0 3
Morpho-syntactic Lexical density 0.71 0.67
Syntactc Parse tree depth 4 3

Average dependency link length 2.54 2.79
Maximum dependency link length 7 7
Number of verbal heads 2 1

Table 4.2: Values of linguistic complexity features for S1: The most popular colours
used for national flags are red, white, green, and blue and S2: During the late nineteenth
century, the monocle was generally associated with wealthy, upper-class men.

We see that sentence 2 has longer words, less frequent words, and longer depen-
dency links than sentence 1. XLM-RoBERTa reflects this difference in complexity by
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predicting that readers will fixate longer on sentence 2 (31.17 ms) than on sentence
1 (24.47 ms), and that readers will spend more time regressing to previous material
in sentence 2 (12.76 ms) than in sentence 1 (9.07 ms). This leads to the conclusion
that XLM-RoBERTa’s knowledge about linguistic complexity goes further than merely
understanding that longer sentences lead to increased fixation durations.

To rule out the possibility that different predictions are caused by differences in
semantic content, we compare predictions for translations of the same sentence across
languages. We again select sentences that have the same number of words, so that
the model cannot base its predictions on sentence length. Table 4.3 shows an example
sentence in English, Finnish and Turkish, along with the true and predicted values for
total fixation duration. We observe that the true eye-tracking values are consistent
across languages. However, the model predictions deviate depending on the language.
More specifically, XLM-RoBERTa predicts that Turkish readers will fixate longer on
the sentence than Finnish readers. We hypothesize that the model generates these
predictions based on subtle differences in linguistic complexity, since both the length
and the semantic content of the sentence is the same.

Language Sentence True Predicted

English In ancient Roman religion and myth, 38.53 29.52
Janus is the god of beginnings and gates.

Finnish Muinaisen roomalaisen mytologian mukaan 38.67 20.96
Janus oli alkujen ja porttien jumala.

Turkish Antik Roma inanı slarında ve mitlerinde, 37.98 31.51
Janus ba slangı cların ve kapıların tanrısıdır.

Table 4.3: True and predicted values for total fixation duration for the sentence In
ancient Roman religion and myth, Janus is the god of beginnings and gates in three
languages.

When comparing the Finnish and the Turkish sentence, we indeed see differences
in terms of word length, word frequency and dependency link length. As we can see in
Figure 4.6, the Turkish sentence has longer and less frequent words, but the Finnish
sentence has longer dependency links. Nonetheless, XLM-RoBERTa predicts a much
higher total fixation duration for Turkish than for Finnish. Therefore, it seems like
the model relies on low-level complexity (i.e. word length and frequency) rather than
syntactic complexity when it predicts eye-tracking metrics for sentences of the same
length.
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Figure 4.6: Linguistic complexity of the sentence In ancient Roman religion and myth,
Janus is the god of beginnings and gates translated in Finnish and Turkish.

4.3 Summary of results

Our experiments indicate that XLM-RoBERTa was able to establish a link between
linguistic complexity features and eye movement patterns of reading. We show that 1)
the model can generalize across domains for eye-tracking metrics that strongly correlate
with linguistic complexity; and that 2) the model can predict eye movement patterns for
unseen languages, indicating that the model could abstract away from specific lexical
items, and that the learned correlations are general enough to apply to all languages.
Further analyses show that the model predictions strongly correlate with length-related
and structural complexity features, but the model also seems to consider word length
and frequency when predicting eye-tracking values for sentences of the same length.



Chapter 5

Probing Linguistic Knowledge

Based on the results of the previous chapter, we hypothesize that XLM-RoBERTa be-
comes sensitive to the structural complexity of a sentence when it learns to predict eye
movement patterns of reading. To test this hypothesis, we probe the linguistic knowl-
edge that is implicitly encoded in the model’s final-layer representations, both before
and after fine-tuning. This way, we get a better understanding of how a model’s inner
representations change as a result of fine-tuning on eye-tracking metrics. Finally, we
analyse whether the linguistic knowledge that was acquired from English eye-tracking
data transfers to other languages. This might explain why XLM-RoBERTa is able to
accurately predict eye movement patterns for unseen languages.

5.1 Experiments

Our probing tasks consist of predicting a value for each of the nine linguistic complexity
features presented in Table 3.2, which we will call Z = z1,...,z9. Let us denote the
XLM-RoBERTa model as f and each probing regressor as gi. Given an input sentence
x, we obtain XLM-RoBERTa’s final-layer representation fl(x) and feed it into each gi,
which then has to predict a value for its respective linguistic feature zi. The prediction
accuracy of gi is an indication of how prominently the linguistic property zi is encoded
in fl(x). We analyse this both for the pre-trained and fine-tuned representations of
XLM-RoBERTa. This allows us to measure the relative increase (or decrease) of the
encoding of each zi after fine-tuning on eye-tracking metrics.

There are two ways of extracting a sentence representation from a transformer
model: 1) mean pooling, where we take the average of all token embeddings, and 2)
CLS-pooling, where we take the embedding of the [CLS] token as a proxy for the
entire sentence. Mosbach et al. (2020) find that mean pooling consistently produces
better accuracy for three probing tasks as compared to CLS-pooling, possibly because
the average of all token embeddings captures more sentence-level information than the
[CLS] token. However, the authors also stress that probing accuracy is highly dependent
on the specific probing task, model, and fine-tuning combination. To find out which
representational variant works best for our particular combination, we first carry out the
probing experiments with CLS-pooling, and repeat them with mean pooling. We then
analyse whether the prediction accuracy of the probing regressors differs depending on
the pooling method. We hypothesize that mean pooling will yield better results since
we are predicting sentence-level linguistic features.

Since we fine-tune XLM-RoBERTa on English eye-tracking data, the model has

37
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only seen examples of linguistic complexity in English during training. To test how
well the model’s knowledge about linguistic complexity transfers to other languages,
the probing experiments are carried out for three typologically different languages:
English, Korean and Turkish. Thus, we train 9 (linguistic features) x 3 (languages) x 2
(pre-trained versus fine-tuned) x 2 (mean pooling versus CLS-pooling) = 108 probing
regressors in total.

5.1.1 Data

As input, we use the English, Korean and Turkish parts of the Parallel Universal
Dependencies (PUD) treebanks, which were created for the CoNLL 2017 Shared Task
on Multilingual Parsing (Zeman et al., 2017). For each language, there are 1000 parallel
sentences, which were randomly selected from Wikipedia and news articles (usually
only a few sentences per article). The first 750 sentences were originally English and
translated to each of the other languages, and the last 250 sentences were originally
German, French, Italian or Spanish, and were translated to the other languages via
English. These parallel sentences are very suitable for our probing experiments, since
they rule out the possibility that cross-lingual differences in probing accuracy are caused
by differences in semantics. For each language, we use 800 sentences to train the probing
regressors and the remaining 200 to test them.

5.1.2 Model

We use the same architecture as shown in Figure 4.1, but freeze the encoder model and
only update the final regression layer during training. The final regression layer contains
nine regression heads, one for each linguistic feature. We train these regression heads
for 5 epochs without intermediate evaluation on a development set, and without early
stopping. Other than that, the hyperparameters are the same as for the eye-tracking
experiments (see Section 4.1.2).

5.1.3 Evaluation

For reliability, we perform 5-fold cross-validation and report the average result over all
folds. We again use 100-MAE to measure probing accuracy (see Section 4.1.3). Since it
is not straightforward to draw conclusions from probing accuracy in isolation, we only
report relative probing accuracy, i.e. the gain (or loss) in prediction accuracy when the
probing input is a fine-tuned representation versus some baseline – in our case, a pre-
trained representation. This way, we can observe whether fine-tuning on eye-tracking
metrics triggered a change in the encoding of linguistic features as compared to the
original pre-trained model.

Antske Zwirello

Antske Zwirello
why these?
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5.2 Results

In this section, we examine the probing accuracy for each linguistic complexity feature
given different XLM-RoBERTa representations (i.e. pre-trained versus fine-tuned; CLS-
pooling versus mean pooling) and different languages as input. We compare our results
to those reported in Sarti et al. (2021), who probe the linguistic information encoded
in the [CLS] token of a monolingual English transformer model (ALBERT, (Lan et al.,
2020)), both before and after fine-tuning on the English part of GECO. This might
reveal differences in the way that multilingual and monolingual transformer models
pick up linguistic information from eye movement patterns of reading.

5.2.1 Probing accuracy across complexity features

Figure 5.1 shows the relative probing accuracy for each complexity feature. We see that
length-related complexity features are easier to predict from a fine-tuned input than
from a pre-trained input. We see that fine-tuning yields the largest improvements for
sentence length, average dependency link length and number of low-frequency words,
both using CLS-pooling and mean pooling. We also observe slight improvements for
maximum dependency link length and parse tree depth, especially when using mean
pooling. This confirms the findings reported in the previous sections: XLM-RoBERTa
encodes information about the structural complexity of a sentence after learning to
predict eye-tracking metrics.

For the other complexity features, we see that the fine-tuned representations yield
little to no improvement in probing accuracy compared to the pre-trained representa-
tions. This mostly concerns the complexity features for which sentence length is fac-
tored out, i.e. average word frequency, average word length and lexical density. This
is somewhat contradictory to the results reported in Section 4.2.4, where the model
seems to show a sensitivity to word length and word frequency. A possible explanation
for this is that the sensitivity to word length and frequency was already present in
the pre-trained model, and that it did not increase after fine-tuning on eye-tracking
metrics.

Similar to our results, Sarti et al. (2021) find that features capturing structural sen-
tence complexity (e.g. sentence length, dependency link length, parse tree depth, length
of prepositional chains and subordinate clauses) are better encoded in ALBERT’s [CLS]
tokens after fine-tuning on English eye-tracking data. They show that these improve-
ments remain present when only probing sentences of the same length. This provides
strong evidence that the model picks up syntactic information from eye-tracking data,
in addition to low-level length-related information. While we do not probe linguis-
tic features for length-binned sentences in this study, the similarities of our results and
those reported in Sarti et al. (2021) seem to indicate that monolingual and multilingual
models pick up similar information from eye-tracking data recorded during reading.

5.2.2 CLS-pooling versus mean pooling

Figure 5.1 shows that mean pooling generally yields better probing accuracy than
CLS-pooling. This difference is especially pronounced for features that are sensitive to
sentence length, i.e. number of tokens, number of low frequency words, and maximum
dependency link length. This indicates that the mean of all token embeddings cap-
tures more length-related information than the [CLS] token, which is in line with the
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conclusions drawn by Mosbach et al. (2020).
Interestingly, average dependency link length can be predicted equally well from the

[CLS] token and the average token embedding. The same is true for parse tree depth.
This suggests that both representational variants capture a similar amount of syntactic
information after fine-tuning on eye-tracking metrics.

5.2.3 Cross-lingual transfer of linguistic knowledge

Figure 5.1 shows that there are some minor differences in probing accuracy for indi-
vidual complexity features of English, Korean and Turkish sentences. However, the
general pattern is the same for all languages: features related to the structural com-
plexity of sentence are more easily predicted after fine-tuning on eye-tracking metrics.
This shows that XLM-RoBERTa is able to transfer linguistic knowledge acquired from
English eye-tracking data to other languages.

As shown discussed in Section 4.2.2, XLM-RoBERTa predicts eye-tracking metrics
with nearly the same accuracy across languages. In addition, our probing results show
that 1) structural complexity features are better encoded after fine-tuning on eye-
tracking metrics; and 2) this knowledge about structural complexity can be transferred
to other languages. Taken together, these results indicate that the model learned a
correlation between structural complexity and eye-tracking metrics during fine-tuning.
Since this correlation is similar across languages, it can be learned from monolingual
eye-tracking data and then be applied to other languages.
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Figure 5.1: Improvements on probing accuracy for linguistic features of English, Korean
and Turkish when using fine-tuned XLM-RoBERTa sentence representations as input
to probing regressors, as compared to using pre-trained representations. The upper
figure shows the results when the probing regressors receive the [CLS] token as input,
and the bottom figure shows the results when they receive the average token embedding
as input.
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Chapter 6

Conclusion and Discussion

In this thesis, we aimed to answer the following research questions:

1. Cross-domain abilities: Can eye movement patterns be predicted for sentences
that come from a different domain and are linguistically more complex than those
seen during training?

2. Cross-lingual abilities: Can eye movement patterns be predicted for languages
that are not seen during training?

3. Sensitivity to linguistic complexity: Can high prediction accuracy for eye
movement patterns be explained by an increased sensitivity to linguistic complex-
ity?

We investigated these three questions for one multilingual transformer model in
particular: XLM-RoBERTa. Our results show that the answer to the first two questions
is yes: 1) XLM-RoBERTa is capable of predicting the number of fixations and the
total fixation duration for rather complex encyclopedic sentences, even though it was
trained on easier sentences from the literary domain, and 2) XLM-RoBERTa is capable
of predicting eye movement patterns for a range of typologically diverse languages,
even though it was trained on eye-tracking data from English readers alone. These
generalization abilities indicate that the model established a link between linguistic
complexity and eye movement patterns, and that it could abstract away from specific
words or languages.

To find evidence for this, we carried out several post-hoc analyses regarding the
relationship between the model’s predictions and the linguistic complexity of the input.
We found that the model predictions where highly correlated with features capturing
structural complexity, such as sentence length, dependency link length and parse tree
depth. Furthermore, we probed the model’s final-layer representations to see if features
capturing linguistic complexity were better encoded after fine-tuning on eye-tracking
metrics. We found that features capturing structural complexity are better encoded in
fine-tuned representations than in pre-trained representations, confirming the results
from the aforementioned correlational analysis. The increased encoding of structural
complexity features was not only observed for English (i.e. the training language), but
also for Turkish and Korean, which are very distant in typology. This shows that fine-
tuning on eye-tracking data leads to a general understanding of linguistic complexity
– the kind of complexity that triggers universal patterns in human reading behaviour.
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6.1 Limitations and future work

The present study quantified linguistic complexity in terms of length, frequency, morpho-
syntactic and syntactic features. However, linguistic complexity is also affected by lex-
ical, semantic and cognitive factors. For example, ambiguity, concreteness and age of
acquisition are known to affect fixation durations during reading (Gilhooly and Lo-
gie, 1980). A challenge, however, is that such information needs to be obtained from
psycholinguistic databases, which are only available for a limited set of languages.
Nonetheless, for the languages for which this is possible, it would be interesting to
investigate whether such factors are picked up by transformer models when learning to
predict eye movement patterns.

Another interesting direction of research would be to examine if so-called spill-
over and wrap-up effects are captured by transformer models. The spill-over effect
refers to the phenomenon that readers look longer at a word if the preceding word is
difficult to process (i.e. the cognitive effort required to process word n “spills over”
to word n+1 (Rayner and Duffy, 1986)). The wrap-up effect materializes as longer
fixation durations towards the end of a sentence, which is assumed to reflect the process
of relating sentences or clauses to each other (Carpenter and Just, 1983). There is
already some evidence that spill-over information is beneficial for the prediction of eye
movements associated with English texts. For example, Wiechmann et al. (2022) show
that concatenating explicit linguistic features of the previous sentence to the current
input improves the prediction accuracy of two monolingual English transformer models
for a range of eye-tracking metrics. It would be interesting to examine if transformer
models are capable of capturing such effects without explicit training.

The modelling approach for learning eye movement behaviour also needs further
exploration. In this study, a single model learned four eye-tracking metrics simulta-
neously. Since two out of four metrics (total fixation duration and fixation count)
could be predicted using the same linguistic features, the model started relying on
those particular features. As a result, the linguistic information underlying the other
two eye-tracking metrics (first-pass duration and regression duration) was disregarded.
Thus, multi-task learning of eye-tracking metrics might not be the optimal approach
for learning a wide range of linguistic complexity features. It would be interesting to
examine the effect of weighted learning, where the model still learns all eye-tracking
metrics simultaneously, but where the loss of certain eye-tracking metrics adds more
to the joint loss than others. In our case, regression duration in particular would need
a higher weight. That way, incorrect predictions for regression duration are penalized
more than incorrect predictions for the other eye-tracking metrics. In turn, the model
is forced to pay attention to the linguistic features underlying regression duration. It
might also be interesting to train the model on the different eye-tracking metrics se-
quentially, or to train separate models for each eye-tracking metric individually. Such
experiments will allow us better understand which linguistic information can be picked
up from each individual eye-tracking metric.

Another choice with regard to the modelling approach is whether eye movement
patterns are predicted at the sentence level of the token level. In this study, we opted
for sentence-level eye movement prediction, which was motivated by the notion that
cross-lingual universality is more likely to be observed at the sentence level than the
token level. We find that this approach works well for learning about structural com-
plexity, but that it is not optimal for learning about lexical complexity. This is because
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sentence-level eye-tracking metrics can be predicted rather accurately using length-
related linguistic features alone. As a result, the model does not need to pay attention
to lexical complexity (except when it receives two sentence of exactly the same length is
input, see Section 4.2.4). In a future experiment, one could train individual models for
predicting token-level and sentence-level eye-tracking values associated with the same
reading materials. This would allow us to carefully examine the linguistic knowledge
that is acquired from eye movements associated with different linguistic units.

An important finding of our study is that XLM-RoBERTa was not able to learn
variation within eye-tracking metrics. This could be a result of the fact that it was
only trained on averaged eye-tracking metrics. Future studies should consider to not
only predict the average of all readers, but also the standard deviation across readers
Hollenstein et al. (2022). While averaging eye-tracking metrics over readers leads to
a more robust indication of human reading behaviour, it also disregards the fact that
reading is a highly individual process that is dependent on cognitive factors and expe-
rience. A computational model might develop a better sense of linguistic complexity
when it learns about the linguistic properties that lead to variation across readers.

A final suggestion for future work is to extend the work by González-Garduño and
Søgaard (2017) and Evaldo Leal et al. (2020), who improved readability classifiers by
learning eye movement behaviour as an auxiliary task. The current study demonstrates
that knowledge about linguistic complexity acquired from English eye-tracking data
transfers to other languages. This is a promising finding for readability classification,
because it implies that learning eye movement behaviour from a single language can
improve readability classification for all languages.
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Appendix A

Additional Tables and Figures

MECO GECO

Mean XLM Mean XLM
First-pass duration 85.08 90.60 86.15 96.33
Fixation Count 82.99 91.67 86.6 95.54
Total fixation duration 82.03 91.81 86.08 95.53
Regression duration 89.38 90.86 88.38 92.42

Table A.1: Absolute prediction accuracy of XLM-RoBERTa and a mean baseline for
eye-tracking metrics from the English parts of MECO and GECO. Accuracy is calcu-
lated as 100 minus the Mean Absolute Error.

First-pass dur. Fixation count Total fixation dur. Regression dur.

Mean baseline 85.08 82.99 82.03 89.38
Length SVM 88.77 90.28 89.43 87.95
Frequency SVM 86.21 87.42 86.66 89.39
Structural SVM 88.28 89.42 88.45 88.99
All features SVM 88.82 90.39 89.64 87.91
XLM-RoBERTa 91.67 90.60 91.81 90.86

Table A.2: Absolute prediction accuracy of XLM-RoBERTa, feature-based SVMmodels
and a mean baseline for all eye-tracking metrics from the English part of MECO.
Accuracy is calculated as 100 minus the Mean Absolute Error.
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Figure A.1: Prediction accuracy of fine-tuned XLM-RoBERTa and the mean baseline
for first-pass duration, fixation count, and regression duration for each language in
MECO.
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