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Abstract

In this thesis we investigated the task of Named Entity Recognition (NER) on Dutch
biographies by assessing the performance of various models. These models include out
of the box tools such as Stanza and Flair, a BERTje model finetuned on CoNLL, along
with another BERTje and a GijsBERT model finetuned on historical Dutch NER data.

More specifically, this thesis investigated two things; for one it aimed to discover
the better out-of-the-box tool for NER on dutch Biographies, and secondly it aimed
to with assess the di↵erences between a more historically pretrained model such as
GijsBERT and one with a more general purpose Dutch pretraining when finetuned on
the same datasets.

This project contains several test partitions. Two of these were more historical
test partitions sourced online. This source was also identical to the training data of the
finetuned models. Additionally, an additional high-quality test partition was annotated
based on a national archive of Dutch biographical data. Furthermore, extra annota-
tions were made to create two more test partitions to more qualitatively evaluate the
BERT based models.

As for the out-of-the-box systems, we found that Flair consistently provided the
best results, outperforming both Stanza and the BERTje based model that was fine-
tuned on CoNNL by a large margin. Concerning the finetuned models, we measured
similar performance and found that both made similar mistakes on both historical and
modern biographical test partitions.
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Chapter 1

Introduction

Every person lives a life riddled with experiences. Experiences such as having parents,
going to school, or starting a career are shared amongst many, but other experiences
are only held by a few. It can be argued that the documentation of human history de-
scribes the interplay of these experiences; arranging them in a network of interactions
to tell stories.

The world wide web (WWW) has emerged as a medium for storing information, and
is thus also purposeful for storing the experiences of many. Social media for example,
makes it easy for everyone’s experiences to be collected, recorded and shared. Moreover,
advanced search methods have enabled the intelligent cataloging of this information,
making it easy for people to find and access experiences. These methods however, are
limited to digital data and cannot be applied to information that has been recorded
in writing. This whilst the majority of human experience stems from the non-digital era.

The Dutch biography portal project (Renders et al., n.d.) was an initiative from
the Institute of Dutch History (ING) for producing and retrieving digital biographi-
cal information. Their collection now contains 200,000 Dutch biographies that discuss
approximately 80,000 individuals. Some of these stem from existing biographical dic-
tionaries that were digitized by the ING, others were produced by the ING in digital
form directly. In these biographical dictionaries names can be looked up, and all the
found biographies in which they are discussed are listed below.

The massive array of digitized biographical information is more useful when it can
be found. Intelligent searching within documents can help bring a reader to the in-
formation that they are looking for. Because of this it is valuable to deploy Natural
Language Processing (NLP) techniques. Notably, NLP techniques aim to enable com-
puters to interpret human language, and NLP can be applied to a wide range of tasks.
The current project aims to explore a NLP task on biographical data called Named
Entity Recognition.

Named Entity Recognition (NER) is a specific task within NLP that involves iden-
tifying named entities, such as people, organizations, locations, and dates, in text data.
In modern day implementation, this is performed through machine learning techniques.
Machine learning can be performed for NLP tasks by ’training’ a system with an al-
gorithm. Training works by feeding the system organized data, and by having it make
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predictions. In supervised machine learning, this data consists of both the ’query’ and
the ’label’. The query is what the system sees as input, and the label is what the system
is trying to predict. In the case of named entity recognition for example, this query
will consist of a series of words, called tokens, and the label the system is trying to
predict would be the entity, which for example could manifest in the form of “PER” or
“LOC”; marking whether a sequence of tokens is a person or location. It is important
to note that the system will ’guess’ in the first stages of training, whereas later the true
labels are revealed to the system, and the system will be punished for its mistakes by
the algorithm, allowing it to learn and improve as it witnesses more examples. This is
typically how machine learning works when performing classification, but there are a
wide range of algorithms that can be applied. Once the algorithm has been trained,
we can save it for later use.

Traditional machine learning systems attempted to solve NLP problems by prepar-
ing their models with additional information which is informative for the task at hand
(Collobert et al., 2011). If a model knows that a word is a proper noun for example, it
might also be able to understand that it is more likely for a given token to be an entity.
Such information can be added to the representations of text in the form of ‘features’,
and are carefully crafted and selected by humans for each task.

Many of the more recent machine learning models implement ‘deep learning’. Deep
learning means that deep neural networks are used. In deep neural networks there is a
hidden layer that contains nodes that grade importance of the input to determine the
output. This means that these systems are capable of understanding the underlying
syntactic structure of a sentence for example, so that it can use this knowledge to make
its predictions. The field of NLP has widely experimented with various Deep Learning
models, one of which will be investigated in this project.

In the context of the biography portal, language models can use NER in order to
extract named entities from the digitized biographies and categorize them in a way that
makes it easier for users to find specific information. If it is known that a user is looking
for a person for example, then NER will aid in finding all the persons the user is looking
for. Additionally, it is worthwhile exploring NER for this task because it can be used
for a wide range of other applications. Enriching data with NER tags, for example, can
help identify patterns and trends in the data, such as the geographical distribution of
individuals with a certain occupation or the changing popularity of certain names over
time.

Even though the biographies from the biography portal have already been digitized,
they still provide challenges for a trained NER model. It is especially di�cult to make
predictions on older texts. This is for the most part due to the di↵erences between mod-
ern day Dutch in comparison to 17th and 18th century Dutch, which is exacerbated
in script.‘Opzigtelyk’ (meaning something that easily comes to attention) for example,
is a word that is no longer recognized in modern Dutch. If it were to be orthographi-
cally consistent with modern spellings however, it would be spelled ‘opzichtelijk’. Such
di↵erences in spelling are accompanied by other aspects of language that change over
time, such as grammar and lexis. For example, there may be di↵erences in the way
that certain grammar rules were applied in 18th century Dutch, which could make it
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di�cult for modern day Natural Language processing models to accurately interpret
the texts. There are also phenomena such as semantic drift, as the meaning of words
over time is also subject to change. ”Kapot”, for example, originally meant ”broken” in
Dutch, but over time its meaning has shifted to also include ”exhausted” or ”drained”.
For Natural Language Processing models, this is di�cult to take into account, as a lan-
guage model trained on more modern texts does not take phenomena such as semantic
drift and orthographic changes into account.

Besides diachronics there are also other concerns when using language models on
older texts, namely due to limitations of the systems that convert them to a digital
medium. Many older texts are converted to a digital form through the means of Optical
Character Recognition (OCR). OCR is a technology used to convert scanned images of
text, such as a scanned document or a scanned page of a book, into a digitized form,
that is editable and searchable. The process involves analyzing the image to identify the
characters and then converting them into a machine-readable format, such as ASCII
or Unicode. OCR software can be used to process text in multiple languages and can
even recognize handwriting.

One issue however, is that handwriting is still di�cult for machines to interpret.
Especially because it manifests in many variations, with each person having di↵erent
handwriting. Handwriting can for example be cursive or not, and there are many
variations in each style that lead to unique handwriting. In some cases, even people
struggle to read handwriting. In the same way that people have di�culty interpreting
handwriting, written text is also di�cult for OCR systems to consistently interpret,
and therefore models make mistakes when transcribing some of this data to digital
form. Because of this, OCR systems often produce data that is filled with noise, such
as unwanted symbols, letters and punctuation.

Because of these limitations with OCR, a large e↵ort has led to the manual tran-
scription of Biography Portal data, resulting in clean text that can be e↵ectively used
by language models. Such clean data was used for NLP projects such as BiographyNet;
which aimed to use connect the people mentioned in these biographies to biographical
texts from other sources Fokkens et al. (2018). This four year project which lasted
from 2012 to 2016, has demonstrated that the quality of the data is su�cient for NLP
systems to work with.

With regards to language models, which this thesis will use in order to explore
the NER task, the current common solution is to use a transformer based model. A
transformer is a neural network architecture that captures the context and meaning of
words. This is done via a mechanism called self-attention which measures the impor-
tance of each word. The measurement works through a dot-product operation between
the input embeddings and attention weights. The training task determined how the
weights of these models are updated.

These transformer based models are first pre-trained to create a contextual repre-
sentation of the data. Pretraining is done on unsupervised tasks, an unsupervised task
does not require any manual annotation. One common unsupervised task for example,
is having a model try to predict a masked word in the sentence. After pre-training, the
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models often need to be adapted to perform a target task. This adaptation is called
fine-tuning, where an extra training task is supplied that helps the model learn what
it should ultimately do. This can be a task such as NER.

Many of the well known transformer models are publically available. Another char-
acteristic of these models is that they have millions of parameters. This is the result
of pre-training these transformer based systems with a large and often costly dataset.
One example of such a model is BERT. BERT is pretrained on the unsupervised tasks
where it has to predict tokens that are randomly masked in the sentence, in addition
to predicting the correct next sentence. If this BERT model would need to perform the
NER task, it would need to be finetuned with another training partition that contains
NER labels.

The pretraining process is very costly. The base BERT model contains 110 million
parameters resulting from pre-training on over 800M tokens. Retraining such a model
is therefore an expensive process but can be worthwhile if the target data is su�ciently
di↵erent. Specialized models exist for domain specific use such as as GysBERT (Man-
javacas and Fonteyn, 2022), which is a model that is pretrained on the Dutch Historical
domain for example. A more general version of a Dutch BERT model is BERTje, which
was pretrained on a variety of books and multi-genre reference corpora.

In this thesis we explore the finetuning of both BERTje and GysBERT on historical
publicly available OCR data. We then evaluate their performance on a test partition
of that same data in addition to a high quality dataset containing biographical data.

We formulate two research questions that will guide our investigation.

• RQ1: How does BERTje finetuned on a generic dataset perform on the NER task
in comparison to out-of-the-box tools such as Stanza and Flair?

• RQ2: How well does BERTje finetuned on historical data perform against Gijs-
BERT that was pretrained on the historical domain?

Stanza and Flair are the out of the box tools that we will explore. With Flair using
document level embeddings (FLERT) and Stanza being built with a neural network for
NER classification. BERTje is based on BERT which stands for Bidirectional Encod-
ing Representation of Transformers. The baseline BERTje model that we will use is an
already finetuned model for NER that was trained on a generic dataset (CoNLL), and
we will compare this to our own model that is finetuned on in-domain data.

We hypothesize that the BERTje model, finetuned on historical data, will surpass
the performance of the Stanza and Flair models because of its WordPiece tokenization.
WordPiece breaks down words into subwords based on the most frequent substrings
in a corpus. The tokenizer maintains a vocabulary of subwords, and the input text is
converted into a sequence of subword tokens. Because out of domain data will likely
yield new tokens, we predict this to be an advantage for BERTje.

Regarding the second research question, we anticipate that the GijsBERT will sur-
pass the performance of BERTje and that this will be exacerbated on historical data.
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We believe this to be the case because it is pre-trained on historical text.

We will present this thesis by first outlining the relevant work in the theoretical
framework, we then discuss our data and experimental setup in the methodology sec-
tion, and then present the results, discussion and conclusion.
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Chapter 2

Theoretical Framework

This thesis aims to explore the performance of various machine learning models on the
task of Named Entity Recognition (NER) in Dutch text. This theoretical framework
serves the purpose of providing relevant background information on this topic.

We will introduce the topic by first explaining what NER is. Furthermore we dis-
cuss approaches that can be used for coming to such a system where we predominantly
go over the algorithms that were used for this task in the past.

We then go over the systems that are used in the project. It is important to mention
that the project involves training two models and testing two out-of-the-box tools that
can be used for NER. Considering that our systems will need to perform this task on
Dutch text, we also choose to discuss some of the linguistic history of this language and
its present-day form. This is especially relevant because the training of the models is
purposed to help them adapt to this domain.

2.1 The task of Named Entity Recognition

NER is a task in natural language processing that involves the identification of real
world things. This is typically done by giving labels to proper nouns that belong in a
category. Popular NER datasets use tags such as persons, locations, and organizations.
Other data may choose to specify di↵erent categories such as time or book for example.
These categories are often di↵erent depending on the task, with fields that apply NER
for the biomedical domain using a di↵erent subset of categories in comparison to what
historians might use.

One of the earliest shared tasks made for NER is the CoNLL 2002 initiative (Tjong
Kim Sang, 2002). A shared task can be interpreted as a benchmark for data-science;
where a standardized dataset is used in order to evaluate the performance of models.
CoNLL provides test and validation data to measure this performance. Throughout the
years, the performance of many systems have been assessed on CoNLL, and it remains
commonly used today.

Next to datasets, CoNLL also standardized a method of annotating data, namely
in the BIO (or sometimes referred to as OIB) scheme. This is a word-level style of an-

7
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notation, where every word receives a label. If the word falls in no particular category,
it will receive the ’O’ label. If it does fall into a category, it will be marked by a ’B’ if
it is the onset of that category, or an “I” if it not the first word within that category.
This is then followed by the appropiate label. This is further illustrated in the table
below.

Token Label

My O
name O
is O
Felix B-PER
den I-PER
Heijer I-PER

Table 2.1: An example of BIO scheme annotation for Named Entity Recognition

2.2 NER before Transformers

As briefly mentioned before, transformer based models are currently leading to state-of-
the-art performance on many NLP tasks. Before we discuss these models however, we
want to also introduce some more traditional approaches. These traditional approaches
for NER primarily relied on combination of heuristical and statistical methods. Two
well known statistical approaches that introduced some relevance for even more mod-
ern architectures are Hidden Markov Models (HMMs) and Conditional Random Fields
(CRFs).

HMMs are generative models that can be used for a variety of tasks such as part-of-
speech tagging, NER, and syntactic parsing. More generally, HMM’s are used for tasks
with sequential classes. HMMs are based on the Markov assumption that the proba-
bility of a sequence of states depends only on the current state and the previous state.
Because of this a ’first order’ hidden markov model would only look at the previous
token and label to predict the next class. HMMs are composed of two main compo-
nents: the observation model, which describes the probability of observing a sequence
of words given a sequence of states, and the state transition model, which describes the
probability of transitioning from one state to another. Similarly to the later discussed
newer architectures, HMM’s train by trying to predict a class for a masked token. That
is in the case of NER, by trying to predict whether the tag for the next word in the
sequence. The performance of HMM’s however is limited due to its sequential assump-
tion. When people process language they are able to hold a sequence into working
memory and relate back to it to develop understanding (Schoonen et al.)[p. 5], but
by modeling language sequentially this can not be taken into account. Discriminative
models such as CRF’s attempt to solve that problem.

CRFs are a type of discriminative model that can be used for tasks such as sequence
labeling. CRFs model the likelihood of a sequence of labels occurring when given a
sequence of observations. CRFs are particularly useful for tasks such as NER, where
the goal is to identify and classify named entities within text. CRFs can be used to
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model dependencies between labels, such as the probability of a word being labeled as
a named entity given the labels of the previous words in the sequence. Both HMMs
and CRFs have been used for NER, but CRFs have been found to perform better in
most cases. CRFs have been shown to be more robust to errors in the training data
and to perform better when the data is limited Finkel et al. (2005).

NER systems could combine these CRF and HMM models and improve their ac-
curacy with heuristical knowledge. One example of such knowledge would be through
gazzeteers. A gazetteer is a list of known named entities, such as people, places, and
organizations. Gazetteers can be used to identify named entities by looking up words in
a text and seeing whether they co-occur in a gazzeteer. Having a gazzeteer containing
common names for example, can make it easier for a system to identify people.

Regular expressions are another tool that can be used for heuristics based NER.
These are basically ’advanced search queries’ that are good for looking up specific pat-
terns such as dates, email-addresses and phone numbers. The date format “MM/DD/YYYY”
would for example look like “\d2/\d2/\d4”. Where the regular expression is initialized
with the first backslash, where ’d’ represents that it is looking for a digit, and where
the number thereafter specifies how long this sequence of digits should be.

These methods will not extensively be addressed in this project, but are common
approaches nonetheless. The majority of the systems used in this project are based on
neural networks.

2.3 Neural Networks

Neural networks address the fundamentals behind modern machine learning algorithms,
before we can explain transformers, it is important to first understand what neural net-
works are and how they work. Neural networks are based on neurons, which is a node
in the brain that can send a synaptic signal if activated. Neural networks mimic this
principle by using arrays of artificial neurons. The artificial neuron takes an input and
processes this in order to produce an output (Goodfellow et al., 2016).

The basic structure of a neural network involves a set of artificial input neurons,
connected to several more layers of neurons that have ’hidden’ states, and then an
output layer. Hidden states are states that can not be observed or adapted manually.
The input layer will take the information you would like to process, which in the case
of NER is the information associated with words. The hidden states process that in-
formation, and the output layer will yield a result; so in the case of NER would yield
a label or sequence thereof.

Neural networks are typically trained based on an algorithm called Stochastic Gra-
dient Descent (SGD). Each neuron is initialized with a weight, which in the beginning
is set to random, unless specified to be otherwise. The basic idea behind SGD is to
iteratively update the weights of the connections between the neurons in the direction
of the negative gradient of the error function (Ruder, 2016). This means that a model
will update weights untill it has minimized ’loss’ or in other words, minimizing the
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errors it makes. The gradient of the error function tells us the direction in which the
error is increasing, and by moving in the opposite direction, we can decrease the error
(Ruder, 2016). These neural networks are the learning algorithms that lie behind the
transformer based systems that are used in this project.

2.4 A transformer based Neural Language Model; BERT

In this section we get into our first transformer based model, which is the one that we
address in this project. It is called BERT. BERT stands for Bidirectional Encoding
Representation of Transformers. The concept of transformers refers to an architecture
that involves two main components, the encoder and decoder. The encoder is a repre-
sentational system for the language, where words and how they relate to one another
is inferred by the model, whereas the decoder is a productive component capable of
producing sequential output.

Before BERT can apply statistical techniques, it builds a lexicon of words that it
sees in the pre-training data. In order to increase matches with words, and to en-
sure that future queries will fit into this lexicon, it splits words into something called
wordpieces. These wordpieces are meant to take Out Of Vocabulary (OOV) words into
account Devlin et al. (2018). One example of how this is done can be shown with a word
such as “inconsequential” where it can be split as ’in’, ’##con’, ’##se’, ’##quen’,
’##tial’. In many other cases however, BERT chooses to not tokenize a word into
these subwords. BERT Frequently used words are not subword tokenized, whereas rare
words are split into subwords.

Because BERT is a representation of encoders only, it only understands the rela-
tionships between words in a language, but does not yet have the ability to produce
any information on its own. It therefore solely computes a numerical representation for
a sentence and the words within it. It does this by first calculating the importance of
related words through a mechanism called self-attention.

Self-attention works by first creating a set of “keys,” “values,” and “queries” for the
input sequence (Vaswani et al., 2017). The keys and values are used to represent the
input, while the queries are used to determine which parts of the input are most rele-
vant for a given prediction. The attention mechanism then computes the dot product
of the queries with the keys, and applies a soft-max function to the resulting values to
obtain the attention weights. These attention weights are then used to weigh the values
when computing the weighted sum that is output by the attention mechanism. One
key property of self-attention is that it allows the model to attend to any part of the
input sequence, rather than just the parts that are adjacent in the sequence (Bahdanau
et al., 2014). Because of this it is better able to take semantic processing into account,
where it can be argued that these attention mechanisms somewhat mimic the role of
human processing in language processing.

After computing self attention, the BERT model trains itself based on two tasks;
masked language modeling (MLM), and next sentence prediction (NSP). In the MLM
task, a percentage of the tokens in the input are randomly masked (replaced with a
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special [MASK] token), and the model is trained to predict the original values of the
masked tokens. This task is intended to train the model to understand the context
in which words appear, as it must use the surrounding words to predict the missing
token. The NSP task involves predicting whether a sentence B follows another sentence
A in the input. This task is intended to train the model to understand the relationship
between sentences, as it must determine whether sentence B is a valid continuation of
sentence A.

After MLM and NSP the weights are saved and can be passed onto the next encoder.
Once all encoders have processed their weights, the pre-training process is complete. In
order to then use a BERT model for a specific task it can then be finetuned for that task.

With regards to NER, the BERT architecture has led to state of the art perfor-
mance. With the current best model performing NER on the CoNll-2003 dataset being
a modified variant of BERT Baevski et al. (2019). For the purpose of our project, we
use two variants of BERT that work on Dutch text; BERtje and GijsBERT.

2.4.1 BERTje; a Dutch BERT Model

The first developed BERT models were multilingual models, though the pre-training
technique could of course also be used for training language-specific BERTs. BERTje is
an example of such a language-specific BERT. It is essentially a BERT model that was
pre-trained on Dutch data, allowing it to achieve better performance on Dutch texts
de Vries et al. (2019). This makes BERTje more interesting than a general purpose
multilingual version for the current project, as we solely address Dutch texts.

BERTje was pretrained on news articles, books, and Wikipedia data. Additionally,
the authors of BERTje have already fine-tuned this model on a wide range of NLP
tasks, and has been found to be e↵ective in improving the performance of Dutch NLU
systems de Vries et al. (2019).

BERTje was primarily pre-trained on Dutch literature (4.4gb), followed by news
corpora (2.4gb), a multi-genre reference corpus called SoNar 500 (2.2gb), news web-
sites (1.6GB), and wikipedia data from 2019 (1.5GB). The pre-training procedure was
slightly adapted for BERTje, after some criticism that was written on the original
BERT architecture. The NSP task for example, was adapted so that the model would
not only try to predict the next sentence, but also the previous sentence de Vries et al.
(2019). Instead of NSP this is called Sentence Order Prediction (SOP) where the model
is tasked to say whether the sentence is the previous or the next iteration. The MLM
task was also adapted in the pre-training of this model. Not only as the model trying
to predict the next wordpiece, but it aimed at predicting consecutive wordpieces be-
longing to the same token.

In order to evaluate the model they first fine-tuned it to be able to do three NLU
taks; NER, Part of Speech tagging, and Semantic Role labeling. For the purpose of
this project we will focus on their NER results. The NER performance was evaluated
on CoNLL 2002 data. CoNLL is a well-known format where each token has a label
annotated with Beginning Inside Out (BIO) scheme annotations. This means a word
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will get assigned the label O if it does not get a label, a ’B’ at the onset of a label,
and an ’I’ for a consecutive token that is assigned the same label that was given at the
onset of the entity. CoNLL is a shared task that serves the purpose of a benchmark as
many models are tested on this data Tjong Kim Sang (2002).

The performance of multilingual BERT was at 80.7% for the NER task and in-
creased with the BERTje version to an f1 score of 88.3%. The state of the art at the
time of BERTje development achieved an f1-score of 90%. This was achieved with a
well fine-tuned multilingual BERT model for NER Wu and Dredze (2019). de Vries
et al. (2019) propose that applying their fine-tuning approach and scale to BERTje
would likely have led to even better results.

The fine-tuning approach used by Wu and Dredze (2019) involved adding a linear
classification layer with softmax on top of multilingual BERT. When masking pre-
dictions, they mask the post-initial wordpieces, considering the word-level labels that
CoNLL uses.

In this project we choose to use this BERTje model as one of our base models that
we can further finetune on with domain specific data.

2.4.2 GijsBERT, a BERT model for Historical Dutch

GijsBERT is another example of a pre-trained BERT model that we can use for fine-
tuning purposes. GijsBERT distinguishes itself because it is trained on more historical
Dutch texts. It is important to mention that the Dutch data used in this thesis can
originate from as far back as the 18th century. This makes it extra challenging for
language models to deal with, considering that the majority of their training data is
likely modern as a limited amount of information has been transcribed from this time
period.

GijsBERT is a very recently developed BERT based model that was developed by
researchers from Leiden University. As mentioned, it aims to better handle historical
Dutch data, and the problems that often come along with it, such as noisy OCR in-
stances for example Manjavacas and Fonteyn (2022). As of to date, it is the only Dutch
BERT model that has been specifically developed to handle historical data.

Architecturally, GijsBERT is similar to the original proposed BERT model from
Devlin et al. (2018). With this is meant that it is also pretrained with the NSP and
MLM objectives. The main di↵erence of course with GijsBERT to this other model
stems from its pretraining data. The pretraining data for GijsBERT comes from two
large databases. These databases are Delpher; containing primarily historical newspa-
pers, books and journals, and the Digital Library of Dutch Literature (DBNL); which
contains digitized literature from Dutch and Flemish libraries. It is important to note,
that the contents from Delpher, are primarily OCR’ed, whereas the content from DBNL
was transcribed by linguistic researchers, resulting in high quality historical data.

Because some of the content was not of su�cient quality, most notably due to OCR,
part of the work from Manjavacas and Fonteyn (2022) consisted of training another
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model to detect text that was of insu�cient quality. This was a character level model
called KenLM trained on a part of the higher quality DBNL data to determine quality
estimates. Ultimately, this model was used to determine what selection from Delpher
was suitable for use.

The resulting set for pretraining GijsBERT consisted of 7.1B tokens. 5.8 of these
were from Delpher and 1.3 were from DBNL. The dates from which these texts origi-
nated range from 1500 to 1950.

2.4.3 Flair

Alongside these BERT models the current project also addresses two out-of-the-box
tools. One of them is called Flair.

Flair is a Natural Language Understanding (NLU) model developed by Zalando
Research. It is a fairly modern framework for building state-of-the-art NLP systems.
Flair allows users to easily apply pre-trained embeddings, such as BERT or ELMO, to
their text data, and also provides a simple interface for training and evaluating models
on a variety of NLP tasks, including named entity recognition, part-of-speech tagging,
and text classification.

With regards to NER, the authors of Flair state an important problem; namely the
problem of underspecified contexts. Classifying ’Baskel’ in a sentence such as

• John Baker (Netherlands) Baskel

• B-PER I-PER B-LOC B-ORG

would allow for it to be interpreted as either a person or as an organization, assuming
the word is not already present in the models lexicon. The paper from Akbik et al.
(2019) proposes a solution to this problem where they opt for Pooling Contextualized
Embeddings. A contextualized embedding is what is already produced by models such
as BERT, it is a contextual representation of a sentence. Pooling combines these repre-
sentations to form a new one that can be given to a NER classifier to give it additional
context in relation to the rest of the text.

More specifically, the method works by holding each instance of a word in memory,
next to its context and updating the pooled embedding at every new occurrence of the
word in the data. In the end, the original contextual embedding is concatenated to the
pooled embedding, preserving the original context. This process is shown in Figure 1.

This process is repeated and memory is cleared at every epoch during training.
On the CoNLL 03 dataset, performance of this model (Flair) was compared to that of
other models such as BERT from Devlin et al. (2018). On the NER task Flair achieved
a f1 score of 93.18, which outperformed BERT by .32%. Because of the impressive
performance for Flair on this task, and its up-to-date libraries, we chose to include it
in this project.
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Figure 2.1: Example of how embeddings were pooled Akbik et al. (2019)

2.4.4 Stanza

The second out of the box tool that we address in this project is called Stanza.

Stanza is a Python natural language processing (NLP) library developed by the
Stanford NLP Group. It provides a suite of NLP tools, for this project the most no-
table of which a NER module that classifies persons, locations, organizations along with
miscellaneous entities. The NER module uses a bidirectional long short-term memory
(LSTM) recurrent neural network (RNN) to encode the input text, and a conditional
random field (CRF) layer to make predictions about the named entities present in the
text Qi et al. (2020).

A bi-LSTM is a type of LSTM that processes the input sequence in both forward
and backward directions, which allows it to capture contextual information from both
the past and future of each word. This is useful for NER, as the named entities in a
text may be influenced by words that come before or after them.

The encoded text is then passed through a CRF layer, which makes predictions
about the named entities present in the text based on the encoded input. The CRF
layer uses the encoded representations of the input words and the transitions between
them to make these predictions.

In addition to the NER module, Stanza also includes tools for other NLP tasks
such as part-of-speech tagging, dependency parsing, and language modeling. One of
the reasons that Stanza was included in this project, is because its NER system has
been created via some of the aforementioned traditional machine learning approaches.

2.5 Domain Adaptation

The current project addresses Dutch data that can stem from many di↵erent time pe-
riods. Because of this we need to try to get the models that we train to also perform
well on older Dutch text. This can be addressed via Domain Adaptation.
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Considering that artificial intelligence based NLP models train based on a vocab-
ulary, an important aspect to consider is whether the vocabulary used to train the
model overlaps with the vocabulary of the target. Additionally, the distribution of the
data might be di↵erent; certain words or grammatical features in one domain should be
regarded as more important in comparison to those same features in another domain.
Data sourced from social media for example, will use di↵erent words and grammar in
comparison to data sourced from news articles. In order to better help models account
for these domain di↵erences, domain adaptation techniques are implemented.

Feature based methods of domain adaptation involve transforming the features of
the data in the target domain to align with the features of the data in the source do-
main Ganin and Lempitsky (2015). In other words, a grammatical feature such as part
of speech might be more important in a NER classification task in one domain, in com-
parison to NER in another domain, this needs to be taken into account. Feature based
domain adaptation is typically performed by observing the features in both domains,
and then by applying methods to transform the features that manifest di↵erently in
the training domain to the target Ganin and Lempitsky (2015).

Instance-based domain adaptation is also common. Instance-based domain adapta-
tion can be performed by finding instances in the training data that match the target
domain. Adaptation can thus occur by training on the union of test sets, giving less im-
portance to, the tokens that do not occur across domains Daume III and Marcu (2006).
If one domain for example involves social media data A, and the target involves news
articles B, we would want to give less importance to all the elements that do not occur
in A [B. This could be applied in NLP by, for example, finetuning a language model
on only instances that occur on both domains.

Another approach is called self-training. In self-training the models own predictions
are used to generate new training data Liu et al. (2019). The new training data, which
is then partially generated by the model can be used to further improve the models
performance, as this technique, despite lacking a certain standard of label quality, al-
lows models to increase their lexicon and thus often also improves performance.

Weight transfer is another method that can be used for domain adaptation. Weight
transfer involves involves transferring the learned parameters of a model trained on the
source domain to a new model for the target domain Ganin et al. (2016). The idea
behind this method is that the shared features between the source and target domain
will be captured by the learned parameters of the model and can be reused for the
target domain.

2.6 Domain Adaptation for BERT

Considering that models such as BERT already require adaptations in order to per-
form NLU tasks such as NER, one simple way to adapt to the target domain is to
start the fine-tuning process with similar data. By doing this, you retain the models
understanding from the pre-training phase, and help it adapt to the target data while
it simultaneously learns a new task.
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The SciBERT initiative for example, was aimed to provide a version of the BERT
base model that was deemed more suitable for scientific tasks. (Beltagy et al., 2019)
compared the di↵erence between training a BERT model with scientific data from
scratch, with finetuning a version of BERT-base that with a smaller subset of in-
domain data. They achieved the best results with pre-training a model on in domain
data, however fine-tuning also improved performance for all tasks.

Another approach added in conjunction to fine-tuning for BERT was adversarial
training. This first involves fine-tuning a model for a task such as NER, and then
training an adversarial model which serves the purpose of trying to fool the finetuned
classifier. It fools the classifier, because it is trained to predict instances where the
finetuned NER classifier makes mistakes. The adversarial model then helps create new
training examples that are di�cult for the fine-tuned NER classifier to take into ac-
count, which are labeled to further improve performance Ebrahimi et al. (2021). The
adversarial task can be applied for domain adaptation by helping it use target-domain
instances where the NER model is expected to make a misclassification.

2.7 The Historical Dutch Domain

Because some of our target data is written in historical dutch it is also relevant to pro-
vide some background on phenomena such as semantic drift along with changes in the
orthography. Discussion regarding change in the Dutch language over time typically
has refers to either old-Dutch, middle Dutch or modern Dutch. In order to summarize
this component, we will discuss changes in the declension system along with ortho-
graphic changes that occurred from middle-Dutch to modern-Dutch.

Middle Dutch refers to Dutch spoken between 1100 and 1550. Four grammatical
cases were known in the Dutch language in middle Dutch however only remnants of it
exist today. These cases are the genitive, nominative, dative, and accusative. In the
17th century these case systems did not exist in the productive form, but in writing,
they were often still used. The use of the case system in writing lasts up until the 19th
century, and remnants of it still exist in modern dutch today. Presumably its existence
was extended for so long, due to prescriptive e↵orts of grammarians to preserve the
case system.

The middle Dutch case system is characterized by a complex system of inflections
which indicate the grammatical function of nouns, pronouns, and adjectives in a sen-
tence (Hüning and Vogl). All cases are marked morphologically through a su�x. As
for nouns, it is important to note that the inflection rules change dependent on whether
the noun is categorized as ’strong’ or ’weak’. A singular noun ending on -e for example,
would typically fall under the ’weak’ category, whereas nouns ending on a consonant
are likely to indicate strong inflection. The table below from (Hüning and Vogl) shows
some examples of these strong and weak inflections, and how they would be changed
for each case. As can be seen from the table; the expression of gender, strength, case,
and number of articles are all dependent on the noun.
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Masculine strong weak

Sg. Nom die goede gast mensche
Gen des goets/goeden gast(e)s menschen
Dat dien goeden gaste mensche
Accu dien goeden gast mensche
Pl. Nom. die goede gaste menschen
Gen. der goeder gaste menschen
Dat dien goeden gasten menschen
Acc. die goede gaste menschen
Neuter strong weak

Sg. Nom dat goede hof herte
Gen des goets/goeden hoves herten
Dat dien goeden hove herte
Accu dat goede hof herte
Pl. Nom. die goede hove herten
Gen. der goeder hove herten
Dat dien goeden hoven herten
Acc. die goede hove herten
Feminine strong weak

Sg. Nom die goede daet siele
Gen der goeter daet/dade siele(n)
Dat der goeder daet/dade siele(n)
Accu die goede daet siele
Pl. Nom. die goede dade sielen
Gen. der goeder dade sielen
Dat dien goeden daden sielen
Acc. die goede dade sielen

Table 2.2: Middle Dutch case system from Hüning and Vogl

In the table from (Hüning and Vogl) we also get some sense of the Dutch orthog-
raphy. In middle Dutch, there was not yet a formal orthographic system, and Dutch
spelling was often characterized by how the words would sound phonologically. In 1804,
a new spelling system was introduced as defined by Matthijs Siegenbeek (Siegenbeek,
1804), which eventually was approved by the Batavian Republic. This introduced sev-
eral orthographic changes that still exist today, such as the change of the ’y’ to the
long ’ij’ form. It must be noted that this spelling system, despite being approved by
the republic, did not achieve widespread use, as there were also many criticisms.

Later the Jan Frans Willems spelling was proposed, which was similar to Siegen-
beeks system, but had a solution for some of the problems considering critique regarding
how some of the diphthongs were to be spelled. There were, for example, discussions
regarding how the diphthong /ei/ should be spelled; ’ei’, or ’ey’, amongst many oth-
ers. Vosters (2009). This system would be o�cially adopted in the Netherlands in 1888.

The newer spelling continued to foster disagreement amongst linguists, as the /e:/
sound would have an open and closed spelling. The word ’heeten’ uses the ’e’ twice,
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whereas ’lezen’ applies it once, despite both resembling the same phoneme. This led
to another reform, leading to a new spelling called; ’De Kollewijn Spelling’ (Kollewijn,
1891), which was adopted in 1904. was adopted mainly in South Africa, where the
system was simplified to unify such spelling di↵erences.

Despite adoption in South Africa, the Kollewijn spelling was not popularized in the
Netherlands. Ultimately the Marchant system was a combination of the prior men-
tioned systems, which was proposed and adopted in 1934 Trouille (1987) and is very
close to the modern day Dutch spelling system.

2.8 NLP In Historical Texts

One of the problems with applying language models on historical texts, described by
Labusche et al. (2019), is that older texts are often less standardized and are often
preprocessed with Optical Character Recognition (OCR) techniques which do not al-
ways provide accurate transcriptions. This would for example lead to noisy data, which
would need to be filtered out to obtain best results.

Labusche et al. (2019) opted to fully pre-train a BERTmodel specifically for OCR’ed
texts in historical-german. This was done with a similar method to the original BERT
mode from Devlin et al. (2018). The di↵erence however was that they trained it on
more noisy OCR’ed data, though several amendments were made in order to reduce
the noise. One of these noise reduction techniques was the removal of ’failed’ OCR
pages, where it was decided it was incomphrehensible and not fit for training. This
would commonly manifest through excessive punctuation in combination with several
incorrectly transcribed graphemes. Ultimately (Labusche et al., 2019) found that pre-
training on the historical German dataset improved performance in that domain, but
worsened performance on other domains.

2.9 The Dutch Biography Portal Domain

The crux of this project is to evaluate how well a finetuned BERT model performs on
Biography data. The target data of this project is within the biography portal domain.
The dutch biography portal has collected a approximately 145,000 biographies from
80,000 individuals. The biographies were collected and organized by the Institute of
Dutch History (ING), along with the joint initiative of a number of other organizations
Renders (2023).

They claim to collect biographies from Dutch ’men’ and ’women’, which in their
interpretation, means that they collect biographies from both people who were born in
the Netherlands, but also biographies of people who were not born in the Netherlands
but who became active in the area during their lives. The biography portal has de-
scribed a selection of categories, in which the people described in their data fall. This
can include nobility or famous artists, along with several other categories. There are
also people whom do not fall into any of the categories that are placed in the miscel-
laneous category. Besides categories, additional metadata that is collected from the
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biographies includes date of birth, date of death, gender, religion, and the full and
family names of the described persons in question.

When indexing for a particular individual, the biography portal will link to the
text in which the biography describing this person was found. This means that no
biographies are rewritten, and primary source versions are retained, resulting in a com-
bination of older, and newer texts.
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Chapter 3

Methodology

This chapter discussed the methodology of this project. Here we discuss the data used
in this project, domain adaptation, and the pre-and-post processing that is needed for
our models to work with the data. This is followed by a description of the systems used
in this experiment.

3.1 Data Overview

This project applies the task of Named Entity Recognition to two datasets. The first
dataset was retrieved from IVDNT (Institute for the Dutch Language), the test is pub-
licly available and called “AI Trainingset, Tag de Tekst for Named Entity Recognition
(NER)” (Dutch Language Institute, 2022). It was produced by 150 volunteers from the
“Tag de Tekst” crowdsourcingsproject. The set contains labels for persons, locations,
and time entities, and was sourced on texts originating between the 17th and 19th
century. It involves notorial texts from the Dutch cities of Haarlem and Amsterdam
along with documents from the Dutch East India Company.

The second dataset is inherited from the Dutch biography portal project (Renders
et al., n.d.). As was explained in chapter 2, this includes 200,000 biographies contain-
ing information about approximately 80,000 individuals. The biography portal project
aggregates biographical data from various sources and covers a wide range of time pe-
riods; ranging from the 18th to 21st century.

In this thesis, we will compare the performance of several NER models using the
“Tag de Tekst” dataset as our evaluation metric. This procedure applies to the out-
of-the-box models which include a baseline BERTje model finetuned on CoNLL, along
with the most recent large distributions of Flair and Stanza. The reason for choosing
this dataset is that there were no gold labels available for the biography data during the
starting phases of this project. Additionally, since the “Tag de Tekst” data was labeled
by human annotators we assume that it is of su�cient quality. We are however unable
to verify this because the “Tag de Tekst” project was initiated through the means of
crowdsourcing, there is no information such as inter-annotator agreement that can help
us understand the true quality of this data.

One challenge when working with di↵erent models is that they may have di↵erent
labeling conventions. For example, one dataset may include a TIME label, while a pre-

21
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trained system may not classify such a label. In addition, the way entities are labeled
can also vary. For example, one dataset or model may label a “person” entity as “Mr.
Snow,” while a model may omit the title and simply label the entity as “Snow” or vice
versa. To address this issue, we have made several choices regarding our selection of
entities for evaluation.

3.1.1 “Tag de Tekst” Data

The data from Tag de Tekst consists of several subdocuments. Most, but not all,
are used for the purpose of this experiment. It contains a training partition, a de-
velopment, or validation partition, along with other partitions titled “Noord Hollands
Archief” (NHA), “Regionaal Historische Centra” (RHC), and “Stadsarchief Amster-
dam” (SA). Table 3.1 gives an overview of the amount of tokens and sentences in each
partition. The sentences were segmented with a out-of-the-box tool called Spacy (Hon-
nibal et al., 2020), where we loaded their nl-core-news-sm model, which is their smallest
model (12MB) for segmenting sentences that was trained on news data. Because of this
being automatically performed, it is possible that the amount of sentences may not be
completely accurate. The original source does not provide much information regarding
the origin of each specific partition, however it is known that they are all sourced from
Dutch national archives.

Partition Amount of tokens Amount of sentences

test NHA cleaned 9730 1044
test SA cleaned 18296 2333
train cleaned 1880206 256930
validation cleaned 467089 53401
test RHC cleaned 523 57

Table 3.1: Overview of token counts for each partition in the tag de tekst dataset

From the table above it can be seen that the RHC partition is by far the smallest,
only containing 57 sentences. Because of this, we have chosen to omit this particular
partition from this project. Additionally, we see that train and validation are by far the
largest subsets. Our test sets remain with a combined 28,000 tokens. More important
than sole token count however, is the distribution of the labels. Table 3.2 gives an
overview of the label distribution for each partition.

File B-TIME I-TIME B-LOC I-LOC B-PER I-PER

test NHA 109 255 252 154 352 483
test SA 255 428 257 54 781 847
train 32073 57807 47724 14475 98521 110330

validation 7310 13197 11027 3035 24213 26297

Table 3.2: Overview of label counts for each partition in the tag de tekst dataset

It is important to note that the “tag the text” data acknowledges three types of
entities, “PER”, “LOC”, and “TIME”, considering that the cardinality of the union
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of the “tag the tekst” set along with the label outputs for stanza and flair is only two;
the labels “PER” and “LOC”, we have oriented this project towards the classification
of only these two labels.

The most popular label in every partition is PER, and the distribution of labels is
approximately the same for all partitions. The only real di↵erence is that the RHC par-
tition is the only partition to have more B-LOC labels than I-TIME labels. This though
does not say anything about the amount of TIME entities in the dataset, instead, it
suggests that the span of these TIME entities is longer in this particular partition. Be-
cause we are not interested in the TIME entity for the purpose of this project however,
this is unlikely to become an issue.

In terms of distribution, it can be argued that the train partition should be paramount.
This is because this distribution could explain biases that a model might develop when
trained. Because the distributions of each label are approximately the same for every
partition, inspecting the training data is in this case also insightful for the entirety of
the tag-de-tekst set. Figure 3.1 describes the distribution of our training partition data.

Figure 3.1: Bar plot of the label distribution in the train partition

From the 1.880 million tokens in this CoNLL style partition, we can see that almost
60% of the labels contain the “PER” label, in comparison to 8% tokens being assigned
a “LOC” label. The majority of these “LOC” labels include names of cities. More
specifically, The city of Haarlem is mentioned 1,798 times, whereas the city of Amster-
dam and Batavia are also popular. As for the “PER” label, it consists of typical Dutch
names as can be expected. An overview of the entities found in the “Tag de Tekst”
data can be more clearly seen in the wordcloud from Figure 3.2.

The larger elements in the wordcloud from figure 3.2 indicate that they are more
common. This figure thus shows us the most popular entities in the partition. Most
notably, person names attract attention, though this is largely due to more person
entities being present in the data, it is still somewhat surprising that Dutch cities are
not marked larger than they are considering the origins of the partition. Additionally,
names are a much more specific entity, which, especially for this dataset, typically
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Figure 3.2: Wordcloud with NER labels for the training set

manifests with a span of two. The fact that these entities are labeled with both first
and lastname, could potentially introduce a bias in our model, as a NER model trained
on this data might start to expect both first and last names to be present for a person
entity to occur.

3.1.2 “Biography” data

We will describe the biography data in two parts. First we will talk about the com-
plete aggregation of the Dutch biography portal project, consisting of approximately
26 million tokens. After this we will look at a subset of this dataset that was extracted
and annotated for evaluation purposes.

All of the Biography data

The complete version of the biography portal data is by far the largest dataset in this
project consisting of 25,955,831 tokens. Considering that of this project is to automat-
ically label this data, we have evaluated the performance of our model on a smaller,
human annotated partition. We did not immediately have access to labeled biography
portal data, and since the ultimate target of the model is the full dataset, we approx-
imated the distribution of labels by first labeling it with Stanza 3.3. This not only
gives us insights in regards to what label distribution can be expected from this data,
but also helps us already understand the conventions that Stanza uses for assigning the
NER labels.

As we can see, a much larger share of the data (29.4%) contains location labels.
This is important to consider as the training data for our fine-tuned model will ulti-
mately have a proportionally smaller selection of such labels. The higher distribution
for location labels can possibly be explained by the medium that biographies represent.
Biographies that describe people, also tell the stories of where people were born and
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Figure 3.3: Stanza generated label distribution for the complete Biography set

raised. Whereas another domain, such as the legal domain for example, will talk about
people with respect to the crimes they are accused of, not giving much importance to
the cities in which they reside.

Further inspection of the biography labels have led us to notice that there is a
skewed distribution, with some locations occuring more frequently than others. This
is shown in Table 3.1.2. Amsterdam is the most common location, with over 55,000
occurrences, while other locations like Utrecht and Leiden also have relatively high fre-
quencies. Nederland, Rotterdam, and Den Haag also occur frequently among the most
frequent labels, while other locations like Groningen and Haarlem occur more sparsely.

Location Count

Amsterdam 55217
Utrecht 21501
Leiden 18048
Nederland 13604
Rotterdam 13563
Den Haag 12997
Groningen 10764
Haarlem 10300
Antwerpen 7507
Dordrecht 6

The distribution of the most frequent person labels in the dataset also appears to
be skewed, with some names occurring much more frequently than others. This can
be seen in Table 3.3, which shows the top 10 most popular location entities. Showing
more in an illustration would quickly become redundant, as the majority of locations
only occur once. Jan and Kramm are the most common names, each with over 3,000
occurrences,xc while Willem and II also have relatively high frequencies among the
most frequent labels. Maria, Johannes, and Vader also occur frequently among the
most frequent labels.
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Person Count

Jan 3111
Kramm 3110
Wagenaar 2989
Willem 2771
II 2629
IV 2158
Maria 2124
Johannes 2046
Muller 2000
Kok 1898

Table 3.3: Most popular PERSON entities found in biography

Biography test partition

The biography data annotations were sourced by three annotators. Unlike other datasets
in this project, the annotation guidelines are known, informing us what conditions were
used for annotating each label. The subpartition of biography data that was annotated
by humans contained 35,132 tokens and 2,264 sentences, making it the third largest
human annotated partition in this project, behind the Tag de Tekst train and valida-
tion partitions.

Annotation Guidelines for BiographyNet test partition

The annotation guidelines were written in English, in the description it is stated
that the annotators must annotate entities as a category within a set of all proper
noun phrases in the text. The annotation guidelines are directed at labeling persons,
locations, organizations, and artworks as possible categories. Considering the present
project is directed at the classification of persons and locations, we will focus on de-
scribing the annotation guidelines for only these categories.

The category of persons is marked as PER. These entities are limited to humans,
and should consist of only proper names referring to unique individuals. Titles should
be included in annotation, if you have a person name with a preceding title for example,
“Prof. Dr. Piek Vossen”, both “Prof” and “Dr” belong to this entity along with the
first and last name that follows. Pronouns along with family referrants should not be
considered a person entity.

The annotation guidelines list several examples of person entities.

• Horner J. Simpson

• IBM Lawyers

• The Secretary of State

• Saudi Arabia’s Crown Prince
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The category of locations is marked as LOC. Location entities consist of o�cial
locations, and should exclude region descriptors determined by social groups or com-
munities. Locations can therefore include countries, cities, regions with an o�cial name.
Additionally, street and building names should also be considered a location, under the
condition that an event is happening there.

The annotation guidelines list several examples of location entities.

• Soviet Union

• Haarlem

• municipality of Amsterdam

The annotation guidelines also describe special cases that should be considered
when annotating. These describe coordination, name su�xes, coreference, ambiguity,
and agency. When a sequence of titles are used in coordination for example, only the
ultimate title should be used when annotating. If you have “Mr and Mrs. den Heijer”
for example, “Mr” should be omitted from the person category.

Entity Count

B-PER 1161
I-PER 1301
B-LOC 809
I-LOC 209

Table 3.4: Entities in the biography test set

In the test partition, we expectedly see a similar distribution of PER and LOC
labels compared to the full biography data. This indicates that in terms of label distri-
bution, our test partition is somewhat consistent with the intended target of our model.
Figure 3.4 illustrates a wordcloud of these entities, where we can take a closer look at
the annotated labels. Here we can see that names are still prominent and repeated in
this dataset, such as “Charlotte Sophie”. Additionally, we also see ‘cities’ such as ‘Den
Haag’ being popular entities. Notably, cities that were popular in the train partition
such as ’Amsterdam’ or ‘Haarlem’ do not appear, giving us an insight that the people
described within this subset probably do not stem from those areas.

This implies that the distribution of locations, in terms of popularity, does not
entirely align with our training data. Nevertheless however, it is experimentally still
worthwhile to explore how the models will deal with these entities, given their di↵erent
pre-training and origins.

The quality of the annotations is assessed in Table 3.5. Each iteration one annotator
is taken as “ground truth” and then the F1 score of the other 2 annotators is measured
against it as if they were classifiers.

Table 3.5 shows that the agreement is good to high for all annotators, suggesting
that the quality of this set is su�cient for evaluation purposes.
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Figure 3.4: Wordcloud for Named entities within the Biography test set

Annotator 3 2 1
3 1 0.9 0.8
2 0.84 1 0.8
1 0.74 0.79 1

Table 3.5: Agreement between the three annotators for the biography test partition

3.2 Domain Adaptation

Domain adaptation is typically performed to help a language model trained to make
predictions on one type of data, also work when making predictions on another type of
data.

This problem is closely related to the interdependence assumption, which states
that the training and test data are drawn from the same underlying distribution. In
other words, it assumes that features in the training data are distributed in the same
way in target data of the model. This however, is in practice rarely the case, as the
test data often contains information that was not seen by the model in training.

For this experiment for example, we use a BERTje model that was pretrained on
Dutch literature and news, along with the SoNar-500 set. Our target domain contains
data from BiographyNet, which consists of biography portal data with several other
sources containing biographical information. Because we know that some of the bi-
ographical information is written in older Dutch, we know that the interdependence
assumption does not hold, since BERTje’s training features (derived from the self-
attention mechanism) do not contain older Dutch text.

Our solution to this is to therefore finetune the BERTje model on older Dutch text
originating from Tag de Tekst. This is done because we assume that the data from Tag
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de Tekst is closer to our biographical target.

Another model that we use in this thesis is called GijsBERT, this model deals with
the other end of the spectrum as it is trained on historical dutch news, books and
journals. GijsBERT will likely better fit the Tag-de-Teskt datasets as its pretraining
data stems from similar time periods. Alternatively, it has less modern training data
that it might encounter in the biography portal data.

Just like BERTje, we also finetune GijsBERT on the historical Tag de Tekst set,
however this is not done for domain adaptation purposes, but solely for allowing the
model to perform the NER task.

3.3 Pre- and post- processing

We used data from two di↵erent origins, “Tag de Tekst” and “Dutch biographical Por-
tal”. The biography data was made available for use through a JSON, whereas the
Tag-de-Tekst data was made available through several TSVs of which two partitions
were selected for cleaning. Both partitions contained data that was labeled through
CoNLL conventions, where every token is assigned a label, with each token placed on
its own line. CoNLL format indicates that each label receives a “beginning”, “in”, and
“out” indicator along with the corresponding label.

The biography data was delivered to us in JSON format, with metadata already
containing various processed formats such as Stanza tokens and labels. Because of this,
no additional preprocessing had to be done in order to use this data for our project.

The “Tag de Tekst” data did have some preprocessing steps, as there was for ex-
ample no indication marking sentence endings, which is important for when we train
our finetuned model. Because of this extra e↵orts had to be made for marking sen-
tence boundaries. This was done by implementing a sentence segmentation tool from
Spacy. After sentence segmentation, further inspection led to finding large arrays of
text that were not segmented. This was presumably because the unsegmented chunks
are transcribed documents from legal origin, or transcribed conversations that do not
mark clear sentence boundaries. In order to combat this, some manual e↵orts were
made to segment the largest chunks, which contained over 6000 tokens. Furthermore,
a preprocessing system was written that segments any sentence containing more than
400 tokens into chunks of 130 tokens. The reason for segmenting in this way is because
we wanted to reduce sentence size, and simultaneously, limit biases that would develop
if we were to for example, split all sentences into chunks of 130.

After preprocessing, the systems were ready for use and generated output. Consid-
ering that not all of our system generated the same labels, some adaptations had to
be made. The post-processing for the out-of-the-box systems such as Flair and Stanza
involved removing some of the labels from the predictions. This was done in order to
compute the evaluation metrics with only PER and LOC labels present, which are the
only two named entity tags that are used by all systems.

For the baseline BERTje and the finetuned BERTje system, we reconstruct the
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wordpieces back into tokens. Additionally, we applied some steps to ensure that the
tokenization output was identical to that of the original data, if this was not done, it
would be impossible to evaluate the performance of the model.

3.3.1 Models

In order to conduct our experiments, we propose several out of the box systems; Stanza
and Flair, along with a baseline BERT based system; BERTje. Additionally, we fine-
tune two models on historical data and evaluate its performance. The models we will
finetune are BERTje and GijsBERT.

The Stanza system is evaluated without any major modifications. In order to com-
pute the NER results we simply load stanza with the default pipeline for dutch ’nl’ and
have it make predictions on the datasets. The same is done for a tool such as Flair,
where we simply load it with the largest dutch pipeline available “ner-dutch-large” and
have it make predictions.

The baseline BERTje is the same model that was used for the experiments from
de Vries et al. (2019), which was available on huggingface; a platform used to store
datasets and trained machine learning models. As mentioned by de Vries et al. (2019)
this model is BERTje finetuned on data from CoNLL 2002. Initializing BERT based
models requires two important aspects, a tokenizer, and the weights and vocabulary
of the finetuned model. As the names suggest, the tokenizer performs tokenization,
splitting the words into wordpieces for BERT to predict, and the finetuned model can
look at these wordpieces and use the learned weights to make predictions.

Some slight amendments had to be made in regards to re-aligning the output of the
BERTje models. This is because BERTje uses wordpieces, so it makes a prediction for
each wordpiece, though in the baseline BERTje model, the tokenizer had a di↵erent
vocabulary size than the finetuned model, meaning that they would not agree upon the
wordpieces to split on; resulting in an error. Because of this we cloned the model from
huggingface locally and amended its vocabulary manually. We removed 78 subtokens
from the vocabulary of the tokenizer, which mostly consisted of letter markings (such
as an umlaut) and other symbols. After this both the tokenizer and the finetuned
model had 30,000 tokens or subtokens in its vocabulary so that the predictions could
be assigned correctly.

Our finetuned BERTje model is the base BERTje finetuned on the “Tag de Tekst”
train partition. For the finetuning process we implemented the same proposed strategy
from the original BERT authors Devlin et al. (2018). This is where we apply a lin-
ear feed forward neural network layer on top of the embeddings produced by BERTje.
There are several parameters of interest: The learning rate tells the model how ag-
gressively to update weights, a high learning rate, would for example mean that it will
aggressively change the weight and thus how important certain tokens are. Too high
of a learning rare would typically result in the model not learning anything, or even
becoming worse during training. A low learning rate on the other hand, would cause
the model to learn too slowly, or learn nothing at all. Our selected learning rate was
1e-5, which, for most purposes, is considered to be low. This learning rate is passed



3.3. PRE- AND POST- PROCESSING 31

to the second important parameter, called the optimizer. For this project we used the
Adam optimizer. This is typically known to be a safe option, because it is capable of
adjusting the learning rate during training Kingma and Ba (2014). We then train the
model for the NER task on our tag de tekst data for eight epochs with a batch size of
eight. The batch size refers to the number of samples used to update the model pa-
rameters during each iteration of the training process. The epochs refer to the amount
of times that the model will see the complete training data.

3.3.2 Experiments

Our research questions are pointed at investigating the performance of our systems. In
order to evaluate the performance we will assess this with quantitative and qualitative
methods.

Some models required choices to be made. The out of the box flair and stanza
models, there were di↵erent vocabulary options, for both models we picked the largest
available vocabulary. The baseline BERTje model did not leave room for any choices, as
it was the only CoNLL finetuned BERTje model available on the huggingface repository
from the authors of de Vries et al. (2019). For our own finetuned BERTje however, we
created choice by training it on three random seeds. These seeds determine the starting
weights, allowing our experiment to be reproduced. We used ’1234500’, ’1482500’, and
’4365691’ as seeds for our three versions. During training we save a version of each
model after each epoch. We are then left with eight versions (one for each epoch)
for each of our three models. Model selection then requires us to pick the the best
model seed and epoch. We perform such selection by graphing the training and valida-
tion losses. Training losses determine how well the model is fitting the training data,
whereas validation losses give some indication on the extent to which a model is fitting
unseen data. In our case, our training losses will be based on the Tag de Tekst train
partition, whereas our validation loss is determined by the Tag de Tekst validation par-
tition. We then select the model that has the lowest training or validation loss that has
seen the most number of epochs as the best. During the span of this experiment, the
GijsBERT model was introduced to this project. The GijsBERT model was finetuned
with the same procedure as BERTje, however only one random seed was used. This
made the selection process simple as it just involved taking the epoch with the best
validation loss.

After model selection we perform our quantitative analysis. For this, each model
will be run on the “Tag de Tekst” test partitions: NHA and SA, in addition to the
“Tag de Tekst” data, we also evaluate quantitative performance on our aimed target;
the Biography Portal Domain. The dataset used for evaluating on the target domain
is the seperate human-annotated biographynet partition. Quantitative evaluation in-
volves presenting a classification report with the precision, recall, and F1 scores for
each label. In this report we will remove the ’O’ label, because it is extremely common
in comparison to the other entities and not our main area of interest. In addition to
this classification report, we create confusion matrices, which indicate which labels the
model confuses for others. These two metrics will give us a general indication of how
the model performs. Additionally though we also aim to understand the types of errors
this model creates, which will determine our qualitative evaluation.
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Our qualitative evaluation involves annotating an extra small subset of Biography
Portal data. Because we do not know the origin of our already annotated Biography
Portal partition, we choose to annotate a small partition of data. The annotation pro-
cedure is as follows: we select a very small subset of approximately 1000 tokens from
old and new domain, and review misclassifications made by the BERtje finetuned on
CoNLL, BERTje finetuned on Tag de Tekst, and GijsBERT finetuned on Tag de Tekst.
An overview of the sources with known dates are given below in table 3.6.

Source key Date written

blnp 1968-2006
bwg 1998-2009
bwn 1979-2008
bwsa 1986-2003
elias 1903-1905
glasius 1851-1856
knaw 1857
nbw 1964-2011
nnbw 1911-1937
vdaa 1852-1878
wikipedia 2000
weyerman 1729-1769

Table 3.6: All sources with known dates and the dates of their biographies

Our small qualitative evaluation subset will sample on articles from old sources
ranging from 1729 up until 1878, and new sources ranging from 1900 to present. We
will then evaluate the mistakes made by the our models.

The evaluation of mistakes will try to identify systemic patterns. This means that
misclassifications that are similar, or are made more than once, will primarily be dis-
cussed.

This results in two new datasets seen in 3.3.2.

Table name Number of tokens Number of sentences

Qualitative test old 1411 116
Qualitative test new 1223 80

The old qualitative evaluation set contains 1411 tokens and 116 sentences, and the
new qualitative evaluation set contains 1223 tokens and 80 sentences. With old we
mean that the sources contained within are from 1878 at the newest. Annotations for
these partitions were done by a single annotator with the same annotation guidelines
as mentioned in 3.1.2.
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Results

Our results consist of two parts. The first of which is a quantitative assessment, where
we will assess the performance of each system on the partitions from “Tag-de-Tekst”
and on the annotated biographynet data. For this we will provide statistical insights
about the models we trained, along with information regarding each systems perfor-
mance on the data partitions. The second part involves a qualitative assessment, for
which we which is our biographynet partition, to evaluate patterns in misclassifications
that the model made.

4.0.1 Model Selection

Model selection only applies to selecting the best version of our finetuned BERTje
models. This involves the three BERTje seeds. For comparison, we have also graphed
our finetuned GijsBERT model to see how in performs in figure 4.1.

Figure 4.1: Training losses for each model

33
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The training losses show that the models are all improving on the training set as
the epochs continue. Since our goal during training is to minimize the loss function,
this is a good sign.

Figure 4.2: Validation losses for each model

When evaluating the losses on the validation partition however, we see that the
models very slightly lower their loss for the first two epochs, and then start increasing
their loss. Considering that the training loss is still going down, this can be considered
typical for overfitting for the train dataset.

For our selection we noted that the BERTje model with the seed of ’4365691’ has
the lowest validation loss, and therefore we have chosen to evaluate on this model.

4.0.2 Stanza Model

The first out of the box tool that we will evaluate is Stanza. The performance met-
rics on the NHA test partition from the Tag de Tekst set can seen in table 4.1. For
interpretation of these classification reports, we need to remember that precision refers
to the amount of true positives from the model over the total number of predictions
made by the model. Recall refers to how well the model is able to identify all positive
samples in the dataset. It is the ratio of true positives to the total number of actual
positives in the dataset.

On this Tag de Tekst test partition, we find that Stanza does not achieve high per-
formance. The I-LOC label only achieves 0.238 precision and 0.064 recall. The B-LOC
label is the highest performing label, with a precision of 0.638 and recall of 0.385. The
B-PER label is the second highest performing label, with a precision of 0.566 and recall
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Label Precision Recall F1-Score Support

I-LOC 0.238 0.064 0.102 154
B-LOC 0.638 0.385 0.480 252
I-PER 0.704 0.596 0.646 483
B-PER 0.566 0.545 0.556 352

Micro Avg 0.623 0.473 0.538 1241
Macro Avg 0.537 0.398 0.446 1241

Weighted Avg 0.594 0.473 0.519 1241

Table 4.1: Classification report for Stanza on NHA partition.

of 0.545. The highest performing label is I-PER, with a precision of 0.704 and recall of
0.596. The overall performance of Stanza on this test partition is 0.623 precision and
0.473 recall.

Overall, the classification report implies that Stanza does not perform well on this
test partition. The precision and recall scores are relatively low, indicating that the
model is not able to accurately identify the labels in the dataset. This could be due
to the fact that the model is not trained on this particular dataset, and therefore does
not have the necessary knowledge to accurately identify the labels.

In figure 4.3 we see that confusion typically occurs with B and I variations of tags.
I-LOC is for example frequently confused with B-LOC and I-PER is typically confused
with B-PER. It is important to note however that the I-LOC labels are also often con-
fused with tags such as I-PER. One plausible reason as to why this might be occuring
is due to LOC labels being more typically out of vocabulary for Stanza.

Figure 4.3: Confusion matrix for stanza on NHA partition
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Label Precision Recall F1-Score Support

I-LOC 0.050 0.019 0.027 54
B-LOC 0.548 0.331 0.413 257
I-PER 0.700 0.649 0.674 847
B-PER 0.571 0.658 0.612 781

Micro Avg 0.618 0.593 0.605 1939
Macro Avg 0.467 0.414 0.431 1939

Weighted Avg 0.610 0.593 0.596 1939

Table 4.2: Classification report for Stanza on SA partition.

The performance for Stanza on the Tag de Tekst SA test partition is similar to
its performance on NHA. The I-LOC label precision and recall are particularly low at
0.050 and 0.019 respectively. The B-LOC scores are slightly higher at 0.548 precision
and 0.331 recall. This indicates that the Stanza model is better at identifying the onset
of location entities and is comparatively worse at identifying its span. The PER labels
achieve higher precision and recall. With I-PER precision and recall at 0.700 and 649
and B-PER precision and recall at 0.571 and 0.658. For all labels the precision score
is higher than the recall, likely indicating that the model is conservative with choices
other than O when making a prediction.

The confusion matrix for this partition, seen in 4.4 confirms this suspicion. The
model confuses O more than other labels, though this is to be expected because O
is also the most common true label in the dataset. In this partition we also see that
there is a lot of confusion between B-PER and I-PER labels. Notably, the partition only
correctly classified a single location, and was likely to confuse them for the I-PER label.

Figure 4.4: Confusion matrix for stanza on SA partition
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Label Precision Recall F1-score Support

I-LOC 0.432 0.416 0.424 209
B-LOC 0.734 0.844 0.785 809
I-PER 0.782 0.803 0.792 1301
B-PER 0.679 0.883 0.768 1161

Micro Avg. 0.714 0.816 0.762 3480
Macro Avg. 0.6572 0.7369 0.692 3480

Weighted Avg. 0.715 0.816 0.760 3480

Table 4.3: Classification report for Stanza on Biography test partition

The Stanza model achieves much better performance on the biography test par-
tition in comparison to the Tag de Tekst partitions. For I-LOC, Stanza achieves a
0.432 precision and 0.416 recall. For B-LOC stanza achieves 0.734 precision and 0.844
recall. For I-PER we get a 0.782 precision and 0.803 recall. The B-PER label achieves
0.679 precision and 0.883 recall. This finding somewhat supports the prior suggestion,
namely that the Stanza model had di�culty with the strong domain di↵erences and
noise found in the Tag-de-Tekst partitions.

The confusion matrix for this partition also reflects these results. This partition
finds relatively less confusion between B-PER and I-PER labels when compared to
Stanza performance on Tag-de-Tekst. We do however still see that the model is par-
ticularly conservative with the I-LOC label, though it only occurs a total of 209 times
in this Biography test partition.

Figure 4.5: Confusion matrix for stanza on biography partition
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4.0.3 Flair Model

Next, we look at the performance of our Flair model.

Label Precision Recall F1-score Support

B-LOC 0.7258 0.5357 0.6164 252
B-PER 0.6060 0.6903 0.6454 352
I-PER 0.7495 0.7433 0.7464 483
I-LOC 0.3137 0.1039 0.1561 154
Micro avg. 0.6741 0.6068 0.6387 1241
Macro avg. 0.5987 0.5183 0.5411 1241
Weighted avg. 0.6499 0.6068 0.6181 1241

Table 4.4: Classification report for Flair on the NHA partition

The Flair model gets better scores than Stanza on the test NHA partition. It
achieves higher precision than recall for the B-LOC label. With 0.752 precision and
0.535 recall. For I-LOC it achieves 0.313 precision and .103 recall, thus implying that
location span is more di�cult for the model to interpret. For the PER label, the model
reaches a similar F1 score for onset and span, with the I label achieving a slightly higher
score of 0.74 compared to 0.64 for the B-PER label.

Similarly to the Stanza model, we can see that LOC seems to be the most di�cult
label to interpret. In the confusion matrix shown on 4.6 we can see that this model also
predicts very few I-LOC locations, and conservatively classifies them as O. Similarly
to stanza, we see the most PER confusion occurring with the B and I variants of that
tag.

Figure 4.6: Confusion matrix for Flair on NHA partition
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Label Precision Recall F1-score Support

B-LOC 0.5529 0.5486 0.5508 257
B-PER 0.6330 0.7375 0.6813 781
I-PER 0.7614 0.7308 0.7458 847
I-LOC 0.0435 0.0556 0.0488 54
Micro avg 0.6541 0.6906 0.6719 1939
Macro avg 0.4977 0.5181 0.5066 1939
Weighted avg 0.6620 0.6906 0.6745 1939

Table 4.5: Classification report for Flair on the SA partition

On the SA partition, Flair achieves a worse B-LOC F1-score at 0.55. Similarly to
the other data, the I-LOC performs worse than B-LOC with a F1 score of just 0.04.
I-PER does slightly better on this partition with a F1 score of 0.74 compared to 0.68
for the B-PER label. This implies that the SA partition is not much easier for this
model to the extent that it was easier for Stanza.

The confusion matrix for this model 4.7 shows that I-LOC is typically not guessed
by the model, confusing it for O 62 times. We also see that the model confused the O
label for B-PER and I-PER tags. This is not entirely surprising because the distribu-
tion of PER labels is also typically higher, as we indicated in the data overview section.
As we saw in the other partiitons, we again see that B-PER and I-PER tags were often
frequently confused by one another.

Figure 4.7: Confusion matrix for Flair on SA partition

On the Biography test set, Flair does better in comparison to the Tag de Tekst data.
This is likely due to the domain di↵erence and low amount of noise in this partition.
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Class Precision Recall F1-score Support

B-LOC 0.7786 0.8999 0.8349 809
B-PER 0.7054 0.8889 0.7866 1161
I-PER 0.7921 0.7879 0.79 1301
I-LOC 0.6124 0.5215 0.5633 209
Micro Avg 0.7478 0.8316 0.7875 3480
Macro Avg 0.7221 0.7745 0.7437 3480
Weighted Avg 0.7493 0.8316 0.7857 3480

Table 4.6: Classification report for Flair on Biography test partition

All of the scores have an F1 above 78, with the exception of I-LOC, achieving an F1
score of 0.56.

In the confusion matrix 4.8 we can again see that the model is more likely to guess
a PER label when the true label is O. Additionally, we see that there is little confusion
about the LOC label for other labels than O. Again however we see that a true B-PER
label is often confused as I-PER by the model.

Figure 4.8: Confusion matrix for Flair on biography partition

4.0.4 Baseline Model

Our baseline model was BERTje trained on CoNLL data. From the results we quickly
notice that it achieved poor results on our data.

As can be seen from 4.7 Baseline BERT model does not achieve great NER per-
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Label Precision Recall F1-score Support

B-LOC 0.61 0.26 0.37 252
B-PER 0.61 0.31 0.41 352
I-PER 0.55 0.29 0.38 483
I-LOC 0.21 0.05 0.08 154
Micro avg 0.56 0.26 0.35 1241
Macro avg 0.49 0.23 0.31 1241
Weighted avg 0.54 0.26 0.35 1241

Table 4.7: Classification report for baseline model on the NHA test partition

formance on the test NHA partition. This model achieves a 0.41 F1-score on B-PER,
a 0.38 F1-score on I-PER, a 0.08 F1-score on I-LOC and a 0.37 F1-score on B-LOC.
Similarly to the other models, it seems that I-LOC is the most di�cult to interpret,
though for the baseline BERT model, this score is lower in comparison to Stanza and
Flair. Additionally, span is harder for the model to identify in comparison to onset.

When we see what this baseline model confuses in the confusion matrix from 4.9
we primarily see the high amount of O guesses. This implies that this model takes an
extremely conservative approach while guessing. Furthermore, it reflects similar con-
fusion as the other models with B-PER and I-PER. The low amount of guesses by this
model do not lend itself to clear interpretations to be made from this matrix.

Figure 4.9: Confusion matrix for baseline model on NHA test partition

On the SA dataset, the model performs similarly, achieving an F1 score of 0.47
for B-PER, 0.33 for I-PER, 0.016 for I-LOC and 0.241 for B-LOC. Notably, B-LOC
classification scores lower in comparison to this model on the NHA partition, however
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Class Precision Recall F1-score Support

B-LOC 0.430 0.167 0.241 257
B-PER 0.586 0.397 0.473 781
I-PER 0.492 0.251 0.333 847
I-LOC 0.014 0.019 0.016 54
micro avg 0.499 0.292 0.369 1939
macro avg 0.380 0.209 0.266 1939
weighted avg 0.508 0.292 0.368 1939

Table 4.8: Classification report for baseline model on the SA test partition

I-LOC scores slightly better, but still bad at 0.016.

In the confusion matrix from 4.10 we see a similar pattern. This time the O label is
centered in the figure, and its dark color immediately highlights that it is also conser-
vative whilst guessing. We also again see that B-PER and I-PER labels are typically
confused by one another, and very few I-LOC guesses were made, whilst B-LOC was
frequently misclassified as O.

Figure 4.10: Confusion matrix for baseline model on SA test partition

The F1 scores for the baseline BERT model on the test biography partition were
0.45 for B-PER, 0.42 for I-PER, 0.31 for I-LOC and 0.60 for B-LOC. Surprisingly,
B-LOC performed much better on this dataset in comparison to the baseline BERT
model performance on the other test sets. Additionally, the scores for this BERT model
again reflects that this partition seems to yield better results, likely due to the domain
di↵erences and less noise.



43

Class Precision Recall F1-score Support

B-LOC 0.738 0.509 0.603 809
B-PER 0.538 0.398 0.458 1161
I-PER 0.544 0.351 0.427 1301
I-LOC 0.391 0.258 0.311 209
Micro Avg 0.579 0.398 0.472 3480
Macro Avg 0.553 0.379 0.450 3480
Weighted Avg 0.578 0.398 0.471 3480

Table 4.9: Classification report for baseline model on biography partition

In the confusion matrix from 4.11 we see that this model is again very conservative
with its classifications. The model again makes most of its mistakes because it confuses
all of the labels for O consistently. Notably, the I-LOC label is guessed more frequently
on this partition than B-LOC.

Figure 4.11: Confusion matrix for baseline model on biography test partition

Finetuned Tag-de-Tekst BERTje Model

The Tag de Tekst finetuned models achieves consistently better scores than all of the
other models on the NHA and SA datasets. This is not surprising as these datasets
are close to their training data. Notably this finetuned BERTje is also outperforming
GijsBERT for some of the entities in these partitions.

As can be seen from 4.10 finetuned Tag-de-Tekst BERTje model also achieves sub-
stantially better scores than the baseline. On The NHA partition, it achieved a 0.83
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Precision Recall F1-Score Support

B-LOC 0.933 0.722 0.814 252
B-PER 0.906 0.767 0.831 352
I-LOC 0.669 0.565 0.613 154
I-PER 0.831 0.917 0.872 483
micro avg 0.849 0.791 0.819 1241
macro avg 0.835 0.743 0.782 1241
weighted avg 0.853 0.791 0.816 1241

Table 4.10: BERTje on Tag de Tekst model performance for Partition NHA

F1 score for B-PER, 0.61 for I-LOC, 0.87 for I-PER and 0.81 for B-LOC. This is the
best of all tested models for this partition.

The confusion matrix for this partition 4.12 reflects that this model outperforms
the other models. The most notable confusion here is between B-LOC and I-LOC
along with B-PER and I-PER. This indicates that the model might have di�culty
determining the onset of tags.

Figure 4.12: Confusion matrix for finetuned BERTje on NHA test partition

The finetuned Tag-de-Tekst BERTje model achieves similar results on the SA par-
tition with the exception of I-LOC, which scored lower than on NHA with an F1 of
0.33. For B-PER, I-PER and B-LOC the finetuned model achieved F1 scores of 0.82,
0.85 and 0.72 respectfully.

When assessing these results with a confusion matrix 4.13, we see that the model
is actually more likely to guess B-LOC when the true label is I-LOC. Additionally we
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Precision Recall F1-Score Support

B-LOC 0.833 0.642 0.725 257
B-PER 0.909 0.754 0.824 781
I-LOC 0.274 0.426 0.333 54
I-PER 0.819 0.895 0.856 847
micro avg 0.827 0.792 0.809 1939
macro avg 0.709 0.679 0.685 1939
weighted avg 0.842 0.792 0.811 1939

Table 4.11: BERTje on Tag de Tekst model performance for Partition SA

see that I-PER is often confused for B-PER which we also saw from the other models.

Figure 4.13: Confusion matrix for finetuned BERTje on SA test partition

Label Precision Recall F1-Score Support

B-LOC 0.759 0.787 0.773 809
B-PER 0.680 0.584 0.628 1161
I-LOC 0.352 0.522 0.420 209
I-PER 0.686 0.802 0.740 1301
micro avg 0.673 0.709 0.691 3480
macro avg 0.619 0.674 0.640 3480
weighted avg 0.681 0.709 0.691 3480

Table 4.12: BERTje on Tag de Tekst model performance for Partition Biography

On the Biography test partition, the finetuned Tag-de-Tekst BERTje model per-
formed worse than Flair but better than the baseline. It achieved a F1 score of 0.62
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for B-PER, 0.42 for I-LOC, 0.74 for I-PER and 0.77 for B-LOC. Noticeably, the I-LOC
score was better at 0.42.

In the confusion matrix from 4.14 we see that this partitions lends itself to more
confusion. We see that especially the O label is confused for other labels, suggesting
that this model is not very conservative in its classification approach. Similarly to the
other partitions, we see that there is confusion regarding the onset of entities such as
B-PER and I-PER or B-LOC and I-LOC.

Figure 4.14: Confusion matrix for finetuned BERTje on biography test partition

GijsBERT model

GijsBERT scores similarly to the finetuned BERTje model. Surprisingly, it outper-
formed the finetuned tag-de-tekst BERTje model on the biography test partition, which
mostly consisted of non-historical text.

Label Precision Recall F1-score Support

B-LOC: 0.932 0.810 0.867 252
B-PER: 0.869 0.639 0.736 352
I-LOC: 0.806 0.675 0.735 154
I-PER: 0.857 0.756 0.803 483
micro avg: 0.869 0.724 0.790 1241
macro avg: 0.866 0.720 0.785 1241
weighted avg: 0.869 0.724 0.789 1241

Table 4.13: Performance for GijsBERT on NHA test partition
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GijsBERT performed very well on the NHA partition. It achieved an F1 score of 0.86
for B-LOC, 0.74 for B-PER, 0.74 for I-LOC and 0.80 for I-PER. From this classification
report, it seems that the scores achieved here are similar to that of the Tag-de-Tekst
finetuned BERTje model. The GijsBERT model outperformed the Tag-de-Tekst fine-
tuned BERTje model slightly on the B-LOC and I-LOC tags on this partition.

When we assess these results with a confusion matrix 4.15, we see that there was
also little confusion in this model. One thing to note however form this confusion
matrix, is that the model seems to make the most guesses for O, which is also not
surprising as O is the most common label.

Figure 4.15: Confusion matrix for finetuned GijsBERT on NHA test partition

Label Precision Recall F1-score Support

B-LOC: 0.826 0.739 0.780 257
B-PER: 0.901 0.713 0.796 781
I-LOC: 0.412 0.389 0.400 54
I-PER: 0.838 0.842 0.840 847
micro avg: 0.846 0.764 0.803 1939
macro avg: 0.744 0.671 0.704 1939
weighted avg: 0.850 0.764 0.802 1939

Table 4.14: Performance for GijsBERT on SA test partition

GijsBERT also achieved good performance on the SA partition. It achieved F1
scores of 0.78 for B-LOC, 0.79 for B-PER, 0.40 for I-LOC and 0.84 for I-PER. The
averages imply that it achieved almost equal performance when compared to the fine-
tuned BERTje model on this dataset. One notable di↵erence is that it achieved a better
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score for I-LOC.

In the confusion matrix from 4.16, we see that the I-LOC label is rarely guessed,
whilst the I-PER label is guessed more frequently than the B-PER label. This again
is strange, and implies that GijsBERT also has di�culties with determining the onset
of an entity, similarly to what was seen form our finetuned BERTje model. In this
partition we also see that GijsBERT is slightly more conservative in its classification
approach, due to the larger amount of misclassifications with O in comparison to its
other classifications.

Figure 4.16: Confusion matrix for finetuned GijsBERT on SA test partition

Label Precision Recall F1-score Support

B-LOC: 0.793 0.721 0.755 809
B-PER: 0.702 0.651 0.676 1161
I-LOC: 0.510 0.254 0.339 209
I-PER: 0.749 0.739 0.744 1301
micro avg: 0.735 0.676 0.705 3480
macro avg: 0.688 0.591 0.628 3480
weighted avg: 0.729 0.676 0.699 3480

Table 4.15: Performance for GijsBERT on Biography test partition

On the biographynet partition, GijsBERT performed very similarly when compared
to the Tag-de-Tekst finetuned BERTje model. It achieved an F1 score of 0.75 for B-
LOC, 0.67 for B-PER, 0.34 for I-LOC and 0.74 for I-PER. GijsBERT again outper-
formed the finetuned BERTje on both I-LOC and B-LOC, however the di↵erence is
very small for this partition.
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The confusion matrix for GijsBERT on this partition 4.17 shows that I-LOC and
B-LOC along with B-PER and I-PER are often confused by the model. Additionally,
we see the model is somewhat conservative in its classification due to the variation of
predictions when the true label was O.

Figure 4.17: Confusion matrix for finetuned GijsBERT on biography test partition

4.0.5 Qualitative Evaluation

Our qualitative evaluation consisted of two random samples. One of these random sam-
ples was done specifically for sources that ranged from 1729 up until 1878. The other
sample was for finding more recently written biographies that occurred from 1900 to
present. Three biographies were selected for each sample which resulted in two small
partitions for our evaluation. The older partition consisted of approximately 1000 to-
kens, and 77 entities, whereas the newer partition resulted in 1300 tokens with 140
entities.

In this section we will review the classifications made by our three models on an
individual level. We will specifically look for misclassifications with a pattern occuring
more than once, exploring the limitations of each model. In the data partitions, it must
be noted that the location entity is more rare, which is the case for all our data. In the
newer set are only 10 location entities, and only one of which is I-PER. This is likely
the case because the quality of the data is higher in comparison to what we saw in
Tag de Tekst data. In the case of Tag de Tekst, the OCR would in some cases split a
location entity such as “Amsterdam” into two tokens, “Ams” and “terdam”, resulting
in more I-LOC entities. Additionally, the annotation guidelines limit location entities
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to o�cial locations, which are typically only a single token marking a city or a country.

In table 4.0.5 we present the general statistics four our two sets with a table. These
indicate the amount of entities found in each. We choose to present these here instead
of in the data overview because our sampling method was part of the experimental
setup.

Dataset B-PER I-PER B-LOC I-LOC O

Old biographies selection 33 37 6 1 926
New biographies selection 68 41 30 1 1162

Table 4.16: Label distribution overview for qualitative partitions

Qualitative Evaluation for baseline BERTje

As was implied from the classification reports, the baseline BERTje model made many
mistakes. It seemed to loosely mark instances of the token ”van” as I-PER. With this
is meant that it marked no instances of a B-PER anywhere around this token. “van”
is a function word in Dutch, but is also commonly used in surnames. In the modern
Dutch text, another function word, “is” was marked as B-PER, despite this not being
a common marking for a name.

This BERTje model did correctly mark person-titles such as “Mevrouw” but missed
the more unique tokens that followed thereafter. In the modern partition the name
“Jeanne d’ Arc” had “Jeanne” and “d” correctly identified as B-PER and I-PER but
had “Arc” missed. This seemed to be a consistent finding, the baseline BERTje model
did not seem to mark any person three token PER entities correctly.

As for LOC some well known cities such as Rotterdam and Leiden were missed in
the middle Dutch partition, whereas other cities like Utrecht, Groningen and Amster-
dam were identified correctly. “Oranjewoud” was another missed LOC entity, though
this is less surprising as it is a lesser known region within the Netherlands.

Qualitative Evaluation for Tag-de-Tekst BERTje

The first model that we will evaluate is the Tag-de-Tekst BERTje model. One im-
portant thing to note is that the model chooses to not annotate person-titles. The
annotators for both of the biography partitions however do annotate these person-
titles. This likely indicates the reason as to why the PER scores were lower for the
biographynet test partition.

For the middle Dutch data, the Tag-de-Tekst BERTje model primarily made onset
mistakes with B-PER and I-PER tags, which is due to the aforementioned annotation
convention di↵erences from Tag de Tekst and biographynet. These cover a lot of the
PER disagreements in the middle Dutch text. Another notable finding is that a Ger-
man excerpt in the middle Dutch data with some PER entities, was correctly marked
by the model.
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In the new biographies selection, the model starts by overestimating the span of
a PER entity. The phrases “Schilder, tekenaar. Geboren 1638, Utrecht.” marks the
introduction of a person where “Schilder” is their first name and “tekenaar” is their
profession. The model correctly marked Schilder as the onset of a name, but “teke-
naar” was incorrectly marked as I-PER. Typically, the information that would help
understand that “tekenaar” is a profession is the comma inbetween these two tokens
and the lowercase ’t’.

The model also made mistakes as some PER entities were missed. “BOELAART
JAN” was a person entity that was missed by the model. Notably, a distinguishing
characteristic of this entity was that it was completely written with capital letters.
Another distinguishing characteristic of this entity was that it had an atypical order
where the surname comes before the given name. This is likely the more important
characteristic, because another PER entity (“THEODORUS STOCKUM”) in the mid-
dle Dutch text with all capital letters was correctly identified by the model. There was
also an instance where a person entity only consisted of the initial “B.” which was also
missed by the model.

The behaviour for identifying location entities was interesting. The Tag de Tekst
finetuned BERTje model did not seem to always assign the B-LOC tag at the onset
of a location. In some cases, a single LOC entity would be labeled as I-LOC. This
is interesting because for other single token location entities the model identified B-
LOC correctly. This particular example happened on the token “Oranjewoud” in the
sentence:

• “In het bejaarde centrum Oranjewoud.”

Similar mistakes occurred in the modern biography partition. Another example
where I-LOC was used instead of B-LOC occured at the entity “Indie”. For both of
these cases it occurs when there is one token inbetween the PER and LOC entity,
though further evaluation would be needed to conclude that this happens in all such
cases.

For LOC tags, some entities were also missed by the model. This included “italie”,
and “Gelre” in the modern partition.

Qualitative Evaluation for GijsBERT

The next model we evaluate is GijsBERT. The first thing to note is that the GijsBERT
model seems to perform similarly to the BERT model for the old biographies selection.
Similarly, it does not mark person-titles. This is to be expected because both BERTje
and GijsBERT were finetuned on the same data.

For the middle Dutch data, the Gijsbert model missed persons which the Tag-de-
Tekst BERTje model marked correctly. Person entities like “J.M.M Aler” , “Jeanne
d’ Arc” and “Vigny Ibsen” were missed by the model in the modern Dutch partition.
Some common Dutch names such as “Hendrik” and “Willem” were missed by the model
in the modern partition. This might be because these names are more modern and thus
have not been seen before by the model. Notably, the GijsBERT model confused the
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B-PER tag for I-PER in some instances where only a single token was present. In the
modern partition, it also made token specific mistakes, where the token “Gelre” was
consistently confused for a PER entity whilst being a LOC entity. Similarly to the
BERTje model, the GijsBERT model correctly identified PER entities in the German
excerpts.

Notably, the GijsBERT model made very few mistakes with LOC entities. The only
LOC mistake that was repeatedly made occured with the token “Gelre” which was, as
mentioned before frequently confused for the PER tag.
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Discussion

The purpose of this section is for discussing the results and the implications thereof.
Additionally, we discuss what could be improved, along with discussing what we sug-
gest for future directions in the field.

5.0.1 Interpretation of findings

The present work highlights the di↵erences between several NER models on current
and historical Dutch data. The evaluation included quantitative classification reports
for out-of-the-box NER tools such as Stanza and Flair, as well as quantitative and
qualitative assessments for three BERT-based models.

Based on the classification reports, it was observed that Stanza and the Base-
line BERTje model performed the worst across all three data partitions. This finding
was unexpected, particularly in the case of BERTje, considering that other fine-tuned
variants of BERTje achieved significantly better scores according to the quantitative
reports. During the experiment, we took extra care to ensure that the model was ini-
tialized correctly when we noticed this discrepancy. However, there was no di↵erence
in performance whether we initialized the model directly via the tools provided in the
HuggingFace platform or by unpacking the subwords into tensors and making predic-
tions from there. Notably, the results obtained from this model di↵er greatly from what
was suggested in (?). It is possible that the referenced model was not identical to the
one available in the HuggingFace repository, but there is no available documentation to
confirm this. Another explanation could be that the baseline BERTje model, fine-tuned
on CoNNLL, does not generalize well to our data.

The remaining GijsBERT and BERTje models were assessed both quantitatively
and qualitatively. When selecting the appropriate variants of these models, we con-
sidered the validation and training losses. The validation process revealed that all
variations of BERTje and the GijsBERT model experienced an increase in validation
loss after the second epoch. There could be several reasons for this observation. One
possibility is that unique conditions present in the Tag de Tekst dataset, such as sec-
tions with lower OCR quality or worse annotation quality, contribute to this behavior.
Since no explicit annotation guidelines were presented in the Tag de Tekst data source,
in addition to only having a single set of gold labels for each partition, we can not
measure interrater agreement.
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Another problem might be that the noise present in OCR-based training data might
limit the model’s ability to extract signal from the annotations, thereby hindering
convergence. Alternatively, experimenting with di↵erent hyperparameter values, such
as learning rate and max sequence length, could help address this issue. On a positive
note, the fact that the GijsBERT and BERT models were exposed to the same extent
of training facilitates their comparison.

When analyzing the classification reports, it was found that the performance of Gi-
jsBERT and BERTje was very similar. Surprisingly, the fine-tuned BERTje model did
not necessarily perform worse on historical texts compared to GijsBERT. In fact, when
assessing the weighted averages, BERTje even showed better performance on the NHA
partition. Another unexpected finding was that the GijsBERT model outperformed
BERTje on the Biography test partition, despite the fact that this partition largely
contains modern data. It is important to note that the Biography test partition posed
a greater challenge for both models, which is expected due to its di↵erent characteris-
tics compared to the data used for model fine-tuning. Overall, it can be concluded that
both models performed similarly, which aligns with the negligible di↵erences reported
in the original GijsBERT study (Manjavacas and Fonteyn, 2022)[p.130].

The qualitative evaluation provided further insights into the performance of BERTje
and GijsBERT. It revealed that the models still struggled with some basic aspects of
the task, such as the requirement for an I label to occur only if there is a preceding B
label. By employing a regular expression to identify mistakes in the training data, it was
discovered that the Tag de Tekst annotators also made several such errors. Additionally,
a mistake was identified in the fine-tuned BERTje model, where it misclassified a PER
entity when a given name followed a surname. Unfortunately, due to the limited size
of our test partitions, we were unable to thoroughly investigate the causes of these
mistakes.

5.0.2 Limitations and Future Research

There are several limitations of our current study. The most important of which is
that our baseline system seems to perform poorly on all test partitions. Because this
has been retrieved from an external party, we are also unable to assess the quality of
the set. The name of this model however contains CoNLL-2002, suggesting that it was
trained on approximately 16,000 sentences.

Another limitation lies in our training partition. The quality of the Tag de Tekst
data could not have been verified by metrics such as annotator agreement. Additionally,
performance could have likely improved if more e↵ort was taken to further preprocess
this data, as remnants of poor OCR quality were still found.

For future iterations we would also have liked to further expand the test partition
for qualitative evaluation. This would have helped more consistency in the examples.
Alternatively, future exploration in this area might find it su�cient to explore the de-
velopment of challenge sets in order to better understand the behaviour of these models.

The findings of this thesis point additional investigation towards finetuning for do-
main adaptation. It seems that with BERTje performing similarly to GijsBERT on the
historical domain, the finetuned more general BERTje model, is the more cost-e↵ective
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solution to this problem.
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Chapter 6

Conclusion

This thesis explored the task of Named Entity Recognition (NER) by exploring the
performance of di↵erent systems on current, and older dutch biographical data. We
were interested in two research questions.

1. How does a Dutch BERTje model with an additional finetuned classifier from a
generic dataset perform on the NER task in comparison to out of the box tools
such as Stanza and Flair?

2. How well does BERTje finetuned on historical data perform against a BERTje
that was pretrained on the historical domain?

In order to explore these questions, we prepared some out of the box tools such
as Stanza and Flair, along with a BERTje model trained on CoNLL that was read-
ily available through the HuggingFace platform. Additionally, all data partitions were
analysed, and several extra partitions annotated on biographical data were used to
explore the in domain performance quantitatively.

With regards to the first research question, our results imply that Flair had the
best results on all of our quantitative evaluation data when compared to the generic
BERTje model and Stanza. We interpreted the performance of both Stanza and the
baseline BERTje model as poor. This result was unexpected as we initially hypothe-
sized that the BERTje model would be better suited for this task due to its Word-Piece
tokenization system. Extra care was taken to ensure that the BERTje model was ini-
tialized correctly, and our quantitative measurements show much worse performance
from this model in comparison to the original paper from (?). One possible explanation
highlighted in our discussion lies in the limited understanding that we have about how
this particular BERTje model was finetuned.

For the second research question, we finetuned two models on historical Dutch text
sourced from Tag de Tekst. These models were pretrained BERT based systems, called
BERTje (de Vries et al., 2019), and GijsBERT (Manjavacas and Fonteyn, 2022). No-
tably, we found that both models had di�culty minimizing the loss function across
epochs, and in both cases, the second epoch had the highest loss of the total eight.
One benefit to this however, is that both models had been exposed to the same number
of iterations across the training data, resulting in a more fair comparison.
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For these two models the results imply that BERTje and GijsBERT perform sim-
ilarly across all our test partitions and much better than the baseline model. This is
also a surprising finding, as we initially expected that a model pre-trained on historical
data will outperform a more general model like our finetuned BERTje. These negligible
di↵erences however, were also identified in the original GijsBERT paper (Manjavacas
and Fonteyn, 2022)[p.130]. When evaluating their misclassifications, we found similar
mistakes across these two systems. Our results seem to therefore imply that costly
in-domain pretraining on BERT models does not neccesarily yield higher performance
in comparison to finetuning a more generic model on in-domain data. Another finding
regarding the qualitative evaluation lies in the inability for these models to understand
that B tags are associated with the onset of a tag.

To conclude, it appears that Flair is the best out-of-the-box tool available for the
NER task when assessed on Dutch historical and biographical data. In addition to
that, we found that a more generalized BERTje model finetuned on OCR level his-
torical data, will perform similarly to a GysBERT model that was both pre-trained
and finetuned on historical data. This result became apparent when assessed on both
Dutch biographical, and historical data.
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Chapter 7

Appendix

7.1 Word Clouds

During the data analysis phase, several Word Clouds were produced, some of which
have been omitted from the data overview. The wordcloud in 7.1 shows the most pop-
ular named entities in the biography test partition when identified through Stanza.
We applied this same procedure to the other partitions during the data exploration
phase. Figure 7.2 shows the popular entities according to Stanza for the NHA parti-
tion. Figure 7.3 shows the popular entities according to Stanza in the discarded RHC
partition. Figure 7.4 shows the popular entities according to Stanza in the SA partition.

7.2 BiographyNet plots

When exploring the available data for this project, we also made some circle plots con-
taining the list of sources in the full biographynet set and approximately how many
articles are present in each. This can be seen in 7.5.
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Figure 7.1: Word cloud showing the most popular entities in the biography test partition
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Figure 7.2: Word cloud showing the most popular entities in the NHA partition
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Figure 7.3: Word cloud showing the most popular entities in the discarded RHC par-
tition
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Figure 7.4: Word cloud showing the most popular entities in the SA partition

Figure 7.5: Donut plot showing the percentage of biographies per source in the full
biographynet
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