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Abstract

The increasing aging population has led to a rise in the number of chronic patients,
thereby causing a shortage of healthcare facilities. This project aims to develop an
NLP system that can extract patients’ daily activities from their conversations with a
healthcare chatbot. In this way, doctors can monitor the patients’ conditions remotely,
therefore alleviating the burden on medical resources. To construct the dataset for the
experiment, a zero-shot approach was employed to prompt GPT-3.5-turbo to generate
natural conversational data describing patients’ daily activities, categorised under the
International Classification of Functioning, Disability, and Health (ICF) framework.
GPT-4o was then prompted to label the extensive training dataset. An experiment
was conducted to compare the performance of three distinct NLP systems: a rule-
based model, a fine-tuned BERT model, and a GPT-prompting system. The results
demonstrated that the GPT-prompting system achieved the best overall performance
with an F1-score of 0.70. The fine-tuned BERT model showed moderate performance
with an F1-score of 0.62, while the rule-based model proved unsuitable for processing
dynamic conversational data, achieving an F1-score of 0.30.
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Chapter 1

Introduction

The Netherlands is experiencing a demographic shift with an ageing population (Statis-
tics Netherlands (CBS), 2024). Recent studies indicate that among those over 75, only
7% are without chronic illnesses, while 80% have multiple conditions (Agnieszka et al.,
2021). This trend will likely worsen as the elderly population increases. Chronic dis-
eases require regular monitoring, significantly burdening healthcare resources. Tradi-
tional monitoring methods, involving frequent hospital visits, strain the system heavily.
In response to this challenge, the development of a healthcare chatbot is proposed. This
chatbot would communicate regularly with patients, record their utterances, and or-
ganise key information from them. Additionally, it will analyse this data to document
it into the patient’s medical dossier. By leveraging such a system, doctors can monitor
the health conditions of chronic disease patients remotely, thus alleviate the burden on
medical resources.

This project precisely represents the initial phase in the extensive development
process of the healthcare chatbot, focusing on designing an NLP system capable of
detecting activity-related information within patient-chatbot interactions.

1.1 Goal and research questions

This exploratory project aims to develop an NLP system that can e↵ectively detect
the information of patients’ daily activities through conversations held with a chatbot.
For example, in the sentence ”I read books last Friday in the garden with Alex”, the
detected information is expected to be:

• Event : read books

• Place: in the garden

• Time: last Friday

• Participant : I, Alex

Achieving this research goal involves the process of utilising prompt engineering
with GPT to generate patient-chatbot conversations and corresponding activity-related
labels, designing a rule-based model as a baseline, fine-tuning a pre-trained BERT
model, and conducting error analysis across di↵erent systems.

The research question of this project is to examine the feasibility of designing an
NLP system to detect activity-related information within patient-chatbot conversa-
tions. This primary question can be further divided into the following sub-questions:

1



2 CHAPTER 1. INTRODUCTION

• Which activities should be detected from the ICF categories?

• How to prompt ChatGPT to generate natural conversations and corresponding
semantic role label annotation?

• Which NLP system performs the best in detecting activity information (Event,
Participant, Time, and Place)?

The first sub-question will be discussed qualitatively in Chapter 3, Section 3.1.2,
with cooperation of healthcare experts from the A-PROOF team. The second sub-
question will be elaborated in Chapter 3, Section 3.1.3 and 3.1.4. The third sub-question
will be further discussed in Chapter 6.

1.2 Outline

The thesis is outlined as follows: Chapter 2 provides literature review on the past and
current research of large natural language generation approaches, and prompt engi-
neering techniques. Chapter 3 elaborates on the detailed methodology for generating
conversational data and labels, the distribution of the datasets, the experimental setup,
and the evaluation criteria. Chapter 4 reports the preliminary results of the experi-
ment, after validating the three systems on the development dataset. Chapter 5 reveals
the optimisation process for all the NLP systems. Chapter 6 further reports the system
performance on the test set using optimal models. Chapter 7 analyses the typical er-
rors across all three systems. Chapter 8 discusses the limitations of this project, along
with potential improvements and new directions for future research. Chapter 9 draws
a conclusion.



Chapter 2

Related Work

This chapter will present the key concepts and introduction of the method used in this
project. Section 2.1 presents the structure and usage of the International Classification
of Functioning, Disability and Health (ICF) framework. The category and definition
of various human activities provided by ICF will be used to guide the generation of
the text dataset. In addition, Section 2.2 introduces the techniques of natural language
generation, which will be further used to generate the conversational data, and 2.3
elaborates on the techniques of text classification, including the GPT-prompting tech-
nique, which will be used to generate labels for the training set.” Furthermore, Section
2.4 explains the the mechanism of Semantic Role Labelling (SRL) task, which is also
the inspiration of the current project.

2.1 The ICF Framework

The International Classification of Functioning, Disability and Health (ICF) is a frame-
work developed by the World Health Organization (WHO) that provides a standardised
approach to understanding and measuring health and disability levels (Organization,
2001). The ICF framework categorises consists of two parts, ICF Category and ICF
Qualifier. The ICF Qualifiers quantifies human functioning on a universal scale, en-
abling a standard assessment of the severity and extent of health conditions and dis-
abilities. On the other hand, ICF Category provides the definition across four distinct
domains: body functions, activity and participation, environmental factors, and body
structures. The activity and participation domain further categorises the activities
of daily living (ADL) into nine specific categories (Figure 2.1). This framework en-
compasses essential activities such as self-care, mobility, and communication, providing
a comprehensive approach to categorising an individual’s functional status. Recently
studies have shown its e↵ectiveness in the healthcare sector, for determining the impact
of chronic diseases on patients’ everyday lives (Wol↵ et al., 2002), assessing the daily
functional capabilities of elderly individuals (Guralnik et al., 1994), and evaluating the
rehabilitation outcomes of stroke patients (Salter et al., 2005).

3



4 CHAPTER 2. RELATED WORK

Figure 2.1: ICF Hierarchy: Activities and Participation

2.2 Natural Language Generation

2.2.1 Rule-based Approach

Rule-based approaches in the field of Natural Language Generation use pre-defined
templates that are generated following certain linguistic rules. Reiter and Dale (1997)
presented a systematic approach to the rule-based NLG process, which consists of three
stages: content determination, sentence planning, and linguistic realisation. Rule-based
NLG techniques are widely adopted in contexts that are simple and fixed, such as
weather reports, restaurant ordering systems, and promotional emails. However, these
approaches often struggle in flexible and complex scenarios, as they require extensive
manual e↵ort to create and maintain the rule sets, making them less suitable for dy-
namic or highly variable domains (Deemter et al., 2005; Gatt and Krahmer, 2018).

2.2.2 Deep Learning Approach

In contrast to rule-based methods, deep learning approaches leverage vast training
datasets and neural network architectures to learn linguistic patterns. The emergence
of recurrent neural networks (RNNs) and transformers has greatly enhanced the capa-
bilities of deep learning NLG systems. The ability to generate natural and versatile
text of the deep learning models has been proven across various applications, such as
summarisation and machine translation (Liu and Lapata, 2019; Vaswani et al., 2023).
However, the training process requires vast computational resources (Strubell et al.,
2020) and may exhibit bias from the training dataset (Bender et al., 2021).

In November 2022, OpenAI 1 released the Generative Pre-trained Transformer

1
OPENAI:https://openai.com



2.3. TEXT CLASSIFICATION 5

(GPT) series, and revolutionised the field. These models employ self-attention mech-
anisms to manage long-range dependencies and produce high-quality text (Vaswani
et al., 2023; Radford et al., 2019). By pre-training on large corpora and fine-tuning for
specific tasks, they can generate high-quality text that is both coherent and contextu-
ally relevant (Devlin et al., 2018; Liu et al., 2019).

Prompt engineering is the technique that controls the GPT series models’ behaviour
by specifically crafted input prompts. This technique is proven to be e↵ective and
e�cient across various NLP tasks (Brown et al., 2020). Compared to other transformer-
based models, prompt engineering allows for quick and directional adjustments, thereby
enhancing the model’s interpretability.

2.3 Text Classification

This section provides an overview of various text classification methods. Section 2.3.1
covers traditional machine learning approaches, while Section 2.3.2 elaborates on the
advanced and versatile techniques utilising pre-trained Large Language Models (LLMs).

2.3.1 Traditional Machine Learning

Traditional machine learning methods, including Naive Bayes and Support Vector Ma-
chines (SVM) algorithms, have been foundational in the field of text classification
(McCallum et al., 1998; Joachims, 1998). These methods typically involve represent-
ing text data through features and applying various classifiers to classify the text data
into pre-defined categories (Sebastiani, 2002). For example, the SVM, which is one of
the most well-known machine learning models, seeks to find the optimal hyperplane
that maximises the margin between di↵erent classes, therefore separating the classes
with the maximum possible margin. In this way, the SVMs can be used to generalise
e↵ectively to unseen data (Joachims, 1998)

2.3.2 Leverage Pre-trained Large Language Models

Fine-tune BERT

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained
transformer model that captures contextual relationships between words in a bidirec-
tional manner. This mechanism allows it to understand the nuances of language more
e↵ectively (Devlin et al., 2018). The fine-tuning process of BERT involves taking a
pre-trained BERT model and further training it on a specifically labelled dataset for a
particular task. During this process, the weights of the pre-trained model are adjusted
to achieve optimal performance for the new task. This approach allows the model to
leverage the linguistic knowledge acquired from the pre-trained dataset while being
adapted to output results for the target task. This approach has proven to be highly
e↵ective, as BERT’s deep bidirectional understanding of language allows it to capture
complex patterns and dependencies in text.

Prompt GPT

Prompting GPT (Generative Pre-trained Transformer) represents a paradigm shift in
how text classification tasks can be approached. Unlike traditional fine-tuning, prompt-
based methods involve designing specific prompts that direct the pre-trained model to
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generate the desired output. GPT models, such as the latest version of GPT-4o, are
pre-trained on vast datasets and demonstrate robust language generation capabilities.
By designing directional prompts, these models can be accommodated to do text clas-
sification tasks in zero-shot or few-shot learning settings, which require little or no
task-specific training data.

For example, with proper prompts, the model can successfully perform a sentiment
classification task, where the model is required to predict ”positive” or ”negative”
labels for a given text (Bu et al., 2023). It generates the corresponding outputs based
on the pre-trained understanding, and can e↵ectively reduce labour costs for labelling
the dataset and computing resources for fine-tuning. Research has demonstrated that
by prompting GPT models properly, they can achieve competitive performance on a
variety of text classification tasks, showcasing their ability to understand and generate
relevant and coherent text with minimal task-specific data (Brown et al., 2020).

2.4 Semantic Role Labelling

The methodology for extracting activity-related information in this project is inspired
by the principles of semantic role labelling (SRL) tasks. Specifically, it draws upon
the PropBank-style SRL framework, where the main verb of a sentence functions as
the predicate, and its associated arguments form a frameset that provides a structured
representation of the semantic relationships (Johansson and Nugues, 2008). In the
context of this project, the predicate is analogous to the event being mentioned, while
the arguments, such as agent, patient, and instrument, correspond to the event details
including the time, place, and participants.

By leveraging this SRL-based approach, we ensure a systematic extraction of activity-
related information from patient-chatbot conversations. This framework allows for the
precise identification of key elements within the dialogues, facilitating a deeper under-
standing of the patient’s daily activities and interactions. The structured representation
not only enhances the accuracy of information extraction but also supports the subse-
quent analysis and interpretation of the data, ultimately contributing to more e↵ective
healthcare interventions and resource allocation.

In dependency-based SRL tasks, predicates and their corresponding arguments are
first identified and classified, followed by determining their relationships (Gildea and
Jurafsky, 2002), (Surdeanu et al., 2008). For example, if there are two predicates in
one sentence, this method accurately maps each argument to its respective predicate,
ensuring that the semantic meaning is correctly conveyed.

This project focuses solely on the identification and classification steps; specifically,
it involves detecting event-related tokens from a given conversation and assigning prop-
erties such as place, time, and participants to these events.



Chapter 3

Methodology

In this chapter, Section 3.1 explains the generation process of the dataset used in the
research, and Section 3.2 presents the overview statistics of the dataset. In addition,
Section 3.3 explains the set-up of the main experiment, consisting of the three NLP sys-
tems in extracting activity information. Finally, Section 3.4 illustrates the optimisation
and evaluation process of the three systems.

Figure 3.1 presents the flowchart of the project.

Figure 3.1: Flow Chart of the Project

3.1 Data

Due to the privacy protection of medical data, the user conversation is inaccessible.
Therefore, the text data used in this paper were generated through prompt engineering
using GPT-3.5-turbo and subsequently labelled by GPT-4o. When generating the
conversational data, the events defined by ICF framework was applied as guidance,
which ensures a comprehensive representation of various events in patients’ daily lives.

3.1.1 Overview of the ICF

The International Classification of Functioning, Disability and Health (ICF) (Organiza-
tion, 2001) is a comprehensive framework developed by the World Health Organization

7
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Figure 3.2: ICF - Four Domains

Figure 3.3: ICF Categories and Sub-categories

(WHO) for measuring health and disability levels. It establishes standardised defini-
tions and measurements for the field of healthcare within various contexts.

The ICF framework (Figure 3.2) mainly consists of two parts: ICF Category and
ICF Qualifier. ICF Category categorises functioning and disability into four main
domains: (1) Body Functions, (2) Activities and Participation, (3) Environmental Fac-
tors, and (4) Body Structures. ICF Qualifier is a universal scale designed to quantify
human functioning.

3.1.2 Selection of Category

Within ICF Category, each domain is further divided into various categories. The
domain focusing on describing the engagement in activities: ”Activities and Participa-
tion”, includes nine categories: Learning and Applying Knowledge, General Tasks and
Demands, Communication, Mobility, Self-care, Domestic Life, Interpersonal Interac-
tions & Relationships, Major Life Areas, and Community, Social & Civic Life. Each
of them is further explained in sub-categories. The information provided in the sub-
categories involves specific activities, such as ”Dressing”, ”Eating”, and ”Toileting” in
the sub-category ”Self-care” (Figure 3.3).

Despite the comprehensiveness of these nine categories, not all are suitable for guid-
ing the generation of conversations in the current task. In extracting activity informa-
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tion from a given conversation, the objective is to detect specific events rather than
ambiguous ones. For example, the category Interpersonal Interactions & Relationships
is ambiguous due to its broad and varied nature. This category might encompass a wide
range of interactions, making it challenging to pinpoint precise events when generating
conversations. Consequently, we prioritise categories with more concrete definitions to
ensure the quality of generated conversations.

The final selection of categories included in the dataset is made in consultation
with healthcare experts from the A-PROOF team, who possess extensive knowledge of
both the ICF framework and real user scenarios. The topics under the following three
categories are used to guide the generation of the conversations, as they are concrete
and unambiguous.

Mobility is about moving by changing body position or location or by transferring
from one place to another, by carrying, moving or manipulating objects, by walking,
running or climbing, and by using various forms of transportation.

Self-care is about caring for oneself, washing and drying oneself, caring for one’s body
and body parts, dressing, eating and drinking, and looking after one’s health.

Domestic Life is about carrying out domestic and everyday actions and tasks. Areas
of domestic life include caring for one’s belongings and space, acquiring food, clothing
and other necessities, household cleaning and repairing, caring for personal and other
household objects, and assisting others

3.1.3 Conversation Generation

The generated conversations are intended to accurately reflect real user scenarios, in-
cluding detailed accounts of patients’ daily activities along with contextual information
such as time, location, and participants. To ensure these conversations’ comprehen-
siveness and topical diversity, the system was prompted with the definitions of each
subcategory under the three selected categories (Figure 3.4).

Each conversation is prompted to contain no more than 10 utterances, and each line
should have no more than 20 tokens. The topic of the conversation should fall under
the subcategories of the ICF categories. The three conversations from three distinct
subcategories below are examples of GPT-generated conversations.

(1) Mobility

Chatbot: How have you been feeling lately? Have you been managing daily tasks well?
Patient: Well, I’ve had some trouble getting out of my chair to get into bed at night.
Chatbot: I see. When does that usually happen?
Patient: It usually happens when my back is acting up and I feel sti↵.
Chatbot: Is there anything that makes it easier for you to transition?
Patient: Yes, using a grab bar next to the bed helps me to pull myself up.
Chatbot: That’s great to know! How about other daily activities, are there any other
occasions where mobility is challenging?
Patient: Yes, standing for long periods makes my legs feel weak and I need to sit down
often.
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Figure 3.4: Prompt template for conversation generation

(2) Domestic Life

Chatbot: How was your day today?
Patient: I spent the morning cleaning the house.
Chatbot: Do you clean the house every day?
Patient: No, I have a cleaning schedule for each day of the week.
Chatbot: That’s quite organized. What do you do on other days?
Patient: On Tuesdays, I focus on doing the laundry and tending to the plants.
Chatbot: Sounds like a productive routine. How do you manage everything?
Patient: I’ve found that having a schedule helps me stay on track and manage my tasks
e�ciently.
Chatbot: That’s great to hear. It must make things a lot easier for you.

(3) Self-care

Chatbot: How often do you usually do your skincare routine?
Patient: Oh, I do it every morning and night before bed.
Chatbot: That’s great! How about brushing your teeth, when do you do that?
Patient: I brush my teeth after every meal and before bed.
Chatbot: Good habit. Do you find cutting your nails challenging?
Patient: Yes, it’s a bit harder for me now. I do it every other week.
Chatbot: I see. What about caring for your general health? How do you manage that?
Patient: I take my medication daily and go for regular check-ups at the clinic.
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Chatbot: That’s important. Taking care of yourself is key.

To examine the quality of the generated texts, we invited the experts in the A-
PROOF team to evaluate and provide insights into the generated data. Overall, the
synthetic data are fairly natural, despite the instances within domestic life category
exhibiting slight discrepancies when compared to real-life conversations.

The generated dataset (Table 3.1) comprises 940 conversations in total (280, 420,
and 240 for Mobility, Self-care, and Domestic Life respectively). Upon manual inspec-
tion, it is observed that several sentences contain nonsense text, particularly at the end
of the conversations. This issue arises due to the model’s context drift and memory
constraints (Radford et al., 2019), which cause it to lose track of the conversation’s
context over extended interactions. As a result, the model may generate sequences of
text that lack coherence or meaningful content.

A semi-automated data-cleaning method is utilised to eliminate conversations con-
taining gibberish words, specifically filtering out those with excessively long tokens
(exceeding 20 letters) and sentences (surpassing 20 words). After data cleaning, the
dataset consists of 795 conversations and 6914 utterances.

Raw Data Cleaned Data

Category Conversation Utterance Conversation Utterance

Mobility 280 2765 241 2049
Self-care 420 4312 335 2944

Domestic Life 240 2413 219 1921
Total 940 9490 795 6914

Table 3.1: Dataset by Category

Due to the manual labelling required for the development and test sets, and con-
sidering constraints in both time and resources for this project, I have designated 7%
(54 conversations) of the dataset for the test set, another 7% (54 conversations) for the
development set, and set the remaining 86% (687 conversations) as the training set.
The split of the dataset into these subsets was performed randomly.

3.1.4 Label Generation

The activity information within each conversation, including event, participant, time,
and place, is extracted and labelled for the training dataset. These labels are formatted
using the BIO (Beginning, Inside, Outside) system: B-event, I-event, B-participant, I-
participant, B-time, I-time, B-place, I-place, and O. Due to the large size of the training
dataset and the limited timeframe of this project, manually annotating the training
dataset is challenging.

Research shows that GPT-3 can generate high-quality labels when properly prompted
due to its advanced natural language understanding and generation capabilities. GPT-
4o, released in May 2024, is reported to be more competent than GPT-3.5-turbo, and
faster and more cost-e↵ective than GPT-4. Therefore, prompt engineering techniques
using GPT-4o are applied to label the training dataset. This approach leverages the
strengths of GPT-4o to automate the annotation process, ensuring consistency and ac-
curacy in the labels while significantly reducing the time and e↵ort required compared
to manual annotation.
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Large language models like GPT-4o have been trained on extensive datasets and
possess a broad understanding of natural language. To leverage its pre-trained capa-
bilities, the zero-shot method is employed to generate labels for activity information.
In the zero-shot method, no specific examples are provided in the given prompt. It
maximises the versatility of GPT-4o, which is beneficial for performing such a new task
without designated answers.

Prompts for labels generation

First, an initial prompt is applied to generate activity information comprising event,
participant, time, and place, along with their respective sentence and token identifiers
(Figure 3.6). The system processes the conversation in segments, with each segment
provided as input one at a time as strings (Figure 3.5). Each segment results in an
output formatted as a JSON object, as illustrated below:

[

{’activity_index’: 1,

’activity’: ’activity 1’,

’activity_sentence_id’: 1,

’activity_token_ids’: [1, 2],

’participants’: ’participant 1’,

’participants_sentence_id’: 1,

’participants_token_ids’: [3],

’place’: ’place 1’,

’place_sentence_id’: 2,

’place_token_ids’: [5],

’time’: ’time 1’,

’time_sentence_id’: 3,

’time_token_ids’: [7]},

{

...

}

]

Figure 3.5: Initial conversational data input
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Figure 3.6: Initial prompt template for generating activity information

In this prompt, GPT-4o is expected to generate sentence ID and token ID based on
specific rules, in order to ensure unique identification of tokens within each conversation.
The sentence ID starts at 1 and increments by 1 with each new sentence. Similarly, the
token ID starts at 1 for each sentence and increments by 1 for each token within that
sentence.

Upon manual inspection, the generated activity information is found to be generally
accurate. However, GPT-4o exhibits shortcomings in precisely indicating the position
of certain tokens within the conversation, despite the provision of rules for counting
sentence and token identifiers. For example, in the sentence ”I usually get up very early
in the morning”, the token ID for the temporal phrase ”in the morning” should be [7,
8, 9], whereas GPT-4o may output [5, 6, 7].

This limitation arises mainly because large language models such as GPT-4o are
designed for linguistic tasks rather than explicit mathematical computations. Their
transformer architecture is optimised for predicting the next token in a sequence, based
on the vast amount of pre-training data (Vaswani et al., 2017). Therefore, while GPT-
4o demonstrates proficiency in extracting activity information, the architecture em-
phasises contextual predictions over numerical precision, which makes it challenging
to accurately pinpoint the token’s position within sentence boundaries. Also, in the
tokenization process, the numerical information may be further split into sub-tokens,
resulting in disruption of the model’s mathematical ability (Sennrich et al., 2016).
Therefore, if positional information are pre-calculated and provided alongside the con-
versation input, GPT-4o may improve its ability to output accurate token indices.

To e�ciently locate the activity information extracted by GPT-4o and map them
back to the conversational data, the format of the input conversation is improved. In
the improved version (Figure 3.7), I use a tokenized database as the input in the prompt
given to the system. This new database provides the pre-calculated conversation ID,
sentence ID, and token ID for each token within a conversation, and inputs each con-
versation with this information one at a time to the system as strings. By pre-providing
this accurate information, the deficiencies in GPT’s counting are expected to be mit-
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igated, thereby better assisting GPT-4o in accurately locating activity information
within the conversation and sentences.

Figure 3.7: Improved conversational data input

Figure 3.8: Improved prompt template for generating activity information

Upon manual inspection of ten conversational turns, the improved version—incorporating
conversation ID, sentence ID, token ID, and token—demonstrates perfect accuracy in
identifying the token’s position within the conversation, as evidenced by the correct
output of the corresponding sentence ID and token ID. Additionally, to ensure that to-
kenizing the input conversation does not compromise accuracy, specific elements such
as event, time, place, and participant were also scrutinised. The examination confirms
that the extracted activity information remains consistent, whether the conversation is
input in a tokenized form or as a whole.



3.2. LABEL DISTRIBUTION 15

3.1.5 Annotation of Development and Test Set

To investigate the performance of the three NLP systems in extracting activity infor-
mation, the development and test data are labelled manually by the author. Ideally,
annotation by multiple annotators would enhance reliability and enable the calculation
of the Inter-Annotator Agreement (IAA); however, such an approach is not feasible
within the time constraints of this thesis.

The annotation follows these guidelines:

• Label the event and corresponding place, time, and participant within each con-
versation

• Label only the events that have already happened, and set aside the planned
events

• Leave the annotation blank if the place, time, or participant is missing.

3.1.6 Event-Argument Relations

In standard Semantic Role Labeling (SRL) tasks, the relationship between a sentence’s
predicate and its arguments is determined to better illustrate the sentence’s semantic
meaning. This project, as discussed in Section 2.4, focuses solely on the detection and
classification phases of SRL, rather than the full range of tasks. This limited scope
can introduce ambiguity when multiple distinct events are mentioned within a single
conversation, particularly if tokens are shared across these events (e.g., scenarios where
two events share the same time, place, and participants). However, semi-automatic
inspection using a script to detect such scenarios indicates that this ambiguity is rare,
except in cases where the participant is a default, such as ”I”.

Another source of ambiguity arises when multiple events are mentioned within the
same conversation. Manual inspection of the 108 conversations in the development
and test datasets reveals that this is common. Nonetheless, the event-argument re-
lationships can be e↵ectively identified using dependency relations, as arguments are
typically presented within complete sentences rather than isolated words. Moreover,
the generated data retains the information about event-argument relationships, pro-
viding a foundation for future research aimed at generating event-related information
and event-argument relations.

3.2 Label Distribution

The training dataset consists of 5,965 labelled utterances from 687 conversations. Fig-
ure 3.9 shows the distribution of the labels in the training set. Generally, the label ”O”
dominates the training set with a proportion of 89.7%, as most of the tokens do not
belong to any event.

To facilitate a better understanding of the label distribution for event-related tokens,
the label O was excluded from the analysis. As illustrated in Figure 3.10, the categories
”event” and ”time” dominate the label distribution. Specifically, I-event constitutes
44.5%, I-time for 25.1%, B-event comprises 13.9%, and B-time represents 9.6%. In
contrast, the proportions for ”participant” and ”place” are relatively smaller, with
B-participant at 2.4%, I-place at 2.2%, B-place at 1.7%, and I-participants at 0.5%.
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Figure 3.9: Training Set - Label Distribu-
tion

Figure 3.10: Training Set - Label Distri-
bution (without ”O”)

The labels in the development set show a comparable distribution (Figure 3.11,
3.12). The development set includes 54 conversations and 468 sentences. The label O
dominates the dataset with a proportion of 76.5%, which is 13.2% lower than that of
the GPT-labelled training set. After excluding the label O, the labels in the categories
”event” and ”time” are the most prevalent. Notably, B-participant represents 10.5%
of the event-related tokens, which is higher than that in the training set (2.4%). This
discrepancy arises because the training set was labelled using prompt engineering with
GPT-4o due to the time constraints of this project, while the development set was an-
notated manually. The GPT-prompting method is found to be ine↵ective in accurately
capturing participant tokens, which will be further discussed in later chapters.

Figure 3.11: Development Set - Label Dis-
tribution

Figure 3.12: Development Set - Label Dis-
tribution (without ”O”)

Similar to the development set, the manually labelled test dataset comprises 478
utterances from 54 conversations, which were generated using GPT-3.5-turbo. The
label distribution of the test set, as shown in Figure 3.13 and 3.14, closely mirrors
that of the development set. The non-event label O constitutes 77.5% of the test set.
Excluding these O tokens, the most prevalent labels are ”event” and ”time”, with I-
event making up 39.0%, B-event 13.8%, I-time 20.7%, and B-time 9.7%. Additionally,
the label B-participant accounts for 11.5%, closely matching the development set’s
10.9%.
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Figure 3.13: Test Set - Label Distribution Figure 3.14: Test Set - Label Distribution
(without ”O”)

3.3 Experiment Setup

The experiment encompasses three distinct NLP systems. The first system, described
in Section 3.3.1, serves as the baseline. It is a rule-mapping system that utilises spaCy’s
dependency parsing and Named Entity Recognition (NER) processor to generate uni-
versal rules for extracting activity information. The second system, detailed in Section
3.3.2, employs a GPT-generated training dataset to fine-tune the pre-trained multilin-
gual BERT model. This system aims to leverage the contextual understanding capa-
bilities of the BERT model for enhanced performance. The third system, discussed in
Section 3.3.3, examines the zero-shot labeling capability of GPT-4o by comparing the
activity labels produced by GPT-4o with the gold labels.

3.3.1 Rule-based System

This system detects the activity information using spaCy’s dependency parser and the
Named Entity Recognition (NER) processor. SpaCy (Honnibal and Montani, 2017)
is an e�cient open-source library for NLP, which provides a wide range of tools and
processors for di↵erent NLP tasks.

Dependency Parser

Dependency parsing is a technique that illustrates the syntactic relations between to-
kens within a sentence . In syntactic parsing, the structure of a sentence is modelled as
a tree, where the root node represents the predicate of the sentence, and the branches
are the dependents. In this hierarchical syntactic tree, each token serves as a node,
with the syntactic relationships connecting them (Nivre et al., 2016). When parsing a
certain token, the token which governs its syntactic role is recognised as its ”ancestor”,
and the dependent token is called its ”child”, and each dependent of it can further have
dependents. Thus, a nested structure that captures the complexity of the syntactic
relation is created.

For example, in the sentence ”I wash my face every morning and before bedtime”
(Figure 3.15), the verb ”wash” is the predicate, also the head of the clause, and it
governs the syntactic roles of other words in the sentence. ”I” is a child of ”wash” with
a nominal subject (nsubj) relationship, indicating the person who performs the action.
Similarly, ”face” is a child of ”wash” with a direct object (dobj) relationship, indicating
the thing that is being washed.
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Figure 3.15: Dependency Tree

Figure 3.16: Named Entity Recognition

Named Entity Recognition Processor

The NER processor in spaCy is designed to detect named entities in a given text, and
classify these entities to predefined categories. These categories includes names of peo-
ple (PERSON), organizations (ORG), locations (LOC), dates (DATE), times (TIME),
and etc.. For example, in the sentence ”I wash my face every morning and before
bedtime”, ”every” and ”morning” are recognised as ”TIME”, indicating a temporal
reference (Figure 3.16).

In addition, previous studies have demonstrated spaCy’s NER processor to be highly
e↵ective, exhibiting its high accuracy in various real-world applications (Honnibal and
Montani, 2017).

Designed Rules

The rule-based system leverages the ability of dependency parsing as well as the NER
processor provided by spaCy to design specific rules to extract activity information.

In this system, each conversation will be split into several sentences to process.
The events within the sentence are identified through verb phrases using dependency
parsing. First, the verb and its direct object form the core of the verb phrase (VP).
To ensure the completeness of the verb phrase, the possessive modifier and determiner
associated with the direct object are also included as part of the VP. For example,
in the sentence ”I wash my face every morning and before bedtime” (3.15), the verb
”wash”, its direct object ”face”, and the possessive modifier ”my” (modifying ”face”)
together form the verb phrase ”wash my face”.

Time expressions are recognised if the token is a temporal modifier of the verb, or
the token is as recognised as ”TIME” or ”DATE” by the NER processor. Also, the
possessive modifier and determiner associated with the token are included as a part of
the time phrase.
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Similarly, place expressions are recognised using the NER processor. The token is
recognised as place-related if it is marked as ”GPE” or ”LOC” by the NER processor.

Participants are identified by examining noun chunks within the sentences. Specif-
ically, the focus is on noun chunks where the root dependency is a nominal subject
(nsubj) and the head of this root is a verb. This ensures that the noun chunk is acting
as the subject of the verb, which often indicates the participant in the action described
by the verb. Additionally, named entities recognised as persons (with the entity type
PERSON) are also included as participants. To maintain accuracy, certain criteria are
applied to exclude noun chunks that are unlikely to represent valid participants. Specif-
ically, noun chunks that contain non-specific pronouns such as ’it’, ’that’, ’this’, ’there’,
or ’here’ are filtered out. For example, in the sentence ”I went shopping with Amy”,
”I” and ”Amy” are identified as the participants because ”I” is a nominal subject, and
the named entity of ”Amy” is ”PERSON”.

After extracting all the activity information, it will be mapped back to the dataset
using unique positional identifiers: conversation index, sentence ID, and token ID. The
dataset will then be annotated using the BIO labelling system, where the beginning of a
span is marked with ”B-”, the subsequent tokens within the span are marked with ”I-”,
and tokens that do not contain activity information are marked as ”O”. The quality
of the labels generated by the rule-based system will be evaluated by comparison with
the manually annotated test set.

3.3.2 Fine-tuning BERT System

The fine-tuned multilingual BERT model will serve as the first experiment group. As
mentioned in 2.3.2, this model was pre-trained on a large, labelled multilingual dataset,
using tasks such as masked language modelling (MLM) and next sentence prediction
(NSP). Through fine-tuning the manually labelled development set, the model can
be tailored to annotate the event, time, place, and participants mentioned in a given
conversation.

This project fine-tunes the pre-trained model ”bert-base-multilingual-cased” using
a training set annotated by GPT-prompts to assess the impact of fine-tuning on trans-
former model performance. The fine-tuning process was executed on a GPU with
CUDA support in Google Colab to ensure e�cient processing. The AdamW optimiser
was utilised with a learning rate of 1e-4. Gradient clipping was implemented with a
threshold of 1.0 to prevent gradient explosion. The training was conducted over 10
epochs, with each batch consisting of 16 samples.

After the fine-tuning process, the model from the best-performing epoch is selected
for optimisation. The hyper-parameters will be tuned and the model will be tested
on the manually annotated development set. After tuning, the model will be assessed
using the manually annotated test set.

3.3.3 Zero-shot GPT-Prompting System

The zero-shot GPT-prompting system will serve as the second experiment group. As
discussed in Section 3.1.4, GPT-4o is capable of extracting activity information using
the zero-shot prompting technique. The e↵ectiveness of labels generated via prompts
will first be assessed by comparison with a manually generated evaluation set. After-
wards, by analysing the evaluation metrics, the system will be optimised by adjusting
the prompts, and further evaluated on the manually annotated test set.
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3.4 Evaluation and Optimisation

3.4.1 Model Evaluation

The evaluation of the three NLP systems in detecting activity information from the
patient-chatbot conversations will be conducted at the token level. This process will
determine how accurately each system predicts labels compared to the gold labels in
the test set. To quantify their performance, precision, recall, and F1 scores will be
calculated for each system, and the results will be presented using confusion matrices.

Token-level analysis is applied to this study due to the potential length of gold spans
in certain contexts, which may encompass multiple words. For example, in the sentence
”I watered the plants at 10 AM in the morning,” the gold span for the temporal phrase is
”10 AM in the morning.” Nevertheless, detecting only ”10 AM” by the system is deemed
acceptable, as it maintains semantic coherence. This is because ”10 AM” and ”in the
morning” are semantically interchangeable, thereby avoiding potential confusion. With
span-level analysis, such cases would be marked as true negatives because the detected
span overlaps with, but does not exactly match, the gold span. Therefore, the span-level
evaluation cannot accurately reflect the system’s actual performance.

The performance of each system will be assessed based on key metrics, including
precision, recall, and F1-score. Given the prevalence of the label ”O,” a macro-average
approach will be employed for these metrics rather than a weighted average. This
ensures a balanced evaluation of the system’s overall performance, taking into account
each class equally, and provides a more robust assessment in scenarios where class
imbalances may impact weighted averages.

In particular, the macro-average F1-score will be regarded as the primary criterion
for evaluating the model, as it strikes a balance between precision and recall, making
it a suitable overall metric. Precision, considered independently, reveals the extent of
errors present in the tokens identified as event-related information. In contrast, the
recall score gauges the model’s proficiency in correctly recognising event information,
calculated by (True Positives) / (True Positives + False Negatives).

After calculating the evaluation metrics, the errors of each label category will be
analysed, and patterns of common mistakes will be identified. The error analysis will
help in understanding the strengths and weaknesses of each system, providing insights
into areas that require improvement. This comprehensive evaluation will guide future
enhancements in the NLP systems, and shed light on more accurate detection of event
information.

3.4.2 Model Optimisation

The model performance will first be assessed on the development set. Subsequently,
the overall performance and errors of each system will be carefully examined. Op-
timised methods will then be employed: for the rule-based system, rules will be ad-
justed to encompass more comprehensive scenarios; for the BERT-based model, hyper-
parameters will be tuned to achieve better performance; and for the GPT-prompting
system, prompts will be refined to address output errors. Finally, the optimised systems
will be evaluated on the test set, which will form the final results of this experiment.
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Preliminary Results

In this chapter, the three systems are evaluated using the development set. After
evaluation, the preliminary results are reported in Section 4.1, 4.2 and 4.3. These
results will inform the system optimisation process, which will be further explained in
Chapter 5.

4.1 Rule-based System

The performance of the rule-based system, as illustrated in Table 4.1, indicates overall
sub-optimal e↵ectiveness, with a macro average precision of 0.25, a macro average recall
of 0.29, and a macro average F1-score of 0.23.

Specifically, the categoryB-participant performs relatively well, achieving F1-scores
of 0.50. The event categories are moderate, with an F1 score of 0.31 for B-event and 0.30
for I-event. However, the system struggles significantly with place-related categories
(B-place and I-place), scoring 0.00 in all three metrics, which shows its major issues in
correctly identifying place-related tokens.

Precision Recall F1-Score Support

B-event 0.19 0.88 0.31 192
B-participant 0.34 0.96 0.50 146
B-place 0.00 0.00 0.00 20
B-time 0.22 0.32 0.26 138
I-event 0.29 0.31 0.30 494
I-participant 0.25 0.10 0.14 10
I-place 0.00 0.00 0.00 44
I-time 0.62 0.11 0.19 300
O 0.83 0.68 0.75 4351

Accuracy 0.62 5695
Macro Avg 0.30 0.37 0.27 5695
Weighted Avg 0.71 0.62 0.64 5695

Table 4.1: Classification Report of Rule-based System

21
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4.2 BERT System

After fine-tuning the pre-trained bert-base-multilingual-cased model, the performance
is assessed on the development set. Table 4.2 illustrates its performance by category.

From Table 4.2, we can observe that the performance of the model is reasonably
moderate, with a macro average precision of 0.69, a macro average recall of 0.58, and
a macro average F1-score of 0.60.

Specifically, while the model excels in recognising non-event tokens (F1=0.92), it ex-
hibits significant di�culties in predicting places (B-place: F1=0.30, I-place: F1=0.49).
In contrast, the model demonstrates strong performance in predicting temporal tokens,
achieving an F1-score of 0.76 for B-time and 0.80 for I-time. In addition, it tends to
overtag B-participant (F1=0.17), as evidenced by a high precision of 0.67 coupled with
a very low recall of 0.10.

Precision Recall F1-Score Support

B-event 0.63 0.67 0.65 192
B-participant 0.67 0.10 0.17 146
B-place 0.30 0.30 0.30 20
B-time 0.78 0.75 0.76 138
I-event 0.63 0.73 0.68 494
I-participant 0.50 0.40 0.44 10
I-place 0.53 0.45 0.49 44
I-time 0.78 0.82 0.80 300
O 0.92 0.93 0.92 4351

Accuracy 0.86 5695
Macro Avg 0.64 0.57 0.58 5695
Weighted Avg 0.86 0.86 0.86 5695

Table 4.2: Classification Report of BERT Model

4.3 GPT-Prompting System

The GPT-prompting system outperforms the fine-tuned BERT model slightly, achiev-
ing a macro average precision of 0.97, a macro average recall of 0.56, and a macro
average F1-score of 0.60 (Table 4.3). Similar to the BERT model, the GPT-prompting
system also shows strong performance in predicting temporal tokens, achieving F1-
scores of 0.71 for B-time and 0.79 for I-time. In addition, it is notable that the system
performs reasonably well for I-participant (F1=0.59), but struggles with B-participant,
which has a low F1-score of 0.29. Similarly, while the F1-score for I-place reaches 0.58,
the model performance in predicting B-place is also at a low level (F1=0.20).
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Precision Recall F1-Score Support

B-event 0.60 0.55 0.57 192
B-participant 0.64 0.18 0.29 146
B-place 0.29 0.35 0.32 20
B-time 0.78 0.65 0.71 138
I-event 0.59 0.62 0.60 494
I-participant 0.71 0.50 0.59 10
I-place 0.72 0.48 0.58 44
I-time 0.83 0.75 0.79 300
O 0.90 0.93 0.91 4351

Accuracy 0.85 5695
Macro Avg 0.67 0.56 0.60 5695
Weighted Avg 0.84 0.85 0.84 5695

Table 4.3: Classification Report of GPT-Prompting System
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Chapter 5

Model Optimisation

5.1 Rule-based System

5.1.1 Methodology

The rule-based system is demonstrated to be ine↵ective in extracting place-related
tokens (F1=0.00). Upon analysing error cases and examining the pre-defined rules, it
was observed that the NER processor does not label any tokens as ”GPE” or ”LOC”.
This is because these labels are typically assigned to larger geographical entities or
significant locations, such as countries, cities, and well-known landmarks. However,
in the conversational dataset where patients describe their daily activities, locative
phrases are more likely to refer to common places like ”in the garden” or ”at home”.

Therefore, the rules are enhanced to improve the performance in identifying place-
related tokens. The updated rules now include a pre-defined list of locative prepositions
such as ”in”, ”on”, ”at”, ”near”, and others. As each sentence is processed, if a token is
in the locative preposition list, all of its dependent tokens (children in the dependency
tree) are classified as part of a place.

5.1.2 Results

The updated rules successfully lift the performance in recognising place-related tokens,
with recall = 0.55, and F1-score = 0.08 for B-place, and F1-score = 0.11 for I-place
(Table 6.2). The recall rate for the category B-event stands at 0.86, however, the
precision for this category is notably low at 0.18. This low precision indicates that the
system is incorrectly labelling many tokens as B-event that do not represent locations,
which results in a high number of false positives. The reason is that the updated rules
are overly broad, leading to a significant overtagging issue.

5.2 Hyper-parameter Tuning for BERT

5.2.1 Methodology

From the confusion matrix (Figure 5.1), it is observed that the model frequently gen-
eralises other labels to O, resulting in many missed cases. This issue likely arises from
the high prevalence of non-event tokens, which prevents the model from adequately
learning the nuances of less frequent classes (Huang et al., 2014). To address this,
the learning rate was reduced from 1e-4 to 3e-5. A smaller learning rate stabilises the
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Precision Recall F1-Score Support

B-event 0.18 0.86 0.30 192
B-participant 0.34 0.96 0.50 146
B-place 0.04 0.55 0.08 20
B-time 0.22 0.32 0.26 138
I-event 0.29 0.30 0.29 494
I-participant 0.25 0.10 0.14 10
I-place 0.09 0.14 0.11 44
I-time 0.62 0.11 0.19 300
O 0.86 0.65 0.74 4351

Accuracy 0.59 5695
Macro Avg 0.32 0.44 0.29 5695
Weighted Avg 0.74 0.59 0.63 5695

Table 5.1: Classification Report: Optimised Rule-based System

training process, allowing the model to make more precise updates to its parameters
(Smith, 2015). This adjustment aims to enhance the model’s ability to recognise less
frequent classes, thereby increasing its overall robustness and generalisation across all
categories (Wilson et al., 2017).

Figure 5.1: Confusion Matrix: Fine-tuned BERT Model

5.2.2 Results

After training with the new learning rate setting, nuanced di↵erences are observed
(Table 5.2). The hyperparameter-tuned model surpasses the preliminary in all metrics:
it achieves a macro-average precision of 0.68 and a macro-average recall of 0.59. The
F1-score, which balances precision and recall, improves noticeably by 3.45% in the
hyperparameter-tuned model, reaching 0.60 compared to the original BERT model’s
0.58.

Specifically, compared to Table 4.2, the hyperparameter-tuned model (Table 5.3)
exhibits significant improvements in recognising B-event and I-event, with the F1-
score increasing from 0.57 to 0.66 and from 0.61 to 0.70 respectively. Similarly, the
performance for I-participant showed substantial enhancement, with the F1-score rising
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Model Precision Recall F1-score

BERT 0.64 0.57 0.58
Tuned BERT 0.68 0.59 0.60

Up 6.25% 3.51% 3.45%

Table 5.2: Model Performance Comparison

from 0.40 to 0.63. Despite these advancements, the model continued to struggle in
accurately identifying B-participant and B-place, achieving F1-scores of 0.11 and 0.15,
respectively. Nonetheless, there was a minor improvement in the recognition of B-
participant, with the F1-score increasing from 0.01 to 0.11.

The comparison underscores the improvements in model performance achieved through
learning rate tuning. However, the interpretability of such transformer-based models
is relatively limited because its internal multiple layers and attention mechanisms are
complex (Vaswani et al., 2017). Therefore, although hyperparameter tuning is e↵ective
in optimising the model, the intricate nature of its architecture makes it di�cult to
directly control the output results through such a tuning process and thus find the
optimal model (Shoeybi et al., 2020).

Precision Recall F1-Score Support

B-event 0.66 0.67 0.66 192
B-participant 0.69 0.06 0.11 146
B-place 0.13 0.17 0.15 18
B-time 0.80 0.74 0.77 140
I-event 0.64 0.77 0.70 490
I-participant 0.67 0.60 0.63 10
I-place 0.52 0.42 0.46 38
I-time 0.77 0.82 0.79 301
O 0.92 0.93 0.92 4338

Accuracy 0.87 5673
Macro Avg 0.64 0.57 0.58 5673
Weighted Avg 0.87 0.87 0.86 5673

Table 5.3: Classification Report: Optimised BERT-based System

5.3 Prompt Engineering for GPT

5.3.1 Methodology

According to the classification report (Table 4.3), the recall of B-participant is low
(0.11), indicating that the system frequently misses B-participant labels. Upon manual
inspection, it was found that the system rarely labels the patient themselves as a partic-
ipant. In contrast, the gold annotation typically includes the patient as a participant,
mostly by labelling the nominal subject. For instance, in the 53rd conversation, 2nd

sentence, the gold annotation marks ”I” as B-participant, while the GPT-prompting
system fails to do so. To address this, the new prompt (Figure 5.2) specifies that the
patients themselves should also be included in the participant category.
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I take the bus to go grocery shopping every Tuesday morning.
(Development Set, Conversation 53, Sentence 2)

In addition, the model struggles more with recognising B-place (F1=0.29) than I-
place (F1=0.50). Upon manual inspection, it was found that the predictions di↵er from
the gold annotation in defining the boundaries of locative phrases. The model tends to
drop the preposition preceding the locative noun, whereas the gold annotation includes
the preposition and labels the entire prepositional phrase. For example, in the second
sentence of the 13rd conversation, the gold annotation for the place is ”in the garden”,
whereas the system labels ”the garden” as place.

I wake up early to take care of the flowers in the garden
(Development Set, Conversation 13, Sentence 2)

This discrepancy does not a↵ect the understanding of doctors who read the ex-
tracted locative information, as their semantic meaning remains the same with or
without the presence of the preceding preposition, but to improve model performance,
a refined prompt is employed (Figure 5.2). The new prompt now specifies that the
system should include the preposition preceding the noun phrase in the adverbial of
place. Consequently, the system is expected to better capture the boundaries of locative
phrases.

Figure 5.2: Refined prompt template for generating activity labels

5.3.2 Results

The refined prompts e↵ectively enhance the system’s performance in detecting the
default participant (the patients themselves), with the macro average recall for B-
participant increasing from 0.06 to 0.65 and the macro average F1 score improving
from 0.19 to 0.63.

For the category of place, the F1 score for B-place rises from 0.29 to 0.44. However,
for I-place, the precision decreases from 0.68 to 0.34, while the recall increases from
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0.39 to 0.71. This suggests that the system is extracting more non-place phrases as
places. The addition of a prompt specifically for places likely makes the system more
sensitive to place-related terms, resulting in over-tagging, which reduces precision but
increases recall.

Precision Recall F1-Score Support

B-event 0.63 0.60 0.62 192
B-participant 0.61 0.65 0.63 146
B-place 0.32 0.72 0.44 18
B-time 0.73 0.63 0.67 140
I-event 0.59 0.71 0.64 490
I-participant 0.62 0.50 0.56 10
I-place 0.34 0.71 0.46 38
I-time 0.81 0.72 0.76 301
O 0.93 0.90 0.92 4338

Accuracy 0.85 5673
Macro Avg 0.62 0.68 0.63 5673
Weighted Avg 0.86 0.85 0.86 5673

Table 5.4: Classification Report: Optimised GPT-Prompting System

Overall, the initial GPT-prompting system demonstrates strong performance in
macro-average precision, achieving a score of 0.69. However, the enhanced model shows
significant improvement in macro-average recall, achieving a value of 0.68. This im-
provement results in a 6.78% increase in the F1-score, rising from 0.59 in the initial
model to 0.63 in the enhanced model. The precise adjustments to the prompts can
target specific weaknesses in the model’s performance more directly, thus providing a
more interpretable route to enhancing performance on specific categories.

Model Precision Recall F1-score

GPT-4o 0.69 0.56 0.59
Tuned GPT-4o 0.62 0.68 0.63

Up -10.14% 21.43% 6.78%

Table 5.5: Model Performance Comparison
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Chapter 6

Results

This chapter demonstrates the evaluation process of the three activity detection NLP
systems, by testing their performance in the test dataset.

6.1 System Performance

The overall system performances of each model are illustrated in Table 6.1. The GPT-
prompting system demonstrated the highest e↵ectiveness, achieving the best scores
across precision (0.68), recall (0.73), and F1-score (0.70). In addition, the fine-tuned
BERT model performed adequately with a precision of 0.68, recall of 0.62, and an
F1-score of 0.62. However, the rule-based system lagged significantly behind the other
models, recording the lowest precision (0.30), recall (0.49), and F1-score (0.30), in-
dicating that the traditional method of using dependency parsing and named entity
recognition processor to extract certain information is not suitable for conversational
data.

Model Precision Recall F1-score

Rule-based 0.30 0.49 0.30
Fine-tuned BERT 0.68 0.62 0.62
GPT-Prompting 0.68 0.73 0.70

Table 6.1: Model Performance Comparison

6.1.1 Rule-based System

Specifically, the rule-based system which is built by pre-designed rules, using spaCy’s
dependency parser and NER processor, shows varied results across di↵erent entity types
as illustrated in Table 6.2. The system has moderate performance in identifying B-
participant, with a precision of 0.31 and an F1-score of 0.46, but struggles significantly
with B-place and I-time, where it achieves F1-scores of 0.09 and 0.10 respectively.
Overall, the system has a macro average F1-score of 0.30 and an accuracy of 0.58.

6.1.2 Fine-tuned BERT System

The BERT system employs the pre-trained multilingual BERT model, further fine-
tuned on a GPT-4o labelled training dataset. As per the results in Table 6.3, the
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Precision Recall F1-Score Support

B-event 0.16 0.79 0.26 193
B-participant 0.31 0.94 0.46 161
B-place 0.05 0.68 0.09 22
B-time 0.16 0.30 0.21 135
I-event 0.28 0.30 0.29 544
I-participant 0.30 0.33 0.32 9
I-place 0.15 0.36 0.21 42
I-time 0.45 0.06 0.10 288
O 0.87 0.63 0.73 4801

Accuracy 0.58 6195
Macro Avg 0.30 0.49 0.30 6195
Weighted Avg 0.74 0.58 0.62 6195

Table 6.2: Classification Report - Rule-based System

system displays robust performance particularly in the time category, with an F1-score
of 0.82 for B-time, and 0.88 for I-time. However, the performance on B-participant
reveals a notable discrepancy between high precision (0.78) and low recall (0.09), re-
sulting in an F1-score of 0.16. Compared to the GPT-prompting system, the fine-tuned
BERT system excels greatly in recognising I-participant, Overall, the system maintains
a weighted average F1-score of 0.87 and accuracy of 0.88, proving e↵ective in detecting
activity information across conversations.

Precision Recall F1-Score Support

B-event 0.67 0.67 0.67 193
B-participant 0.78 0.09 0.16 161
B-place 0.22 0.18 0.20 22
B-time 0.84 0.79 0.82 135
I-event 0.63 0.68 0.66 544
I-participant 0.64 0.78 0.70 9
I-place 0.56 0.52 0.54 42
I-time 0.86 0.90 0.88 288
O 0.92 0.94 0.93 4801

Accuracy 0.88 6195
Macro Avg 0.68 0.62 0.62 6195
Weighted Avg 0.87 0.88 0.87 6195

Table 6.3: Classification Report - Fine-tuned BERT System

6.1.3 GPT-prompting System

The GPT-prompting system which applies a zero-shot method powered by GPT-4o to
label the dataset, stands out as the top performer among the three systems. It achieves
a macro average precision of 0.68, recall of 0.73, and F1-score of 0.70. Notably, even
the least e↵ective category, I-participant, attains an F1-score of 0.50, which surpasses
the corresponding F1-score in the other two systems. The system particularly excels
in recognising temporal and event-related tokens (B-time, I-time, and I-event) with
F1-scores of 0.78, 0.81, and 0.73 respectively.
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Precision Recall F1-Score Support

B-event 0.68 0.69 0.68 193
B-participant 0.72 0.75 0.73 161
B-place 0.44 0.64 0.52 22
B-time 0.80 0.76 0.78 135
I-event 0.70 0.78 0.73 544
I-participant 0.57 0.44 0.50 9
I-place 0.46 0.74 0.56 42
I-time 0.81 0.82 0.81 288
O 0.95 0.93 0.94 4801

Accuracy 0.89 6195
Macro Avg 0.68 0.73 0.70 6195
Weighted Avg 0.90 0.89 0.89 6195

Table 6.4: Classification Report - GPT-Prompting System
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Chapter 7

Error Analysis

In this chapter, the typical errors appearing in the three systems will be discussed. In
all provided examples, the gold labels will be underlined, while the system-predicted
labels will be indicated in bold.

7.1 Rule-based System

7.1.1 Overtagging

The classification report, as detailed in Table 6.2, highlights a discrepancy between the
precision and recall metrics across various categories, with precision consistently lag-
ging behind the recall. For instance, the recall for B-event and B-participant stands at
0.79 and 0.94 respectively, while their corresponding precision scores are only 0.16 and
0.31. Further examining the confusion matrix (Figure 7.1) reveals that a significant
number of O tokens are mistakenly identified as event-related expressions. This ten-
dency to misclassify non-event tokens as event-related demonstrates a prevalent issue
of overtagging by the system.

Figure 7.1: Confusion Matrix - Rule-based System

This overtagging is inherent to the nature of the rule-based system, where each
sentence within a conversation is processed and tagged according to pre-defined rules.
Consequently, when an event is mentioned across multiple turns in a conversation, it
will be labelled repetitively.
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7.1.2 Linguistic Rules Incompletion

After inspecting the model predictions and comparing them to gold labels, the errors
caused by incomplete linguistic rules are discovered. For example, in this turn of
conversation, the chatbot is attempting to engage by asking about the patient’s garden,
and the patient’s response reveals a daily habit of taking care of the plants. However,
within the rule-based framework, the nominal subject of the predicate is identified as the
participant. Consequently, ”your garden” is incorrectly labelled as the participant of
the sentence, illustrating the limitation in the system’s ability to correctly contextualise
and interpret conversational data.

• Chatbot: How is your garden doing these days?

• Patient: I tend to the plants every morning before breakfast.

7.1.3 Lack of Context

Moreover, because the system follows strict linguistic rules, it lacks the capability to in-
terpret contextual nuances, which can further lead to inaccurate tags. Such limitations
highlight the challenges in rule-based systems, particularly in dynamic conversations
where contextual understanding is crucial.

In the following instance, the rule-based system mislabelled ”helping you” as the
event, but this event is negated in the patient’s response. It is because the system
can only process the conversational data sentence by sentence, without grasping the
context, which highlights its limitations in understanding and contextualising responses
e↵ectively.

• Chatbot: Do you have anyone helping you with your plants?

• Patient: No, I prefer taking care of them myself.

7.2 Fine-tuned BERT Model

7.2.1 Span Starts with I- Label

In the predictions of the fine-tuned BERT system, it has been observed that some spans
incorrectly start with an I- (inside) label instead of a B- (begin) label. For instance, in
the examples provided, the labels for ”tidy” and ”trying” should be B-event, yet the
model outputs I-event.

• I try to tidy up a bit each evening before I wind down for bed.

• Yes, I find joy in cooking new recipes and trying di↵erent flavors.

This issue may arise because B-event (193 cases) labels in the training set are sig-
nificantly less frequent than I-event labels (544 cases), causing the model to incorrectly
default to using I- labels. Additionally, while BERT captures long-range dependencies,
it may struggle with precisely identifying the boundaries of spans, contributing to this
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Figure 7.2: Confusion Matrix: Fine-tuned BERT Model

tagging error. It can be e↵ective to mitigate this mislabelling issue by implementing
post-processing procedures to correct such obvious errors.

7.2.2 Training Set Mislabelling

According to the confusion matrix (Figure 7.2), we can observe that 144 instances of
B-participant are mislabelled as O, indicating that the system fails to recognise the
participant token. This issue is further highlighted by the metrics for B-participant,
with a precision of 0.78 and a recall of only 0.09 (Table 6.3). The problem arises because
the BERT-based system was fine-tuned using GPT-4o labelled data, which omitted the
labelling of B-participant in its preliminary version (discussed in Section 5.3).

• I cook three times a day.

• I do my laundry every Saturday morning to keep everything organized.

• I prefer to do housework in the morning when I have more energy.

A similar issue a↵ects the prediction of the label B-place, which exhibits a recall of
only 0.18. The model tends to omit the preposition indicating location, such as ”in”
in ”in the backyard”, because the training data does not include such prepositions in
the locative phrase span. As a result, the B-place tag is frequently mislabeled.

• I enjoy planting flowers and vegetables with my grandchildren in the backyard.

• How often do you cook meals at home?

• When do you usually take care of the plants in your garden?

To address this issue, it is essential to employ the optimised version of the prompt
described in Section 5.3 for generating more accurate labels with GPT-4o, which are
then used in the fine-tuning process of the BERT model. This approach ensures the
accuracy of the labels, thereby enhancing the model’s overall performance.
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7.3 GPT-prompting System

7.3.1 Temporal Expressions

Although the system performs well in labelling time expressions (F1=0.78 for B-time,
F1=0.81 for I-time), it struggles with identifying time expressions in certain contexts.

Modifier Misinterpretation

In the following example, the system labels ”for the week” as a time expression, but
it actually functions as a modifier of the noun ”vegetables”, indicating that the pre-
chopped vegetables are intended for use over the next week, rather than specifying the
duration of the action ”pre-chop” will last for a week.

• Chatbot: How do yo make your food preparation easier for yourself?

• Patient: I usually pre-chop vegetables for the week.

Similarly, the system incorrectly labels the phrase ”lunch and dinner” as time ex-
pressions, whereas it actually serves as a modifier for ”meals,” specifying that the meals
prepared are intended for lunch and dinner.

• Chatbot: How was your day today?

• Patient: Oh, it was quite busy. I prepared meals for lunch and dinner.

This error highlights the system’s limitation in understanding the role of modifiers
within a sentence. Consequently, the system can be enhanced by employing di↵erent
prompting methods, such as few-shot prompting that specifically includes examples of
modifiers.

Time-Place Confusion

The confusion between time and place expressions is observed between the system
predictions and the gold labels. In the examples below, temporal phrases like ”in
the afternoons” and ”on Sundays” are misclassified as locations. This error likely
occurs because the system sometimes relies on surface pattern matching rather than
deep semantic understanding, given that time and place expressions often share similar
structures like ”in the” and ”on.”

• Chatbot: How has your routine been lately?

• Patient: I’ve been busy maintaining the garden in the afternoons.

• Chatbot: How do you usually plan your meals for the week?

• Patient: I plan my meals on Sundays and make a grocery list before going
shopping.
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Time-Event Confusion

In addition, another type of error regarding time expressions has been identified. The
system sometimes fails to extract time expressions from a longer span of events. In
the first example, the system recognises ”walk for 30 minutes every morning and do
light stretches in the afternoon” as an event but does not identify ”every morning” and
”in the afternoon” as time expressions. Similarly, in the second example, the system
recognises ”unwind in the evening by taking o↵ clothes” as an event but fails to identify
”in the evening” as a time expression.

• Chatbot: How often do you engage in physical activities?

• Patient: I walk for 30 minutes every morning and do light stretches in the
afternoon.

• Chatbot: What about putting o↵ clothes at the end of the day?

• Patient: I usually unwind in the evening by taking o↵ clothes.

7.3.2 Span Location Mismatch

Upon manual inspection, several cases that are mislabeled still hold semantic validity.
In the following example, the system identifies ”cook meals” in the chatbot’s utterance
as an event, whereas the gold label for the event appears in the patient’s response.
These instances are semantically correct but a↵ect overall system performance.

• Chatbot: How often do you cook meals at home?

• Patient: I cook meals almost every day, mainly for dinner.

Similarly, in this example, the system labelled ”cutting your nails” in the chatbot’s
utterance as the event, while the gold annotation for the event is in the patient’s
response: ”trim my nails”. The event is mentioned by both speakers, but the system’s
labelling does not align with the gold standard annotation, leading to a discrepancy.

• Chatbot: Do you find time for cutting your nails?

• Patient: I trim my nails every two weeks to keep them neat and clean.

To address this issue, the evaluation method should be enhanced to focus on the
semantic meaning of the labels, rather than their exact location within the conversation.
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Chapter 8

Discussion

8.1 Limitations

Although the model performance for the experimental groups is promising (F1GPT =
0.70 and F1BERT = 0.62), it has only been validated on synthetic conversational data.
According to the A-PROOF team expert’s evaluation, the synthetic data exhibits gaps
when compared to real-life conversations, particularly in terms of naturalness, especially
within the domestic life category. Therefore, the diversity of the conversations in the
dataset might not adequately capture the range of real-world scenarios the model will
encounter. When these models are applied to natural conversations, their e↵ectiveness
may not be as expected.

Also, the size of the dataset is limited due to the time constraints of this project.
There are only 687 conversations in the training dataset and 54 in the development
and test datasets. This limited amount of training data may not be adequate for
the models to learn and generalise e↵ectively, potentially hindering their performance.
Furthermore, the small size of the development and test datasets restricts the com-
prehensive validation and evaluation of the models, thereby impacting the reliability
and robustness of the performance assessments. Moreover, due to time constraints,
the gold labels for the development and test data were annotated manually by the au-
thor. To improve the annotation reliability and consistency, it would be beneficial to
invite multiple annotators to label the same datasets and calculate the Inter-Annotator
Agreement (IAA) score.

In addition, in terms of the fine-tuned BERT model, the labels in the training
dataset are generated by GPT-4o, which is proved to have disagreements with the
manual annotation (Section 5.3). The inconsistencies in labelling led to sub-optimal
model outcomes, as the model learned from misaligned data.

8.2 Future Work

8.2.1 Refining Dataset

For future work, it is crucial to expand the dataset to enhance the e↵ectiveness of the
multilingual BERT model. Currently, the dataset consists of only 5,965 utterances;
increasing this number could significantly stabilise the fine-tuning process. Addition-
ally, enlarging the development and test sets, which currently contain 468 and 478
utterances respectively, will enable more comprehensive evaluation and validation of
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the model’s performance.
According to the findings from testing the GPT-prompting system with develop-

ment data, the labels generated by GPT-4o often do not match the manual annotations.
To address this issue, it may be beneficial to employ a few-shot method in prompt en-
gineering or to refine the prompts to ensure they align with the same criteria as the
manual annotations.

Additionally, the error analysis of the GPT-prompted system reveals that some
mislabelled tokens share the same meaning as the gold annotations but di↵er in their
placement within the conversation. It can be essential to improve the evaluation crite-
ria, by assessing the extracted information based on its semantic meaning rather than
its specific location in the conversation. Moreover, the system’s predicted labels should
undergo post-processing to eliminate common errors, such as those beginning with I-
(inside) labels.

8.2.2 Structure Event-Argument Relationships

This project successfully extracts activity-related information within conversations.
For future studies, it is essential to identify the relationship between the extracted
events and their corresponding arguments (time, place, and participants). Similar to
dependency-based semantic role labelling tasks, where the relationship between predi-
cates and their arguments is determined after detecting and classifying all the predicates
and arguments present ((Gildea and Jurafsky, 2002), (Carreras and Màrquez, 2005)),
the relationships between events and event-related arguments can be realised in a struc-
tured manner. Specifically, it is feasible to enhance the understanding of how events are
interconnected through their temporal, spatial, and participant contexts by integrating
techniques from dependency-based semantic role labelling of PropBank ((Johansson
and Nugues, 2008)).

8.2.3 Enrich Sentiment Information

Furthermore, upon inspecting the test dataset, it is evident that merely extracting the
event, its time, place, and participants is insu�cient for doctors to fully understand
the patients’ conditions, because patients often express positive or negative emotions
while describing an event.

For example, when a patient says ”I had a bit of a challenge when I climbed the stairs
this morning”, only extracting Iparticipant, climbed the stairsevent and ”this morningtime”
is inadequate. The phrase ”a bit of a challenge” conveys crucial information about the
patient’s emotional state and the di�culty they experienced. Therefore, future work
should focus on incorporating sentiment analysis to enrich the extracted information,
thereby providing doctors with a more detailed and accurate representation of the
patient’s conditions.



Chapter 9

Conclusion

This project explored the feasibility to extract activity-related information within con-
versations between patients and a healthcare chatbot. The conversations used in this
project were generated by prompting GPT-4o, guided by the definitions for human
activity provided by International Classification of Functioning, Disability, and Health
(ICF). Following the discussions with healthcare experts in the A-PROOF team, all
conversations were generated under the categories of mobility, self-care, and domestic
life. Due to time constraints, the labels for the training set were generated by prompt-
ing GPT-3.5-turbo, while the development and test datasets were annotated manually
by the author.

The experiment involved the development of three NLP systems: a rule-based sys-
tem serving as the baseline, a fine-tuned BERT system, and a GPT-prompting system
as the experimental groups. The rule-based system leveraged dependency and named
entity recognition information to define rules for extracting event-related tokens. The
BERT-based system fine-tuned a pre-trained multilingual BERT model using the GPT-
generated training dataset. The GPT-prompting system employed zero-shot methods
to generate activity information.

The results indicated that the GPT-prompting system performed the best. In
addition, the fine-tuned BERT system also showed moderate performance, with its
errors primarily stemming from inaccurate labels in the training set. The baseline
rule-based system proved unsuitable for analysing dynamic conversational data. Error
analysis also revealed that the evaluation criteria could be refined to assess outcomes
based on semantic meaning rather than strict text spans.

Future studies should focus on developing a more comprehensive dataset for train-
ing, validation, and testing. Additionally, mapping event-argument relationships by
employing dependency-based methods, which have been validated in semantic role la-
beling tasks is also essential. Furthermore, incorporating more detailed information,
such as the sentiment of each event, would provide a more comprehensive understanding
of the patients’ conditions for the doctors.
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