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Abstract

This thesis investigates the feasibility of using Whisper’s English-only base model (base.en)
to detect pronunciation errors in spoken English data from the Massive Open Online Course
(MOOC) English Pronunciation in a Global World that is provided at VU Amsterdam. Given
the challenges of providing individualized pronunciation feedback in large-scale online courses,
there is a need for more reliable and automated assessment tools. This study focuses on devel-
oping a classifier for word-level binary classification of intelligibility by leveraging speech-to-
text transcriptions generated by Whisper. Various temperature settings and confidence thresh-
olds are explored to optimize the model’s accuracy in identifying mispronounced words. A
phonetic-based classification method is also employed to handle homophones effectively, en-
suring that the model can distinguish between intelligible and unintelligible pronunciations
despite of the spelling. The performance of the classifier is evaluated against gold standard
annotations provided by a linguistic expert.

Experiments revealed that while temperature settings had a minimal effect on the model’s
precision, higher temperatures increased the frequency of nonsensical transcriptions. Con-
fidence thresholds demonstrated a clear trade-off between precision and recall, where stricter
thresholds reduced the model’s ability to detect unintelligible speech. The phonetic-based clas-
sification method consistently outperformed the text-based approach, suggesting it may offer a
more robust solution for intelligibility tasks.

Despite these insights, the Whisper model’s performance in word-level intelligibility clas-
sification fell short of expectations. The model’s tendency to produce near-homophones for
errors rather than random inaccuracies highlights both its strengths and limitations. Overall,
the findings indicate that while Whisper shows promise in speech recognition, its current design
is not fully suited for accurate pronunciation error detection. Further research into alternative
ASR models and refined methodologies is recommended to enhance automated pronunciation
assessment systems.
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Chapter 1

Introduction

1.1 Problem Definition

English Pronunciation in a Global World1 is an online course provided by the Centre for Global
English at VU Amsterdam. Like other Massive Open Online Courses (MOOC), it aims to help
a diverse global audience improve their English language skills. One of the key components
of this course is spoken English, where learners submit speech samples for assessment. How-
ever, the sheer volume of participants in such an online course makes it challenging to provide
individualized feedback on pronunciation. Traditional methods of pronunciation assessment
rely heavily on human evaluators, which are time-consuming, leading to challenges in provid-
ing personalized feedback, especially in large-scale learning environments where hundreds or
even thousands of learners participate simultaneously.

The course English Pronunciation in a Global World now mainly relies on peer feedback
that is made by non-native speakers of English, which can be subjective and inconsistent, lead-
ing to less precise feedback on pronunciation. However, accurately assessing pronunciation is
crucial for supporting learners’ progress in language learning. This is also the reason why En-
glish Pronunciation in a Global World is now seeking solutions to supplement peer feedback
with more reliable tools or methodologies that automate pronunciation assessment. While peer
feedback fosters a collaborative learning environment, it may not always provide the level of
accuracy needed for learners to make significant progress. Given this consideration, there is a
pressing need for a more efficient and objective method (e.g., automated corrective feedback
system) to assess pronunciation in such contexts. The course could benefit from integrating
such systems that are developed by using expert annotation of speech data to ensure that learn-
ers receive precise and constructive guidance on their pronunciation skills.

This internship-based thesis aims to explore and evaluate the effectiveness of detecting
pronunciation errors in an existing automatic speech recognition (ASR) model, specifically
Whisper’s English-only base model (base.en). The focus will be on performing a speech-to-
text transcription of English speech data from the MOOC and using these transcriptions to
build a classifier used for a word-level binary classification of intelligibility. The ultimate goal
is to determine whether Whisper can be effectively used as a foundation for an automated
corrective feedback system (which will not be implemented in this project). The classification
of intelligibility is the first essential step towards providing such automated feedback, making
this research highly relevant for improving the quality of language learning in MOOC.

1https://www.futurelearn.com/courses/english-pronunciation
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2 CHAPTER 1. INTRODUCTION

1.2 Research Question

This project explores the feasibility of using Whisper’s English-only base model (base.en)
to detect pronunciation problems in MOOC English speech data. Specifically, the primary
research question is:

Can Whisper be used for detecting pronunciation problems by checking the intelligi-
bility of speech through a word-level binary classification?

1.3 Approach

The project focuses on comparing the performance of the same model (base.en) with different
temperature settings and confidence thresholds to find specific parameter values that optimize
the model’s ability to effectively identify mispronounced English words.

This is how it works: Firstly, the Whisper model is used to get transcriptions for word-
level speech data. Secondly, by comparing the model-generated transcriptions with the true
transcriptions (the written word), a classifier is built for assigning labels, for instance, if the
model’s transcription is identical to the target word, a label of ‘intelligible’ will be assigned to
this input speech data, otherwise ‘unintelligible’. To better handle homophones, a phonetic-
based classification method using CMUDict is also applied. Taking the word ‘meet’ as an
example, if the model generates ‘meat’ as the transcription, it will still receive an ‘intelligible’
label based on the phonetic-based classification method. Finally, these labels are compared
with the gold labels (gold annotation of intelligibility by a linguistic expert) to evaluate the
model’s performance of classifying intelligible and unintelligible instances.

Different temperature settings are set when using the model to do speech-to-text conver-
sion, and the confidence scores are obtained along with the transcription and then being used
as a threshold. By exploring various configurations of temperature settings, confidence scores,
and classification methods, the optimal model will be found and then run on the test data.

1.4 Outline of the Thesis

The chapters of this thesis are segmented as follows. Chapter 2 provides an overview of pre-
vious related work, focusing on automatic pronunciation checkers. Chapter 3 elaborates the
methodology (including the data and experimental setup) used for this task, followed by Chap-
ter 4 (Results) and Chapter 5 (Error Analysis). Chapter 6 provides a discussion and insights
into this project’s limitations and future directions. Lastly, Chapter 7 concludes this thesis
project.



Chapter 2

Related Work

This chapter provides an overview of recent related work in educational Natural Language
Processing (NLP) with a specific focus on applications in language learning and automatic
feedback systems, particularly for pronunciation. It surveys existing literature and technolo-
gies, highlighting key approaches such as automatic pronunciation checkers integrated with
Automatic Speech Recognition (ASR).

2.1 Educational NLP for Language Learning

Natural Language Processing (NLP) has many advantages in education as it enables person-
alized language learning experiences (Younis et al., 2023). It plays a crucial role in language
learning by enhancing the way learners interact with and understand new languages. Through
technologies like automated translation (e.g., Google Translate) which facilitates communica-
tion and understanding across languages, spelling or grammar correction (e.g., Grammarly),
and conversational chatbots or virtual assistants (e.g. Siri, Alexa, Google Assistant), NLP
allows learners to practice language skills in real-time, receive instant feedback, and access
personalized learning content. By analyzing and generating human language, NLP helps learn-
ers learn complex linguistic patterns, improve their fluency, and engage more deeply with the
language in a dynamic, interactive manner.

For now, NLP is widely integrated with a large number of educational contexts such as
research, science, linguistics, e-learning, and evaluation systems, and contributes to resulting
positive outcomes in other educational settings such as schools, higher education systems, and
universities (Alhawiti, 2014; Mathew et al., 2021).

Pronunciation, as a critical aspect of language learning that directly impacts a learner’s abil-
ity to communicate effectively in the target language, has been increasingly supported by ad-
vanced technologies and methodologies. Popular language learning platforms like Duolingo1,
Babbel2, and Rosetta Stone3 are developed using NLP to personalize learning, assess language
proficiency, and even provide real-time feedback.

1https://en.duolingo.com/
2https://uk.babbel.com/
3https://eu.rosettastone.com/
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4 CHAPTER 2. RELATED WORK

2.2 Automated Pronunciation Feedback Approaches

This section reviews some related works of automatic pronunciation checkers for language
learning.

For detecting pronunciation errors, various techniques have been used in computer-aided
pronunciation training (CAPT) in English, including visual simulation-based systems that record
and analyze the speech of a learner, and then provide feedback through visual aids (e.g., ex-
planatory images, or comparative videos) (Kalikow and Swets, 1972), comparative phonetics
based systems where the phonemes in the native language of a learner are compared to those in
English using a probabilistic analysis (Wang et al., 2008; Qian et al., 2016), and recently deep
neural networks based systems (Li et al., 2016; Wang and Lee, 2015; Upadhyay et al., 2021).

Besides these techniques mentioned, ASR has also been employed in computer-assisted
language learning (CALL) in the field of pronunciation learning, with two primary objectives:
to teach the correct pronunciation of a foreign language to learners, and to assess the pronun-
ciation quality of individuals speaking that language (pronunciation scoring). Here below are
related previous works utilizing ASR for various language learning, mainly focusing on the
first goal.

Jo et al. (1998) proposed a learning system to detect pronunciation errors and provide diag-
nostic feedback through speech processing and recognition methods to aid non-native speakers
studying Japanese language as a second language. Kawai and Hirose (2000) also developed
a CALL system for teaching the pronunciation of Japanese double-mora phonemes to non-
native speakers of Japanese, in which speech recognition algorithms were applied to accurately
measure the duration of tokushuhaku, ‘a set of phonemically distinct phones most non-native
learners have difficulty with’.

Abdou et al. (2006) developed a system for teaching Arabic pronunciations to non-native
speakers, by using a state-of-the-art speech recognizer to detect errors in the user’s recitation.

(Strik et al., 2009) compared four types of classifiers that can be used to detect erroneous
pronunciations of the velar fricative /x/ and the velar plosive /k/ in Dutch, which are pronunci-
ation errors frequently made by foreigners learning Dutch as a second language.

With the object of teaching correct American English pronunciation (specifically pronun-
ciation of basic English phonemes) to high-school students in Hong Kong, whose native lan-
guage is Cantonese, Mak et al. (2003) designed a multimedia learning tool called PLASER
(Pronunciation Learning via Automatic SpEech Recognition) with instant feedback.

ASR works by analyzing speech input from a speaker, and comparing it, usually with
a native speaker model, which is created using a database filled with numerous samples of
native speaker recordings (Rogerson-Revell, 2021). Rogerson-Revell (2021) also mentioned
the significant potential of ASR technologies to provide immediate, personalized feedback.



Chapter 3

Methodology

This chapter provides a detailed description of the methodology employed in the project. Three
main sections are included: Task Explanation, Data, and Experimental Setup.

Section 3.1 explains the task and its goals. Section 3.2 (Data) describes the MOOC speech
data and details of audio data preprocessing, including the steps taken to clean, segment, and
prepare the audio data for input into the Whisper model. Section 3.3 (Experimental Setup) cov-
ers the rationale behind choosing Whisper’s English-only base model for the task, the temper-
ature parameter tuning, the collection and post-processing of Whisper-generated transcription
data, the confidence threshold, the classification algorithms and evaluation metrics used.

3.1 Task Explanation

The primary objective of this project is to evaluate the efficacy of OpenAI’s Whisper English-
only model (base.en) as a tool for detecting mispronounced English words. Specifically, the
task involves a word-level binary classification of intelligibility, where the goal is to deter-
mine whether the Whisper model can accurately identify whether a spoken English word is
pronounced intelligibly by non-native speakers.

3.2 Data

3.2.1 MOOC Data

Raw audio recordings. The primary dataset for this project consists of audio recordings
obtained from students enrolled in MOOC English Pronunciation in a Global World1. These
recordings are provided in MP3 format and each contains a student reading a list of 52 English
words (for some of the recordings, a reading passage is included as the assignment for this
course consists of reading the Word List and the Reading Passage). They were accessed using
URLs listed in Excel files facilitated by Laura Rupp, the director of the Centre for Global
English at VU Amsterdam and the creator and instructor of the online course. Importantly, all
recordings were obtained with the informed consent of the students, ensuring ethical standards
were maintained in data usage.

Expert-labelled test set. A subset of 45 raw audio recordings recorded by 45 students,
referred to as participant-level recordings, has been selected and meticulously annotated at
the word level by linguistic expert Laura Rupp to serve as the test set for the project. These

1https://www.futurelearn.com/courses/english-pronunciation
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6 CHAPTER 3. METHODOLOGY

participant-level recordings are balanced in terms of recording quality, ranging from unintel-
ligible to highly intelligible. Based on the overall intelligibility of each recording, the test
set initially included 15 highly intelligible, 15 fairly intelligible, and 15 poorly intelligible
participant-level recordings. Although the experiments were ultimately conducted at the word
level (preprocessed MP3 files, referred to as word-level audio files) rather than the student
level (participant-level recordings), this information is retained to clarify the selection of 4
participant-level recordings from the test set as development data (further explained in Devel-
opment set).

In the Excel file used for labeling the test set, the intelligibility of individual words is cat-
egorized into four classes: ‘yes’, ‘no’, ‘different English vowel’, and ‘mispronounced’ by the
expert. For this binary classification task, the classes ‘different English vowel’ and ‘mispro-
nounced’ are combined with ‘no’ to form a single ‘unintelligible’ class, while ‘yes’ remains
as ‘intelligible’. The class ‘different English vowel’ is actually a particular type of error that
causes an ‘unintelligible’ impression of the spoken word, being treated differently by the expert
during the annotation. This may be due to the common difficulty of second language learners
pronouncing vowel sounds, especially influenced by his or her native language (Bada, 2001),
for instance, Japanese speakers may tend to shorten English long vowels which do not exist in
their native language’s phonological system. In addition, Flege et al. (1997) also found that the
experienced non-native subjects who were exposed intensively to English produced and per-
ceived English vowels more accurately than the relatively inexperienced non-native subjects.

In some participant-level recordings, some words are either not pronounced or repeated
by the speaker. These words are marked as ‘not pronounced’ or ‘correction’ in the Excel file
and are excluded from the test set as they lack the gold standard label. Consequently, the final
test set consists of 2,115 word-level MP3 files, which were derived from 41 participant-level
recordings.

Development set. I selected 6 relatively clean recordings with minimal background noise
from the raw audio data for annotation. In addition, I included 4 participant-level recordings
from the test set, comprising one highly intelligible, one fairly intelligible, and two poorly
intelligible recordings. The reason for this selection is to ensure that the development set
includes a enough proportion of unintelligible words, which is essential for evaluating and
improving the model’s robustness and accuracy in handling varied intelligibility levels. These
10 participant-level recordings constitute the development dataset. After preprocessing, they
correspond to 516 word-level audio files and will be used to build the pipeline and tune the
model’s parameters to optimize performance across different speech clarity levels.

Text data: true transcriptions. The 52 written words in Word List (shown below in Table
3.1) are given and served as the true transcriptions.

3.2.2 Audio Data Preprocessing

Audio data preprocessing is the most time-consuming yet crucial step for achieving precise
analysis in this task. The most important step of audio data preprocessing is segmenting
participant-level recordings into word-level audio files since there is a known limitation of
Whisper’s sequence-to-sequence architecture, which is prone to generating repetitive texts, as
noted on Hugging Face 2. For example, when dealing with a participant-level recording con-
taining 52 words — the same number as in the Word List, the model tends to generate more
written words than were actually spoken by the speaker, complicating the task of aligning the

2https://huggingface.co/openai/whisper-base.en
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3.2. DATA 7

1. pit
2. pet
3. pat
4. put
5. putt
6. pot
7. bee
8. bay
9. buy

10. boy
11. boot
12. boat
13. bout

14. beer
15. bear
16. bird
17. bard
18. board
19. city
20. seedy
21. hat
22. dance
23. daft
24. half
25. father
26. farther

27. pull
28. pool
29. pole
30. paul
31. doll
32. cot
33. caught
34. fir
35. fern
36. fur
37. fair
38. nose
39. knows

40. plate
41. weight
42. poor
43. pour
44. pore
45. paw
46. tide
47. tied
48. pause
49. paws
50. meet
51. meat
52. mate

Table 3.1: Word List

transcriptions. This situation occurred frequently when I used the model to do speech-to-text
transcription on the development data (participant-level recordings).

I initially attempted to automate the segmentation process by using Whisper’s function3

whisper timestamped.transcribe() to obtain the start and end times for each word, with the
goal of automatically segmenting the recordings. However, the timestamps provided by the
model were ‘phrase-level timestamps’4, as noted by Whisper, which were too coarse for ac-
curate word-level segmentation. To address this, then I tried using whisper-timestamped5, an
extension of the OpenAI Whisper Python package that offers relatively more accurate word-
level timestamps. Despite this improvement, the timestamps obtained by whisper-timestamped
were still not precise enough for reliable segmentation. This approach proved insufficient after
I listened to the segmented audio files because it failed to get complete English words. For
example, the word ‘pit’ was truncated to ‘pi’, with the final consonant missing, indicating that
the word boundaries were not correctly identified. It also struggled to accurately distinguish
between the target words and additional, unintended speech segments.

Given these limitations, manual segmentation became necessary to ensure accuracy. This
manual process involves removing the non-relevant passage reading part and precisely seg-
menting the Word List recordings into word-level MP3 files. Since this project only utilizes
the speech segments from the Word List, any non-relevant passage reading parts (mentioned in
Subsection 3.2.1 Raw audio recording) have been removed.

Besides the known limitation mentioned, segmenting recordings into individual words is
motivated by other three primary considerations. Firstly, it helps reduce noise in the audio
data, as students may give an introductory speech before reading the list of words or produce
repeated corrective utterances for the same word. Secondly, a significant challenge in this task
involves handling near-homophones and homophones. The Word List mainly consists of these
English word types, both of which can lead to confusion in speech or writing, also during tran-
scription. Near-homophones are pairs or groups of words that sound very similar but differ
slightly in pronunciation (e.g., ‘city’ and ‘seedy’, where only one sound differs), with differ-
ent spellings and meanings. Unlike homophones, which are pronounced the same way, near-

3https://github.com/linto-ai/whisper-timestamped?tab=readme-ov-file#python
4https://openai.com/index/whisper/
5https://pypi.org/project/whisper-timestamped/
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8 CHAPTER 3. METHODOLOGY

homophones require careful attention to detail because the subtle differences in pronunciation
are critical for conveying the correct meaning. These distinctions are particularly important in
pronunciation practice, as students must learn to accurately pronounce and differentiate these
words to avoid misunderstandings. In this task, it is essential that near-homophones are tran-
scribed correctly, ensuring that the model can distinguish between them based on these minor
but significant variations in sound.

Homophones pose a special and inherent challenge in this task and other pronunciation
tasks that involve converting spoken language into text because they are words that sound the
same but have different spellings and meanings (e.g., ‘meet’ and ‘meat’), which can create
confusion. This problem is different from other challenges from the quality or clarity of the
speech data, such as background noise or poor recording quality, which are external factors
that can be addressed to some extent through preprocessing. Instead, the homophone issue is
an intrinsic difficulty in any task where spoken words need to be accurately transcribed into
text. For instance, when the model encounters a word that sounds the same as another word (a
homophone), it has to decide which word to transcribe based on the context. However, for this
task where the data is individual words, even if the model perfectly captures the pronunciation,
it may choose the wrong word since there is no context information.

In addition, pairs or groups of near-homophones and homophones appear consecutively in
the Word List, making it more challenging to align the transcriptions. Although the homo-
phone issue is a problem specific to the nature of text-related pronunciation tasks rather than
an irregularity in the data, it still complicates alignment. Thus, segmenting the recordings into
word-level audio files facilitates a more accurate alignment between Whisper’s transcriptions
and the true transcriptions.

Thirdly, for getting the word-level confidence score as a threshold (will be explained in Sub-
section 3.3.4) to test the model, precisely splitting audio files into individual words is needed
because the Whisper model only provides segment-level confidence rather than word-level con-
fidence. For example, for a participant-level recording, the model generally transcribed it into
several segments due to its internal processing logic: reading the entire audio file and then
processing the audio with a sliding 30-second window to make autoregressive sequence-to-
sequence predictions6. After transcribing, each segment contains the text and the correspond-
ing confidence. To be specific, below is an example of the text that belongs to the first segment
of a transcription given for a participant-level recording. The model provides the confidence
information for the entire text rather than for individual words, which means all the words share
the same value of confidence, leading to an inaccuracy measure of how confident the model is
in its transcriptions for individual words.

• ‘ Pit, pit, pat, put, put, put, put, put, be, be, by, boy, boot, boat, boat, beer, bear,’

Considering the above reasons, manually preprocessing the audio files became necessary.
The distribution of the classes in the preprocessed development audio dataset and test audio
dataset is shown in Table 3.2, showing a predominance of the ‘intelligible’ class over the ‘un-
intelligible’ class in both datasets.

Audacity, an open-source software for recording and editing audio, was used for audio data
preprocessing. Given the need to name the audio files in a way that helps trace back to the
words and their gold labels, a naming convention that encapsulates the relevant information
was created for better traceability, structured as studentID word trueLabel. To be specific,
studentID is the unique identifier for each student (e.g., s01, s02, ..., s51), word is the actual

6https://github.com/openai/whisper

https://github.com/openai/whisper
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Dataset Intelligible Unintelligible Total Instances

Development 353 (68.4%) 163 (31.6%) 516
Test 1410 (66.7%) 705 (33.3%) 2115

Table 3.2: Distribution of Classes Intelligible and Unintelligible in Development and Test data

word being pronounced (referred to as the true transcription), and trueLabel is a binary numer-
ical representation added based on gold annotation. Specifically, 1 is for denoting intelligible
and 0 for unintelligible. After segmenting, all word-level audio files were named following this
convention.

3.3 Experimental Setup

This section outlines the overall intuition behind the use of a speech-to-text model for this task,
followed by the details of the experimental design, including model selection, model parameter
tuning, collection and post-processing of transcriptions and relevant information, confidence
threshold setting, the classification algorithms and the evaluation metrics used.

3.3.1 Overall Intuition and Approach

The core idea behind this project is to leverage the ASR system, specifically Whisper’s English-
only base model to transcribe audio recordings of English words for a word-level binary clas-
sification of intelligibility, trying to find if the model is a suitable tool used in assessing pro-
nunciation in language learning. This approach is motivated by the need for efficient, precise,
and scalable analysis of English speech data, which is critical for assessing and improving
the intelligibility of the spoken language. Traditional methods of pronunciation assessment
rely heavily on human evaluators, which are labor-intensive, leading to challenges in providing
personalized feedback, especially in large-scale learning environments.However, ASR models
provide the possibility to automate the pronunciation assessment process, offering consistent
and objective feedback to language learners.

The approach involves using Whisper’s ASR capabilities to transcribe spoken words into
text and then perform a word-level binary classification of intelligibility. By comparing the
transcriptions generated by Whisper with the true transcription, we establish an intelligibility
classifier that reflects the model’s assessment of intelligibility. This classifier serves to evaluate
the model’s capability in identifying mispronounced words through its binary classification.

3.3.2 Model Selection

The Whisper model is well-suited for this task due to its robustness and strong zero-shot trans-
fer capabilities. Whisper’s models, trained on a broad and diverse distribution of audio data
with comprehensive 680,000 hours of multilingual and multitask supervision, demonstrate re-
markable generalization abilities to standard benchmarks, often rivaling the results of models
trained in a fully supervised manner, all without any fine-tuning and purely in a zero-shot
transfer setting (Radford et al., 2023). The strong zero-shot transfer capabilities can make the
model perform well on new datasets without the need for fine-tuning on specific datasets, which
is beneficial when assessing pronunciation across diverse accents and proficiency levels. In ad-
dition, Whisper models are robust to background noise, especially high noise. Unlike many
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other models that quickly degrade in accuracy under high noise conditions, Whisper maintains
high transcription accuracy even in noisy settings. This resilience ensures that the model can
provide reliable results regardless of the recording conditions or background noise, a crucial
aspect for language learning applications where audio quality can vary significantly.

According to the documentation, Whisper offers five model sizes, with four of them avail-
able in English-only versions, providing a trade-off between speed and accuracy. The names
of the available models and their specifications are listed in Table 3.3.

Size Parameters English-only model Multilingual model Relative speed

tiny 39 M tiny.en tiny ∼32x
base 74 M base.en base ∼16x
small 244 M small.en small ∼6x
medium 769 M medium.en medium ∼2x
large 1550 M N/A large 1x

Table 3.3: Comparison of Whisper model sizes and specifications

The choice of the base.en model for speech-to-text transcription in this project is influenced
by insights from Whisper’s documentation7. Initially, it is observed that models suffixed with
.en, tailored for English-only applications, tend to perform better, especially for the tiny.en
and base.en. This advantage may stem from the fewer parameters which make the models
perform better in monolingual situations. I opted for the English-only models since the audio
data is in English, aiming to achieve higher accuracy. Additionally, observations from the
OpenAI Whisper team indicate that the difference becomes less significant for the small.en
and medium.en models.

3.3.3 Model Parameter Tuning: Temperature

Temperature is an optional parameter in the ASR model that ranges from 0 to 1. This parameter
controls the degree of variability or ‘creativity’ of the model’s output: a higher temperature
value (closer to 1) allows the model to generate a broader range of outputs, reflecting more
variability in pronunciation and word choice. Conversely, a lower value (closer to 0) makes the
model’s output more focused and deterministic.

In this intelligibility prediction task for audio data made by non-native English speakers,
adjusting the temperature parameter is crucial for managing the balance between capturing the
nuances of natural variability in speech (e.g., different accents and pronunciation styles) and
providing accurate transcriptions. By setting the temperature parameter to values between 0
and 1 with increments of 0.1, I intended to explore the trend of results under different temper-
atures and find the optimal setting that maintains the model’s flexibility in recognizing various
pronunciations while ensuring accuracy in its transcriptions. This is essential to ensure that the
model is both adaptable to different speakers and accurate in its output, supporting the goal of
developing an effective automated corrective feedback system.

3.3.4 Collecting and Post-Processing Transcription Data

This subsection explains the process of obtaining the raw transcription data, post-processing
the raw text transcriptions and raw log probabilities to get cleaned Whisper’s transcriptions and

7https://pypi.org/project/openai-whisper/

https://pypi.org/project/openai-whisper/
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corresponding confidence scores, and aligning the Whisper-generated transcriptions with the
true transcriptions to create the intelligibility classifier with two classification algorithms.

Obtaining Raw Transcription Data. For each input audio file, the Whisper model returns
a JSON transcription structured with several keys: ‘language’, ‘duration’, ‘text’, ‘segments’,
etc (see example8 in the documentation). Specifically, the ‘segments’ key contains a list of
dictionaries detailing information about corresponding segments, including the start and end
times of this segment, text (the transcribed text), temperature, average log probability, and
more. I used the Whisper English-only model to transcribe the word-level audio files with
setting language parameter to ‘en’ (standing for English) to get the transcription data, then
extracted and saved the relevant information into a JSON file, where each entry represents the
raw transcription data of a word-level audio file. One of the entries is shown below:

Example of Raw Transcription Data:

‘s01 bard 1’: {
‘studentID’: ‘s01’,
‘word’: ‘bard’,
‘trueLabel’: ‘intelligible’,
‘segments’: [

{
‘text’: ‘ Bye!’,
‘temperature’: 0.1,
‘avg logprob’: -0.7607501029968262,
‘compression ratio’: 0.3333333333333333,
‘no speech prob’: 0.014807652682065964

}
]

}
The raw transcription data consists of 4 keys: ‘studentID’, ‘word’, ‘trueLabel’, and ‘seg-

ments’. The values of ‘studentID’, ‘word’, and ‘trueLabel’ are derived from the file naming of
the preprocessed input audio file. The ‘segments’ key holds information about the segments
provided by the model, encompassing fields like ‘text’, ‘temperature’, and ‘avg logprob’. For
each segment, Whisper provides an average log probability. To be specific, the target word
for this input audio file is ‘bard’ with the gold annotation ‘intelligible’. However, when the
temperature parameter is 0.1, the Whisper model transcribed it as ‘bye!’ which indicates the
model thinks this is not the pronunciation for the word ‘bard’, or in other words, the model
thinks this speech data is not intelligible The average log probability for the target word is
-0.7607501029968262 which needs to be post-processed into a more human-readable number.

Post-processing Raw Text. In the raw transcription data, the ‘text’ field includes not only the
written word but also a leading space and punctuation marks (e.g., ‘.’, ‘!’, ‘?’). Additionally,
some words may appear in uppercase. To ensure that the Whisper-generated text transcriptions
are formatted clearly for comparison with the true transcriptions, a cleaning process of the raw
text was conducted. This involves removing the leading space and punctuation marks, and
converting all letters to lowercase to ensure consistency and clarity in the transcriptions.

Although the word-level audio files are all MP3 files of 1-2 seconds in length, the model
may generate more than one segment as the transcription for some audio files. In such cases, all

8https://platform.openai.com/docs/api-reference/audio/verbose-json-object

https://platform.openai.com/docs/api-reference/audio/verbose-json-object
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textual contents (values of the ‘text’ field) of the segments are cleaned and then concatenated
into a single string.

Post-Processing Raw Average Log Probability for Getting Confidence Score as Threshold.
The ‘avg logprob’ field contains the average log probability of the corresponding segment,
providing insight into the model’s confidence. Lower (more negative) average log probabilities
indicate lower confidence in the model’s output, while higher (less negative) values indicate
higher confidence. To get a more human-readable number as the confidence score that serves
as a parameter for analysis, the average log probability needs to be post-processed. In addition,
as mentioned there is the case that for a word-level audio file, the model may generate more
than one segment in the transcription data, leading to two or more average log probabilities
provided for only one speech data (one English word). This also makes it necessary to post-
processing the raw average log probabilities.

The confidence score was obtained using the following method, which provides a mea-
sure of how confident the system is in its transcriptions. Firstly, the logarithmic probabilities
(raw values of ‘avg logprob’) were converted back to linear probabilities (ranging from 0 to
1), inspired by the online discussion9. To convert the log probabilities to regular probabili-
ties, the exponential function math.exp() in Python package math was used10. Secondly, the
linear probabilities were then rounded to three decimal places for analysis although the ex-
ponential function gives result accurate to 11 places. For example, an ‘avg logprob’ value of
0.7607501029968262 became ‘0.467’ after conversion. This works perfectly for input audio
files that received transcription with only one segment since there is only one confidence value
for one speech data.

For those input audio files that received transcriptions with more than one segment, ini-
tially, I summed up the linear probabilities and divided them by the number of segments to get
the confidence score. However, this approach was found inaccurate after calculating the pro-
portion of high linear probabilities. It is not reliable when the model transcribes a single word
into several words or even sentences even though it is highly confident in the output. After cal-
culating, there are 122 transcriptions (corresponding to 1345 segments) with multiple segments
in the development set, of which 28 had at least one segment with a linear probability exceed-
ing 0.5, accounting for 22.95%. To give a more intuitive understanding, the distribution of all
linear probabilities for transcriptions with multiple segments of the development set is shown
in Figure 3.1. The linear probabilities are presented on a per-segment basis rather than per-
transcription (a transcription can contain several segments, as mentioned in Post-processing
Raw Text in Subsection 3.3.4). Among the 1345 segments, 703 are with linear probability
over 0.5, which is 52.27%.

Obviously, simply averaging the linear probabilities is inappropriate. So the final approach
to getting the confidence score for those input audio files that received transcriptions with
multiple segments was, to set it to 0.

To apply the confidence threshold in determining intelligibility, an approach of automatic
classifying instances was implemented where the confidence score serves as a critical discrim-
inator. This is how it works: first, we define a certain threshold value for the confidence score,
and any transcription with a confidence score exceeding this threshold is considered reliable
enough to classify the word as ‘intelligible’ or ‘unintelligible’ based on whether the transcrip-
tion matches the true word. If the confidence score falls below the set threshold, automatically
classify the spoken word as ‘intelligible’ without comparing it to the true transcription. This

9https://stackoverflow.com/questions/48465737/how-to-convert-log-probability-into-simple-probability
10https://docs.python.org/3/library/math.html

https://stackoverflow.com/questions/48465737/how-to-convert-log-probability-into-simple-probability-between-0-and-1-values-using-python
https://docs.python.org/3/library/math.html
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Figure 3.1: Distribution of Linear Probabilities for Transcriptions with Multiple Segments of
the Development Set

decision is based on the assumption that when the model’s confidence is low, it might struggle
with accuracy, and labeling the word as ‘unintelligible’ could introduce unnecessary bias or
error. By doing so, we minimize the risk of mislabeling a correctly pronounced (or intelligible)
word as ‘unintelligible’.

Confidence thresholds were applied as a way for quality control and error reduction, be-
cause setting a threshold allows ‘filtering out’ transcriptions that the model is less confident
about, potentially reducing errors caused by misinterpretations of ambiguous audio. By ap-
plying a confidence threshold, I can focus on transcriptions where the model demonstrates
higher confidence, thereby reducing the likelihood of incorrect or nonsensical transcriptions
being accepted as valid. It allows me to find a balance between correctly transcribing words
(intelligibility) and minimizing false positives (mispronunciations or other errors).

The choice of the confidence threshold is crucial, as it impacts the sensitivity and specificity
of the intelligibility detection. To explore the impact of confidence scores on the model’s
performance and find the best threshold to maximize the F0.5 score, a range of threshold values
was tested, specifically 0.3, 0.4, 0.5, 0.7, and 0.8. These thresholds were varied in different
increments to observe changes in classification metrics and assess how they affect the quality
of the model’s transcriptions.

3.3.5 Classification Algorithms

After post-processing the texts, the model’s predicted labels (referred to as Whisper’s Judge)
were assigned by comparing Whisper’s transcription with the true transcription. If the tran-
scriptions match exactly, the label ‘intelligible’ is assigned; otherwise, the label ‘unintelligible’
is assigned.

However, there is a limitation to obtaining labels by simply comparing spellings, which can
impact the accuracy of evaluation metrics. For instance, if the model transcribes ‘buy’ as ‘bye’,
the label assigned by the model would be ‘unintelligible’ because these words are not identical
in spelling. However, they sound the same, and it would be acceptable and more accurate if the
model provided a homophone as the written text compared to the true transcription. Another
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consideration is that the 52 words in the Word List do not occur in a specific context, making
this variability acceptable.

To achieve a more accurate analysis, I obtained another type of label (referred to as Pho-
netic Whisper’s Judge). For this purpose, I utilized the phonetic representations obtained from
the CMU Pronouncing Dictionary, commonly known as CMUDict11. CMUDict is a widely-
used public domain lexicon of English words and their phonetic representations, developed
by researchers at Carnegie Mellon University (CMU). It provides phonetic representations for
over 134,000 words in American English. Each entry in CMUDict consists of a word followed
by its corresponding phonetic representations. The phonetic representations are based on the
ARPAbet notation, which is a set of symbols designed specifically to represent the sounds of
American English using ASCII (American Standard Code for Information Interchange) char-
acters. ARPAbet is not as widely known as other phonetic transcription systems like the In-
ternational Phonetic Alphabet (IPA), but it is popular in speech recognition and text-to-speech
applications because it is computer-readable and uses a limited set of symbols.

Temperature
Setting

Number of Nonsensical
Transcriptions

Percentage of Nonsensical
Transcriptions

0.0 43 8.33%
0.1 44 8.53%
0.2 44 8.53%
0.3 40 7.75%
0.4 44 8.53%
0.5 51 9.88%
0.6 63 12.2%
0.7 64 12.4%
0.8 87 16.9%
0.9 99 19.2%
1.0 162 31.4%

Test Set: 0.5 246 out of 2115 11.6%

Table 3.4: Percentage of Nonsensical Transcriptions across Different Temperature Settings in
the Development Set (516 instances in total)

One thing that needs to be mentioned is that for some texts generated by the model, their
phonetic representations are not available in CMUDict, and I assigned a ‘N/A’ value, indicating
‘not available’ for phonetic representation. Upon observation of the output, it became evident
that these words are not real English words (e.g., ‘fundee’, ‘boltrain’, ‘whe’, ‘beginae’, etc.),
or are misspelled (e.g., ‘nows’, ‘dafft’), or are empty (the model did not provide any tran-
scriptions for the speech data). Similarly, for post-processed texts obtained by concatenating
multiple segments into one, where the text contains more than one word, CMUDict cannot
provide direct phonetic representations because the phonetic representation corresponds to a
single word. Therefore, I also implemented the code to assign a ‘N/A’ value as the phonetic
representation, resulting in a label of ‘unintelligible’. This approach is acceptable and does
not influence the accuracy because one phonetic representation cannot correspond to multi-
ple words. Taking one word ‘farther’ as an example from the development data, the model
transcribed it as ‘right there’, which means the phonetic representation would be ‘N/A’, and

11http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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thus, an ‘unintelligible’ label would be assigned. Even though the separate words ‘right’ and
‘there’ have their individual phonetic representations in CMUDict (R AY1 T and DH EH1 R
respectively), the combined phonetic representation does not match F AA1 DH ER0 for ‘far-
ther’ and therefore receives a ‘unintelligible’ label. This type of transcription belongs to model
hallucination, which is also a type of nonsensical transcription (will be further explained in
Sub-subsection 5.2.3).

The percentage of such nonsensical transcriptions12 across different temperature values was
calculated and is shown above in Table 3.4. The figures suggest that as the temperature value
increases, the percentage of nonsensical transcriptions generated also rises. This indicates that
higher temperature values lead to a higher incidence of non-sense, misspelled, or non-English
words in the model’s output. In addition, the percentage of such nonsensical words in the test
set obtained by running the model with the best-performing configuration is also listed in the
table, indicating its consistency with the temperature impact.

For comparison purposes, both types of labels were retained: Whisper’s Judge based on
direct text comparison, and Phonetic Whisper’s Judge based on phonetic comparisons using
CMUDict.

The post-processed output of all words with different temperature settings was saved into
JSON files. Each entry in these files includes relevant information about the word’s transcrip-
tion, such as the student ID, the true transcription (word), true label, text transcription gener-
ated by the model, text-based labels (Whisper’s Judge), phonetic representation obtained from
CMUDict for both the true transcription and the model’s text transcription, phonetic-based
labels (Phonetic Whisper’s Judge), confidence score, and temperature setting used during tran-
scription. This data structure helps detailed analysis and comparison of the model’s perfor-
mance across varying temperature configurations. Each entry is structured as shown below:

‘s01 buy 1’: {
‘studentID’: ‘s01’,
‘true transcription’: ‘buy’,
‘trueLabel’: ‘intelligible’,
‘whisper transcription’: ‘bye’,
‘whisper judge’: ‘unintelligible’,
‘true phoneme’: ‘B AY1’,
‘whisper phoneme’: ‘B AY1’,
‘whisper judge phoneme’: ‘intelligible’,
‘confidence score’: 0.467,
‘temperature’: 0.0

}

In this example, the target word for this input audio file is ‘buy’ with the gold annotation
‘intelligible’ and the model transcribed it as ‘bye’ leading to an ‘unintelligible’ label assigned
based on the text comparison. However, homophones ‘buy’ and ‘bye’ both have the same
phonetic representation in CMUDict: B AY1, which means the first and only vowel sound in
the word is a stressed vowel, represented by the numeral 1. This makes the phonetic-based
label ‘intelligible’ despite the spelling difference.

12All nonsensical transcriptions of the development and test sets can be found in JSON files:
NAs info.json and test NAs info.json respectively.
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3.3.6 Evaluation Metrics

In the end, I compared 50 different systems to assess the effectiveness of different configu-
rations, which are the combinations of utilizing five temperature settings (0.1, 0.3, 0.5, 0.7,
and 0.9) and five confidence thresholds (0.3, 0.4, 0.5, 0.7, and 0.8) using two classification
algorithms (text-based and phonetic-based).

To evaluate and compare the performance of the same model with different configurations
for this binary classification task, metrics including precision, recall, F1-score, and F0.5-score
were used. These metrics are per-class metrics, meaning they were calculated separately for
each class (‘intelligible’ and ‘unintelligible’). This approach aligns with macro averaging in
that it treats each class independently, without considering its prevalence in the dataset for
the metrics. The difference between per-class metrics and macro-averaging metrics is that, in
macro-averaging, metrics are calculated for each class individually and then averaged. More-
over, confusion matrices were provided to visualize prediction errors and offer deeper insight
into the model’s performance across different temperature settings.

Precision measures how accurate the predictions are when the instance is correctly la-
beled as belonging to a particular class. It tells us how well the model does in predicting
the correct class. In this project, for both classes ‘intelligible’ and ‘unintelligible’, I calcu-
lated separate precision and recall metrics, resulting in two precision values and two recall
values. Specifically, precision for intelligible class answers the question: “Of all the words the
model predicted as ‘intelligible’, how many were truly intelligible?” Similarly, precision for
unintelligible class measures how many predictions labeled as ‘unintelligible’ were actually
mispronounced.

On the other hand, recall measures how effectively the model identifies all actual instances
of each class. Recall for intelligible class answers the question: “Out of all the words that
are actually ‘intelligible’, how many did the model correctly predict as ‘intelligible’?” The
same applies to the ‘unintelligible’ class, where recall for unintelligible class indicates the
proportion of correctly identified ‘unintelligible’ words.

The F1-score is the harmonic mean of precision and recall, providing a single metric that
balances these two aspects of the model’s performance. Each class will have its own F1-score,
reflecting its precision and recall values.

In this project, high precision is prioritized because of the educational context. A pro-
nunciation checker should aim for high precision to ensure that most words marked as ‘un-
intelligible’ are genuinely unintelligible, even if it means missing some actual unintelligible
words (resulting in lower recall). That is to say, when the model predicts that a spoken word is
‘unintelligible’ (indicating a pronunciation error), we want to be highly confident that there is
indeed an error. This helps to avoid incorrectly labeling correctly pronounced words, which is
key to the credibility of the pronunciation checker and prevents learners from receiving incor-
rect feedback. Thus, for the evaluation of the model’s performance, more focus is placed on
the F0.5-score, a weighted harmonic mean of precision and recall, with more weight given to
precision. This means F0.5-score increases the importance of precision while decreasing the
emphasis on recall.

Additionally, both text-based and phonetic-based labels were used to evaluate the intelli-
gibility of the spoken data, allowing for a nuanced analysis of the model’s ability to handle
homophones. This dual evaluation strategy enhances the thoroughness and reliability of as-
sessing the model’s performance in this speech-to-task transcription task.

The mathematical formulations of the metrics used in this project are presented as follows:
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Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(3.3)

F0.5 =
(1 + 0.52) ∗ Precision ∗ Recall

0.52 ∗ Precision + Recall
=

1.25 ∗ Precision ∗ Recall
0.25 ∗ Precision + Recall

(3.4)

The evaluation metrics used in this project are derived from four key components: True
Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN). The defi-
nition of these metrics changes when focused on a particular class. Here we take the unintelli-
gible class as an example to clearly illustrate them:

True Positives are instances where the model correctly predicts a spoken word as ‘unintel-
ligible’. For example, if the model predicts a word as ‘unintelligible’ and the word is indeed
unintelligible, this is counted as a True Positive.

False Positives occur when the model misclassifies an intelligible spoken word as ‘unintel-
ligible’. This contributes to the model’s precision metric since precision for the unintelligible
class is about how many of the predicted ‘unintelligible’ words are indeed unintelligible.

False Negatives are counted when the model predicts a word as ‘intelligible’ but the word
is actually unintelligible. This impacts the recall metric since recall measures how many of the
actual unintelligible words are correctly predicted.

True Negatives are instances where the model correctly identifies an intelligible spoken
word as ‘intelligible’. While TN does not directly affect precision and recall for the ‘unintelli-
gible’ class, it is a crucial component in understanding the overall performance of the model.

Understanding these components is essential for interpreting the model’s precision and
recall, as well as the F1-score and F0.5-score, particularly when focusing on the ‘unintelligible’
class.
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Chapter 4

Results

This chapter analyzes the results for both intelligible and unintelligible classes across various
system configurations, with a particular focus on the influence of temperature settings and con-
fidence thresholds. The chapter is structured into three main sections. Section 4.1 (Results
Across Different Temperature Settings) delves into how varying temperature values impact
the model’s performance on each class and provides a comparative analysis between the two
classes. Section 4.2 (Results Across Different System Configurations) explores the overall
trends observed across different combinations of temperature settings, confidence thresholds,
and classification algorithms (text-based and phonetic-based methods). This section also iden-
tifies the best-performing configuration for running the model on the test set. Finally, Section
4.3 (Results of Test Set under The Optimal Configuration) evaluates the model’s performance
on the test set using the best-performing configuration, offering insights into its practical appli-
cability and effectiveness in dealing with unseen speech data.

4.1 Results Across Different Temperature Settings

To explore the impact of the temperature parameter, I tested 11 values between 0 and 1 with
increments of 0.1 (0 and 1 were also included) on the development data. The corresponding
results for both intelligible and unintelligible classes are shown in Figure 4.1.

4.1.1 Results of Intelligible Class

We first look at the results of the intelligible class. It is noticeable that the precision for both the
text-based and phonetic-based methods (denoted as whisper judge and whisper judge phonetic
respectively in the figure) remains relatively high and stable across all temperature settings,
hovering around 0.85 to 0.91. The highest precision 0.911 is achieved at a temperature setting
of 1.0 by comparing the phonetic-based labels, which is reasonable since a higher temperature
value allows the model to be ‘creative’ to generate various possible transcriptions for the ho-
mophones. Overall, precision is quite consistent across the range, suggesting that temperature
settings do not significantly affect the model’s ability to correctly predict intelligible words.

However, the recall values are generally low, ranging between 0.15 and 0.25 (text-based
method), and between 0.28 and 0.38 (phonetic-based method), both with minor fluctuations,
indicating that the model struggles to capture all actual intelligible instances regardless of tem-
perature settings. The highest recall only achieved 0.371 at temperatures 0.0 and 0.1, calculated
by comparing the phonetic representation. The low recalls lead to moderate F1-scores, with
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the highest achieving 0.525 at a temperature of 0.1 also using the phonetic-based method. Con-
versely, the F0.5-score ranges between 0.45 and 0.7, prioritizing precision over recall. And the
highest F0.5-score 0.699 is reached at a temperature of 0.1 for the phonetic-based method.

(a) Results of Intelligible Class (b) Results of Unintelligible Class

Figure 4.1: Comparison of Metrics Results for Both Intelligible and Unintelligible Classes
across Different Temperature Settings

4.1.2 Results of Unintelligible Class

The distribution of the metrics results for the unintelligible class shows an exact opposite situa-
tion where values of recall even exceed 0.9, followed by F1-scores, F0.5-scores, and precision
respectively.

The precision for the unintelligible class in both methods is much lower compared to the
intelligible class, ranging from 0.35 to 0.4. This suggests that the model’s ability to correctly
identify unintelligible words is less reliable. In addition, precision shows minimal changes with
temperature adjustments, with the highest precision of 0.400 occurring at a temperature setting
of 0.1 for the phonetic-based method. The recall values remain consistently high, ranging from
0.89 to 0.96 for both methods across the temperature range, with the highest recall of 0.957
achieved at a temperature of 1.0 calculated based on the text transcription. The consistently
high recall suggests the model’s strong ability to capture unintelligible instances regardless of
temperature changes, with the exception that the recall increases when temperature is above
0.8.

Due to the low precision, the F0.5-score is relatively low, ranging from 0.39 to the highest
0.450, compared to recall and F1-score. This indicates that improving precision could enhance
the overall performance of the unintelligible class. The F1-score for the unintelligible class is
moderate driven by the high recall, despite the lower precision, with values between 0.5 and
the highest 0.555 (at a temperature of 0.1 for the phonetic-based method).

4.1.3 Comparison between Classes

There is a clear trade-off between precision and recall for both classes, with higher precision
correlating with lower recall and vice versa. This trade-off is typical in classification tasks, par-
ticularly in scenarios involving imbalanced datasets or nuanced distinctions between classes.

For both classes, temperature settings indeed impact the metrics results, with certain tem-
peratures (e.g., values of 0, 0.1, 1) optimizing different metrics for each class. Many metrics
results peaked when the temperature was set to 0.1, indicating that a lower temperature may
slightly enhance the performance.

Both the text-based and phonetic-based methods perform similarly in a way that the results
of the phonetic-based method are always higher than the text-based method, with the exception
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Figure 4.2: Comparison of Results for Intelligible Class across Different Configurations of
Temperatures (denoted as T) and Confidence Thresholds

that the text-based method offers better recall for the unintelligible class, indicating that the
phonetic-based method tends to slightly favor higher precision, while the text-based method
offers better recall in most cases.

4.2 Results Across Different System Configurations

After knowing the impact of the temperature settings, instead of using all the 11 values that
were tested and reported in Section 4.1, five of them (0.1, 0.3, 0.5, 0.7, and 0.9) were selected
to combine with five confidence thresholds (0.3, 0.4, 0.5, 0.7, and 0.8) and the two classification
methods to form different ‘systems’. In the end, 50 systems were tested on the development
set and compared. The results across these system configurations for both intelligible and
unintelligible classes are shown in Figure 4.2 and Figure 4.3 respectively.

4.2.1 Overall Trends

To gain insight into how the metrics results vary across different system configurations, we first
examine the overall trends of precision, recall, F1-score, and F0.5-score.

For the intelligible class, precision generally decreases as the confidence threshold in-
creases, particularly at lower temperature settings (e.g., T=0.1, T=0.3), indicating that higher
confidence thresholds may filter out less precise predictions. In contrast, recall shows an up-
ward trend with increasing confidence thresholds, with higher temperature settings producing
better recall values. This suggests that the system becomes more effective at identifying true
positive cases (here intelligible instances) as the threshold rises. When examining the F1-score,
there is an obvious increase when the confidence threshold increases before reaching 0.5, then
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Figure 4.3: Comparison of Results for Unintelligible Class across Different Configurations of
Temperatures (denoted as T) and Confidence Thresholds

a steady increase to the peak (around 0.8). This peak reflects an optimal balance between
precision and recall. Similarly, the F0.5-score for the text-based method generally shows an
increase. However, since the F0.5-score places greater emphasis on precision, it leads to a
downward trend for the phonetic-based method. Beyond the confidence threshold of 0.7, the
F0.5-score stabilizes or slightly declines, reflecting any further improvement in precision be-
comes smaller or less significant.

On the other hand, the unintelligible class exhibits a different set of trends. The precision
for this class across all temperatures remains relatively stable across varying confidence thresh-
olds but experiences a sharp increase at a confidence threshold higher than 0.7 when utilizing
the phonetic-based method, with one exception showing a downward trend when the tempera-
ture is set to 0.9. In contrast, the recall decreases across all temperature settings as the confi-
dence threshold increases, suggesting that the system becomes more strict and, consequently,
more likely to miss unintelligible words at higher confidence thresholds. The F1-score across
all temperature settings follows the recall trend, decreasing as the confidence threshold rises,
which indicates a reduction in the overall effectiveness of the system in balancing precision and
recall at higher confidence thresholds. Similarly, the F0.5-score across all temperature settings
also decreases across the confidence thresholds, but more steeply than the F1-score when the
threshold is above 0.7, due to its greater emphasis on precision. This sharper decline high-
lights the challenges of maintaining high precision without sacrificing recall as the confidence
threshold becomes more restrictive.
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4.2.2 Comparison between Text-Based and Phonetic-Based Algorithms

For the intelligible class, data shown in Figure 4.2 reveals that the phonetic-based method gen-
erally outperforms the text-based method across multiple evaluation metrics. In terms of pre-
cision, the phonetic-based method shows a slight advantage, particularly at lower confidence
thresholds. This suggests that the phonetic-based approach is more effective in accurately iden-
tifying intelligible speech data when the confidence level is less strict. Regarding recall, both
methods display similar trends, but the phonetic-based method consistently achieves higher
recall across all thresholds and temperature settings, indicating its superior ability to capture
intelligible instances in the speech dataset. The F1-score is also higher when applying the
phonetic-based method, especially at higher temperatures. Similarly, the F0.5-score consis-
tently favors the phonetic-based method, particularly at higher temperatures. This further un-
derscores the phonetic-based method’s robustness in prioritizing precision while still achieving
commendable recall rates. Overall, the phonetic-based method demonstrates a clear and con-
sistent advantage over the text-based method in handling the intelligible class data, making it a
more reliable option for achieving higher accuracy in this classification task.

For the unintelligible class (see Figure 4.3), the precision of the phonetic-based method
across different temperature settings and thresholds also shows its advantage over the text-
based method. Conversely, regarding recall, the text-based method across all temperatures
generally shows higher values at lower thresholds, but this advantage diminishes as the thresh-
old increases. This trend indicates that while the text-based method is effective at capturing
unintelligible instances in less strict confidence settings, its performance in recall becomes
comparable to or less favorable than the phonetic-based method at higher thresholds. The F1-
score across the temperature settings reflects a pattern: the phonetic-based method has an edge
at lower thresholds but converges with the text-based method as the threshold increases. This
convergence suggests that while the phonetic-based method is initially more balanced in its
performance, the difference between the two methods narrows under stricter conditions. Sim-
ilarly, the F0.5-score across the temperatures shows that the phonetic-based method performs
better at lower thresholds but loses its advantage as the threshold rises. This reduction in rel-
ative performance at higher thresholds indicates that while the phonetic-based method excels
in precision at permissive settings, it does not maintain this advantage under more restrictive
conditions.

4.2.3 The Best-Performing Configuration

In this project, different system configurations were tested with the goal of finding the best
one that maximizes the F0.5-score for intelligible and unintelligible classes, especially for the
unintelligible class. After experimenting, for the intelligible class, the optimal performance
with the highest F0.5-score of 0.757 (as shown in Figure 4.2) is observed by using the phonetic-
based method with a temperature setting of 0.5 and a confidence threshold of 0.3. Also, the
highest F0.5-score for the class unintelligible reached 0.48 (shown in Figure 4.3) when the
same configuration as the intelligible class was applied. This best-performing configuration:
a combination of temperature=0.5, confidence threshold=0.3, and using the phonetic-based
method, was then used to run the model on the test set.

4.3 Results of Test Set under The Optimal Configuration

The results of running the model with the best-performing configuration on the test set are
listed in Table 4.1 where the results of the development set under the same configuration are
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also provided for further comparison. The test set results reveal insights into the performance
of the Whisper model for detecting intelligible and unintelligible spoken English words.

For the intelligible class, it achieves a precision of 0.732 and a recall of 0.565, resulting
in an F1-score of 0.638 and F0.5-score of 0.691. The precision indicates that 73.2% of the
intelligible spoken words were correctly predicted as ‘intelligible’ by the model. This is a fairly
high precision, suggesting that the model is good at avoiding false positives (i.e., not incorrectly
labeling unintelligible words as ‘intelligible’). The recall is lower than the precision, indicating
that the model missed a substantial number of intelligible words, only 56.5% of the intelligible
words were correctly identified by the model, leading to a moderate F1-score. However, the
F0.5-score gives more weight to precision than recall, reflecting the educational context where
false positives are more problematic.

Method Metric Intelligible Class Unintelligible Class

Dev Test Dev Test

Phonetic-based

Precision 0.812 0.732 0.445 0.403
Recall 0.598 0.565 0.699 0.586
F1-Score 0.688 0.638 0.544 0.477
F0.5-Score 0.757 0.691 0.480 0.429

Table 4.1: Test Set Results: under the Optimal Configuration (with Development Set Results
Provided for Comparison)

For the unintelligible class, the model exhibits a lower precision (0.403) and a slightly
higher recall (0.586), compared to the intelligible class. The low precision indicates that it fre-
quently misclassified intelligible speech data as unintelligible, with only 40.3% of the predicted
‘unintelligible’ words being correct. However, the recall of 0.586 means the model correctly
identified 58.6% of the unintelligible words, indicating a decent capability to detect mispronun-
ciation. The F1-score (0.477) reflects a more balanced but lower overall performance for this
class. And the F0.5-score of 0.429 emphasizes the model’s difficulty in precisely classifying
unintelligible words.

From the table, we can observe that the performance of the model on the development set
is better than on the test set for both classes. This indicates that the model configuration that
performed best on the development set may not fully translate to the test set, as the model
shows a slight decrease in all metrics. This slight drop suggests that the model is generally
stable and consistent but may still be subject to variability across different datasets or that the
test set may contain more challenging examples than the development set, leading to reduced
performance.



Chapter 5

Error Analysis

This chapter provides an error analysis for the best-configured model running on the test set,
motivated by the need to understand the underlying factors contributing to the model’s per-
formance, especially in an educational context where accurate predictions are essential. This
chapter contains two sections: Confusion Matrix and Common Types of Errors. Section 5.1
analyzes the distribution of True Positives (TP), False Positives (FP), False Negatives (FN), and
True Negatives (TN) to understand the model’s performance. Section 5.2 presents some error
examples along with their true transcriptions. By dissecting errors that the model encounters, I
try to find specific patterns, which can inform future improvements and refinements.

5.1 Confusion Matrix

Understanding where the model succeeds and where it fails not only helps in optimizing it in
the future but also ensures that it meets the reliability and accuracy standards required for real-
world deployment. To have an intuition behind the best-configured model’s performance on
the test set, the confusion matrix (5.1) is displayed for inspecting both correct classifications
and misclassifications. The first impression from the confusion matrix is the highest number
of 797, signifying the correct classification of 797 intelligible instances as ‘intelligible’, which
improves the precision of the intelligible class.

Figure 5.1: Confusion Matrix of the Test Set

25
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However, we analyze with a focus on the unintelligible class. Thus, the definition of
True Positives, False Positives, False Negatives, and True Negatives changes, as mentioned in
Subsection 3.3.6 (Evaluation Metrics).

In this case, the number of True Positives is 413, meaning the model successfully labeled
413 words as ‘unintelligible’ when they were, indeed, unintelligible. This number reflects the
model’s ability to correctly detect errors in pronunciation or speech clarity, which is essential
for applications designed to provide automated corrective feedback. It also influences the re-
call for the unintelligible class, showing how well the model can identify actual unintelligible
instances.

613 is the number of False Positives, indicating that 613 intelligible spoken words were
misclassified as ‘unintelligible’. This high number of false positives indicates that the model
tends to be overly cautious, possibly labeling spoken words as ‘unintelligible’ even when they
are correctly pronounced (or, they are intelligible to a human listener). This directly impacts the
model’s precision for the unintelligible class, as it reduces the percentage of correctly identified
unintelligible words out of all words predicted as ‘unintelligible’.

For the 292 False Negatives, there were 292 cases where the model predicted a spoken
word as ‘intelligible’, but it was actually unintelligible. This shows that the model missed a
significant number of unintelligible words, which affects the recall for the unintelligible class.
A lower recall means that the model is less effective at catching all errors in speech.

The number of True Negatives just mentioned at the beginning, being 797, does not di-
rectly influence precision and recall for the unintelligible class, however, it reflects the model’s
accuracy in affirming intelligible spoken words and shows that the model has a better ability to
classify intelligible instances.

5.2 Common Types of Errors

All the errors were extracted and saved to a JSON file1 for further analysis, classified into false
positives or false negatives. This section provides an overview of the common types of errors
for both false positives and false negatives observed in the transcription results. Each subsec-
tion will delve into specific categories of errors to provide a comprehensive understanding of
the issues encountered.

5.2.1 Specific Words Being Misclassified

From the confusion matrix (Figure 5.1) we know that there are 905 miclassifications in total
(accounting for 42.8% in the test data), with 613 false positives and 292 false negatives. To
find the specific words that were mislabeled, the error frequencies were counted. Table 5.1
provides a quick overview of the top ten frequencies of misclassified words by the model. It
shows which words are commonly misinterpreted and whether they tend to be false positives
or false negatives.

The table showcases a diverse set of words where the model commonly struggled to differ-
entiate between intelligible and unintelligible pronunciations. Notably, ‘bout’ had the highest
misclassification frequency of 29, with a relatively balanced distribution of 17 false positives
and 12 false negatives, indicating a consistent challenge for the model across both error types
(false positive and false negative).

Words like ‘doll’, ‘pot’, and ‘half’ predominantly contributed to false positives, suggesting
that the model frequently misidentified these intelligible words as ‘unintelligible’. Take the

1Can be found in the file: false positives negatives.json
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word ‘doll’ as an example, it is counted 25 times as a false positive, meaning this intelligible
spoken word was misclassified 25 times as ‘unintelligible’. This is a high frequency of misclas-
sification for this specific word, since for each word, there are 41 or fewer (due to the lack of
gold labels or being left-out utterances) audio files, corresponding to 60.1% misclassification
rate of the word ‘doll’.

Frequency Words False Positives False Negatives

29 bout 17 12
26 doll 25 1
25 pot, fur 23, 11 2, 14
24 half 24 0
23 paw, pool, pull 13, 18, 6 10, 5, 17
22 pole, pore, seedy, fir, fern, bird 18, 15, 20, 13, 12, 11 4, 7, 2, 9, 10, 11
21 tide, tied, bay, daft, pit 14, 13, 18, 18, 9 7, 8, 3, 3, 12
20 cot, caught, putt 18, 10, 9 2, 10, 11
18 pet, boat, pat, bard, pour 11, 16, 13, 13, 13 7, 2, 5, 5, 5
17 pause, dance, board, beer 10, 17, 7, 11 7, 0, 10, 6

Table 5.1: Top 10 Misclassification Frequencies with Corresponding Words

On the other hand, words such as ‘pull’, ‘fur’, and ‘paw’ leaned towards higher false nega-
tive rates, indicating a tendency of the model to misclassify these unintelligible pronunciations
as ‘intelligible’. This could be a consequence of applying the confidence threshold. There is
the case that some of the words are initially correctly labeled as ‘unintelligible’ (being true pos-
itives), however, their confidence scores are lower than the threshold, leading to a final label of
‘intelligible’. This confidence threshold impact will be further discussed in Subsection 5.2.2.

The presence of homophones (e.g., ‘tide’ and ‘tied’) and phonetic similarities (e.g., ‘fir’
and ‘fern’), which had high misclassification rates, further underscores the model’s challenges
in handling nuanced pronunciation variations.

Overall, the model indeed faced difficulties in distinguishing between intelligible and un-
intelligible pronunciations for some words, especially those listed in Table 5.1. To better un-
derstand why these errors occurred, and try to find if there are any patterns or trends, such
as particular phonemes or syllables that the model struggles with, examples of common er-
rors along with their transcriptions are provided, in this subsection with a focus on the false
positives.

Transcriptions for False Positives

After manual inspection, some common or interesting errors are provided as examples in Table
5.2. The first column Word is the target word, followed by the second column which lists the
various incorrect transcriptions generated by the model, with their corresponding frequency
counts. In addition, different parts of the transcriptions are highlighted in various colors to
better show common errors or patterns in the mistakes.

Notably, the target words ‘boy’ and ‘bay’ are mistranscribed as ‘bye’ with a relatively
high frequency, indicating the model tends to think this spoken word is ‘bye’, however, they
were actually not. For the word ‘bay’, sometimes the model was able to identify the vowel
sound ‘ay’ but struggled to recognize the initial consonant sound ‘b’, generating incorrect
transcriptions like ‘may’, ‘they’, and ‘day’, which are near-homophones to the target word
‘bay’. This may happen if the audio quality is poor or if the speaker’s pronunciation is unclear.
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Similar situations that occurred are highlighted in blue, and also the words transcribed with
different vowels are marked in pink. By observing these blue letters, we can find that the
model was confused with some consonant sounds, especially ‘t’ and ‘d’, or ‘t’ and ‘k’. It is
interesting that the homophones ‘tide’ and ‘tied’ were frequently mistranscribed as ‘tight’, a
near-homophone to the target words, but they got other different transcriptions.

Word Transcriptions and Corresponding Frequencies

boy (15) bye (14), why (1)
bay (18) bye (8), may (2), be (2), b (2), they (1), day (1), main (1), big (1)
bout (17) about (9), boat (4), out (2), go (1), but (1)
bee (9) me (4), being (3), d (1), to (1)
putt (9) but (6), part (1), hutt (1), bit (1)
mate (9) make (3), made (3), meant (1), meet (1), nate (1)
tide (14) tight (8), time to (1), tides (1), kind (1), fine (1), hide (1), bye (1)
tied (13) tight (6), guide (2), sides (1), type (1), kind (1), bye (1), died (1)

seedy (20) cd (15), city (1), tv (1), see (1), see you later (1), see you then (1)

daft (18)
thats (2), that (2), left (2), dafft (2), daffd (1), duffed (1), dufth (1), daffk

(1), buffed (1), daphne (1), deaf (1), ta (1), adapt (1), dop it (1)

Table 5.2: Transcriptions for False Positives

In addition, some transcriptions highlighted in orange are only a letter (e.g., ‘b’, ‘d’) or
letters (e.g., ‘cd’). In this case, we are not sure what sounds they stand for, for instance, ‘b’
could be a single consonant sound (/b/ in IPA2), or a sound of the letter Bb (/bi:/ in IPA). If
they are the sounds of how a letter is pronounced, these wrong transcriptions could be seen
as near-homophones to the target word. The wrong transcription ‘cd’ for the word ‘seedy’ is
a special case. It is not a random combination of letters, instead, it was initially transcribed
as ‘CD’, an abbreviation or specifically an initialism of ‘Compact Disc’, which obtained the
phonetic representation of S IY1 D IY1. ‘CD’ becoming ‘cd’ is due to the post-processing
of raw transcription, during which all letters are converted into lowercase. By comparing it
with the phonetic representation (S IY1 D IY0) of the target word ‘seedy’, we can find that
the model actually generated a near-homophone that only the last vowel differs from the target
word instead of random letters.

These examples indicate that the model tends to generate near-homophones for the target
word when it fails to correctly identify and transcribe intelligible speech data. Despite this error
pattern, the model also provides nonsensical transcriptions although this generally occurred
rarely in the transcriptions of false positives, with one exception: the target words ‘daft’. The
words highlighted in red are nonsensical transcriptions, which are not real English words. It
is interesting that for the target word ‘daft’, even though its incorrect transcriptions of ‘dafft’,
‘daffd’, ‘dufth’, and ‘daffk’ are misspelled, their pronunciations are close to the word ‘daft’.
This situation also occurred once for words ‘putt’ and ‘mate’, with transcriptions ‘hutt’ and
‘nate’ respectively.

These two error patterns observed in the false positives, namely near-homophones and
nonsensical words (or misspelled words) with similar pronunciations, suggest that the Whisper
model indeed tends to generate transcriptions that have similar sounds to the expert-labeled
intelligible spoken words rather than giving some random texts.

2International Phonetic Alphabet

https://www.internationalphoneticassociation.org/content/full-ipa-chart
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5.2.2 Low Confidence True Positive Instances Turned False Negatives

For the other error type, false negatives (unintelligible words being misclassified as ‘intelligi-
ble’), I manually inspected them and found that a substantial of them have the ‘unintelligible’
label, meaning they were actually true positives. However, since their confidence scores are
lower than the optimal threshold of 0.3, they were finally identified as ‘intelligible’. The pro-
portion of such words is calculated. Out of all 292 false negatives, there are 244 instances
that were initially correctly identified as ‘unintelligible’ by the model but were subsequently
relabeled as ‘intelligible’ due to their confidence scores falling below the threshold. This indi-
cates that the confidence threshold plays a crucial role in the model’s performance, potentially
causing a considerable number of correct classifications to be overridden and misclassified.

To get an intuition of how confident the model is in these transcriptions, the distribution
of confidence scores for these 244 instances is plotted in Figure 5.2. A confidence score of
0 means the transcription was obtained by concatenating the text part of all segments (review
how the confidence score was calculated in Subsection 3.3.4).

Figure 5.2: Distribution of Confidence Scores for True Positives Turned into False Negatives

From the figure, we know that the transcriptions given have low confidence scores, most
of them are within the range of 0.17 to 0.29, indicating the model’s high levels of uncertainty
in its output. This also explains why applying a confidence threshold to automatically classify
unsure instances as ‘intelligible’ – when the model says ‘there is an error in pronunciation’, we
want it to be quite convinced in its judgment to avoid misclassification of intelligible words,
which will undermine the credibility of the pronunciation checker.

To better understand how these 244 instances were transcribed, especially whether the
model was able to find the specific pronunciation problems, I checked over the transcriptions
and compared them with the Excel file3 where the gold label column is followed by a column
that lists the reasons why a word is not intelligible. Some examples are provided in Table
5.3. In this table, the first column is the unintelligible target word with the student ID (e.g.,
s19 meaning student 19), followed by other four columns: the reasons it being labeled as
‘unintelligible’ (named as Expert-Labeled Feature), the model’s transcription, the phonetic
representations of both the target word and the transcription, and the corresponding confidence
score.

3See gold labels in: gold test data with features.xlsx
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We first observe the top 5 words, which are examples of the model being able to precisely
detect the pronunciation errors in phonemes. The first three instances are spoken words that
were mispronounced with a wrong vowel sound by MOOC students. Taking the word ‘bout’ as
an example, this word was labeled as ‘unintelligible’ by the expert due to the mispronunciation
of the middle vowel ‘ou’ (denoted as AW1 in CMUdict), with the reason ‘different English
vowel’. And the model transcribed it as different words ‘boat’ and ‘but’ for different input
speech data, which indeed have different English vowel sounds: ‘oa’ (OW1) and ‘u’ (AH1)
respectively from the target word ‘bout’. This example indicates that the model knows there is
an error in the vowel sound but actually we are not sure if it gave the correct transcription for
the corresponding input audio file since we only know the target word was wrongly pronounced
as another vowel, as for which one we are missing the information about it from the gold data.

Target
Word

Expert-
Labeled
Feature

Whisper’s
Tran-

scription

Phonetic
Representation

(Target)

Phonetic
Representation

(Whisper)

Confidence
Score

bout (s19)
different

English vowel
boat B AW1 T B OW1 T 0.212

(s14, s39) but B AW1 T B AH1 T
0.297
0.217

putt (s13,
s30, s35,

s47)

different
English vowel

put P AH1 T P UH1 T

0.239
0.289
0.163
0.281

pull (s30) long vowel pool P UH1 L P UW1 L 0.235
pit (s30,

s47)
no aspiration bit P IH1 T B IH1 T

0.212
0.189

paw (s47)
no aspiration,

different
English vowel

bow P AO1 B AW1 0.155

bout (s11)
different

English vowel
boats B AW1 T B OW1 T S 0.284

meat (s51) short vowel mid M IY1 T M IH1 D 0.298
pit (s14) long vowel beat P IH1 T B IY1 T 0.268

pit (s19)
long vowel,

no aspiration
beach P IH1 T B IY1 CH 0.122

bear (s16) non-rhotic there B EH1 R DH EH1 R 0.242
tide (s16) /d/ is missing time T AY1 D T AY1 M 0.23

weight
(s49)

final
consonant
missing

why W EY1 T W AY1 0.295

bard (s12) N/A brought B AA1 R D B R AO1 T 0.225

putt (s17)
different

English vowel
thoughts P AH1 T TH AO1 T S 0.277

pat (s19) no aspiration thank you P AE1 T N/A 0.219

Table 5.3: Examples of Transcriptions for the 244 FN (Were TP before Applying Threshold)
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Similarly, the row for the word ‘pit’ is an example of the model correctly finding the as-
piration error, and the row for the word ‘paw’ is an example of successfully detecting various
pronunciation errors. It is interesting that for the target word ‘putt’, which occurred 11 times
in these 244 transcriptions, the model transcribed it as ‘put’ for 4 different input data (listed in
Table 5.3), with different levels of confidence.

However, the cases mentioned are just a rare proportion of the model precisely finding
the specific pronunciation errors in the 244 instances. Mostly, the pronunciation errors (e.g.,
aspiration) found by the model did not match the expert-labeled features, presented as the rest
of the examples in the table. The phonetic presentations in red are the wrong reasons the model
gave. Taking the word ‘bout’ as an example, although the model successfully found there is
an error in the vowel sound, it generated an extra ‘s’ for the nonexistent S sound at the end.
For words like ‘meat’, ‘pit’, ‘bear’, and ‘tide’, the model successfully detected the errors in the
vowel sounds (e.g., mispronunciation of long or short vowels, rhotic sound), however, it made
mistakes in the consonant sounds, for instance, transcribing ‘pit’ (s14) as ‘beat’, indicating the
model thinks that there is no aspiration for the spoken word’s pronunciation while the aspiration
of ‘p’ was made according to the expert-labeled features. The row for the word ‘weight’ is an
example of misjudgment of the vowel sound.

Finally, the last three rows are examples of instances where the model generated less sim-
ilar (or less precise) transcriptions and even unrelated words (e.g., ‘thank you’) for the target
words. All these examples demonstrate that, although the model correctly labeled these 244
unintelligible spoken words as ‘unintelligible’, it is not capable of detecting nuanced pronun-
ciation errors in phonemes, which may be an essential property of further providing detailed
feedback on pronunciation errors. In addition, the 244 outputs also proved the importance of
applying the confidence threshold, which turned all 244 instances into False Negatives, despite
the influence of the precision of the unintelligible class.

5.2.3 Nonsensical Transcriptions

As mentioned in Subsection 3.3.5, the model generated nonsensical transcriptions for the de-
velopment data. This also happened when running the best-configured model on the test data.
I mainly divided these nonsensical transcriptions into four categories: model hallucinations,
misspelled similar-sounding words, gibberish (not real English words), and empty strings.

Model Hallucinations

‘Hallucination is a response generated by AI that contains false or misleading information pre-
sented as fact.’4 In the context of ASR model, hallucination refers to the model outputting
transcriptions that are irrelevant, made-up, or inconsistent with the input speech data. Accord-
ing to Ji et al. (2023) , there are two main types of hallucinations: Intrinsic Hallucinations
and Extrinsic Hallucinations. Intrinsic hallucinations occur when the generated output directly
contradicts or misrepresents the source content, while extrinsic hallucinations happen when
‘the output cannot be verified from the source content’.

Based on this definition and analysis of model outputs, it appears that most of the nonsensi-
cal transcriptions generated by the Whisper model belong to Extrinsic Hallucinations. Specif-
ically, out of all 2465 nonsensical transcriptions generated for the test data, 166 are extrinsic
hallucinations. Several examples of these are provided below:

4https://en.wikipedia.org/wiki/Hallucination (artificial intelligence)
5All these instances can be found in the file: test NAs info.json

https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)
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• (s13 fern 1) — ‘phone phone phone phone’

• (s13 meat 1) — ‘its really important to see people who see you and to see that i dont
know what were talking about we dont know how to do it its a good part of it the other
thing is that were going to do that and were going to do that’

• (s16 pool 1) — ‘i dont know what youre doing’

• (s27 paws 1) — ‘who was that’

• (s28 half 1) — ‘have a good day have a good day’

• (s30 seedy 1) — ‘see you later’

• (s35 bout 0) — ‘good job good job good job good job good job good job good job good
job good’

• (s39 bear 0) — ‘yeah yeah’

It is interesting that the Whisper model generated some random daily expressions or re-
peated words or phrases for both intelligible and unintelligible speech data.

Unlike hallucinations in Natural Language Generation (NLG) which have been increas-
ingly studied, the topic of hallucinations in ASR is currently underrepresented(Ji et al., 2023).
Hallucinations in speech have mainly been explored for predicting errors (hallucinated word
sequences) or identifying errors (Serai et al., 2022; Frieske and Shi, 2024). Koenecke et al.
(2024) once studied speech-to-text hallucinations and their occurrence in Whisper, the model
used in this project. They discovered that hallucinations are more likely to happen in audio of
individuals who exhibit extended periods of non-vocal pauses—a characteristic often associ-
ated with aphasia, ‘a language disorder wherein individuals have a lowered ability to express
themselves using speech and voice’. However, this cannot explain the reasons for hallucination
occurrence since the input data Koenecke et al. (2024) used is at sentence level with an average
length of 10 seconds, which is different from word-level input data used in this project.

Among these 166 extrinsic hallucinations, the model generated different hallucinations for
the word ‘beer’ 18 times. After listening to audio files of extrinsic hallucinations, I did not find
any patterns or reasons why the model had such hallucinations, for instance, the audio files of
speakers s27 and s45 are generally of relatively low quality and received 10 and 6 hallucina-
tions respectively, which might be considered a reason of the model generating hallucinations.
However, there are 16 audio files made by speaker s49 with good quality (high column, and no
background noise) that received hallucinations as well. Thus, the presence of hallucinations in
the word-level speech-to-text conversion cannot be solely attributed to audio quality.

Misspelled Similar-Sounding Words

The rest of the 80 nonsensical transcriptions include misspelled similar-sounding words, gib-
berish, and empty strings. I categorized 50 of them as misspelled similar-sounding words due to
their similar sounds of phonemes to the target word. These 50 instances are listed in Table 5.4
where the first column is the target word, followed by a column that provides the transcriptions
for speech data made by different speakers. Based on the definition of hallucinations given by
Ji et al. (2023), these transcriptions actually can be seen as Intrinsic Hallucinations since they
misrepresent the source speech data but sometimes are right in representing specific phonemes.
However, I categorized them into ‘misspelled similar-sounding words’ because they may show
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Target
Word Transcriptions and Corresponding Student Identifiers

bout bowt (s51)

daft
dopth (s11), duffed (s15, s30), dast (s16), thats (s17, s24), deafs (s19),

daffd (s20), fuff (s21), dafft (s23, s46), duht (s26), doft (s27), dufth (s29),
guffed (s34), buffed (s38), daffk (s40)

dance doms (s12), daz (s38)
seedy zd (s13), cv (s14), cb (s25)

hat het (s15, s31), hup (s29)
knows nones (s15), nooves (s39)
bard bot (s16)
pet thats (s32, s33)

pause boz (s35), fows (s43)
nose nos (s18), nows (s44)
bear beya (s36), biren (s40)

board bor (s39)
weight vate (s39)
pool booh (s51)
doll dont (s16, s27, s33, s46, s47)
poor pua (s21)
bay beeee (s22)
pull pooo (s33)
pit bitro (s35)

pore borsh (s47)

Table 5.4: Transcriptions for 50 Misspelled Similar-Sounding Words

the model’s ability to recognize English sounds to some extent, even though the spellings are
wrong and some of the transcriptions are even not real English words.

Interestingly, the word ‘daft’ is still the one that received the most nonsensical but similar-
sounding transcriptions, being consistent with Table 5.2.

Gibberish

I manually selected 21 instances and categorized them as ‘gibberish’ (shown in Table 5.5) since
unlike the 166 extrinsic hallucinations and the 50 misspelled similar-sounding words, they are
non-sense and less similar to the sound of the target word. In fact, they can be also seen as
Extrinsic Hallucinations due to the absence of the nonsensical output in the input speech data.
However, they are different from the daily expressions and repeated words or phrases which
are real English expressions.

Empty Strings

After counting, there are 9 input audio files the model did not provide any transcriptions for
them and returned an empty string, regardless of their intelligibility.

These files are: s27 paw 1, s29 pot 1, s29 putt 0, s29 put 1, s37 pit 0, s43 meat 1,
s43 pit 0, s43 putt 0, and s50 boot 1. After listening to these audio files, I found that 5 of
them have really low volumes (s29 pot 1, s29 putt 0, s29 put 1, s43 putt 0, and s50 boot 1),
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Instance Target Word Transcription

s11 fair 1 fair fairish
s11 fur 1 fur fffff
s11 pour 1 pour pish
s22 farther 1 farther fargare
s23 pet 1 pet pyshbegt
s24 paul 1 paul parlid
s24 pull 0 pull polloon
s26 half 1 half hanif
s26 putt 0 putt boont
s27 put 1 put boont
s31 put 1 put puked
s33 bard 0 bard baudhoo
s40 father 0 father shother
s40 seedy 0, s44 seedy 0 seedy 3d
s42 farther 0 farther frustace
s42 pool 0 pool hmm
s43 city 0 city cpt
s45 pour 1 pour bory
s46 pole 0 pole shulu
s47 pull 0 pull poudin

Table 5.5: 21 Selected Instances Categorized as ‘Gibberish’

which may be the reason the model did not provide transcriptions. However, the rest of the 4
audio files were recorded at normal volume and still received no transcriptions, indicating that
there may be other underlying issues or model limitations at play beyond just audio volume.
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Discussion

This chapter delves into the implications of the results presented in the previous chapters (Chap-
ters 4 and 5).

6.1 Discussion of Results

6.1.1 Key Findings

Impact of Temperature Settings and Confidence Thresholds

The study indicates that adjusting the temperature setting of Whisper’s English-only base
model within a range of 0 to 1 (see Figure 4.1) does not significantly influence the model’s
precision in predicting the intelligibility of speech data for both intelligible and unintelligi-
ble words. Specifically, for the unintelligible class, precision remains stable across different
temperature adjustments, while there was a minor fluctuation for the intelligible class across
different temperatures but all with high values. Considering the F0.5-score, the overall per-
formance of the intelligible class shows a decline when the temperature is higher than 0.5 due
to the deterioration of the recall. This stability of precision for the text-based method across
different temperatures is what I did not expect from the model, since according to the docu-
mentation, higher values of temperature will lead to more randomness, meaning the possibility
of more wrong outputs given. However, the fact is not aligned with my expectation of the
temperature impact on precision. For the phonetic-based method, the high precision under
high-temperature values is reasonable as the model may generate a broader range of spelling
variations for the homophones.

Although the temperature setting does not significantly influence the model’s overall per-
formance, it affects the frequency of the model generating nonsensical transcriptions, with a
higher rate when temperature increases (see Table 3.4).

The impact of applying a confidence threshold showed a more obvious trend. The model’s
ability (F0.5-score) to detect pronunciation errors shows a deterioration trend when the confi-
dence threshold becomes more restricted, missing a considerable number of true positives for
the unintelligible class. However, in Figure 4.3, there is an exception that the phonetic-based
method reached a perfect precision (1.0) of the unintelligible class when it is at a temperature
of 0.1, under a high threshold of 0.8. This seems to mean the model’s exceptional ability to ac-
curately identify unintelligible speech data when the threshold is set high. However, when we
take a look at the corresponding confusion matrix (Figure 6.1), we will find that the high preci-
sion of the unintelligible class is at the cost of missing a substantial number of ‘unintelligible’
instances.
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Figure 6.1: Confusion Matrix of High Threshold with Temperature 0.1

This demonstrates that the selection of confidence thresholds is crucial in balancing the
trade-off between precision and recall, but its effects were more complex than initially pro-
jected.

Robustness of the Phonetic-Based Classification Method

As expected, the phonetic-based method consistently outperformed the text-based method
across both datasets. The phonetic-based method’s ability to maintain relatively high precision
and recall for both classes indicates its robustness and effectiveness in handling varying data
conditions, making it a more reliable option for achieving higher accuracy in this classification
task.

Tendency to Generate Near-homophones for False Positives

Although the system struggled to give precise transcription for the intelligible instances (ability
to correctly classify them as ‘intelligible’), it has a tendency to generate near-homophones for
them, by distinguishing between similar vowel sounds or phonetic constructs, instead of giving
some random texts (without considering model hallucination).

6.1.2 Answering the Research Question

Can Whisper be used for detecting pronunciation problems by checking the intelligibility
of speech through a word-level binary classification?

From the overall performance of the best-configured model on the test data on both classes
(see Table 4.3), it seems that the model performance is not too bad with F0.5 scores of 0.691
and 0.429 for classes intelligible and unintelligible respectively. However, the model that will
be used as a foundation to build an automated corrective feedback system should aim for high
values of precision or F0.5-score with relatively high confidence, which can demonstrate its
ability to detect errors. However, the transcriptions the model gave are generally with high
uncertainty (low confidence score), indicating it is less reliable even though it correctly clas-
sifies instances. In addition, the best confidence threshold of 0.3 is already less strict. Under
such requirements, the model did not perform as well as I expected. At least in this project,
the experiments tested and the optimal model ran on the test data did not show Whisper’s
English-only base model’s advantage in detecting errors for word-level audio files.
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6.2 Limitations

The limitations of this study are primarily rooted in the dataset and the inherent constraints of
the Whisper model. The dataset used for tuning temperatures and evaluation is in a relatively
small size and less representative, which may not fully capture the diversity of English speech,
such as variations in accents and background noise. This limitation affects the model’s ability
to generalize across different speech patterns and may lead to suboptimal performance in real-
world applications.

Moreover, the Whisper model itself has certain constraints. As a base model designed and
trained primarily for transcribing long-form speech data in 30-second audio chunks (Radford
et al., 2023), it is optimized for continuous speech rather than isolated words or very short utter-
ances. This focus on longer segments means that while the model is robust in handling extended
speech, its capabilities may be limited when applied to short-form transcription tasks, such as
word-level transcription, particularly for audio clips that are only 1-2 seconds long. This mis-
match between the model’s training environment and the task at hand could contribute to its
reduced performance in accurately identifying and classifying brief, isolated spoken words.

6.3 Future Work

6.3.1 Exploring Different Parameter Settings and Multilingual Models

While the current study focused on a specific configuration of temperature and confidence
threshold in the Whisper model, future work could explore alternative model settings to poten-
tially enhance performance. One promising direction is the use of the ‘best of’ and ‘beam search’
parameters. The ‘best of’ parameter allows the model to generate multiple transcription can-
didates and then select the one with the highest probability. This approach could improve
accuracy, especially for challenging words where the model might initially produce lower-
confidence transcriptions. Similarly, implementing beam search, a decoding algorithm that
explores multiple potential transcription paths and selects the most likely sequence could fur-
ther refine the model’s output. Beam search is particularly effective in scenarios where the
model needs to disambiguate between similar-sounding words or phrases, which is often the
case with unintelligible or mispronounced words.

Moreover, considering that transcription errors in this study were linked to non-native En-
glish speakers, future research could also explore the use of multilingual versions of ASR
models. Multilingual models are trained on speech data from multiple languages and can better
handle variations in pronunciation and accent. This capability could be particularly beneficial
when dealing with multilingual speakers, who may have pronunciation patterns that deviate
from standard English. Incorporating a multilingual ASR model could improve the detection
of mispronunciations and increase the overall robustness of the system.

In summary, experimenting with different model settings, such as ‘best of’ and ‘beam search’,
as well as exploring multilingual ASR models, offers a promising way for enhancing the per-
formance of speech recognition systems in detecting mispronounced words.

6.3.2 Exploring Different ASR Models

Another promising direction for future work involves conducting a comparative analysis be-
tween Whisper and other state-of-the-art ASR models. Models like Google’s Speech-to-Text,
and Microsoft’s Azure Speech Service have been widely adopted and are known for their ac-
curacy and scalability. Comparing Whisper against these models could reveal how well it per-
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forms in various scenarios, such as recognizing nuanced pronunciation differences or handling
background noise. This comparison would help identify the relative strengths and weaknesses
of Whisper, and gain deeper insights into its capabilities and limitations in handling unintelli-
gible speech and non-native accents.
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Conclusion

This study aimed to evaluate the effectiveness of the Whisper model, specifically its English-
only base version, in detecting pronunciation errors by assessing the intelligibility of speech
through word-level binary classification. Through a series of experiments focusing on the
impact of temperature settings, confidence thresholds, and two different classification methods,
several key insights were uncovered.

Firstly, the influence of temperature settings on the model’s precision was less significant
than I initially anticipated. While higher temperatures were expected to introduce more vari-
ability and potential errors, the model’s precision remained surprisingly stable across different
temperature configurations. However, a higher temperature did result in a noticeable increase in
the generation of nonsensical transcriptions, indicating that while precision may not be drasti-
cally affected, the overall reliability of the model could be compromised under such conditions.

The application of confidence thresholds revealed a more predictable trend, where more
strict thresholds led to a decline in the model’s ability to detect pronunciation errors, particu-
larly for unintelligible speech. This finding underscores the importance of balancing precision
and recall in ASR tasks, highlighting the complexity of selecting appropriate model settings.

The study also demonstrated the robustness of the phonetic-based classification method,
which consistently outperformed the text-based method in handling varying data conditions.
This suggests that phonetic-based approaches may offer a more reliable solution for speech
intelligibility tasks, especially in scenarios with diverse or challenging speech inputs.

However, the overall performance of the Whisper model, particularly under the optimal
configuration tested, did not fully meet the expectations for accurately detecting pronunciation
problems in short, word-level audio files. The model’s tendency to generate near-homophones
for false positives, rather than random errors, provides some insight into its internal workings,
but it also highlights the limitations of using Whisper for this specific task.

In conclusion, while the Whisper model shows promise in certain aspects of speech recog-
nition, its application to word-level intelligibility classification, particularly for detecting pro-
nunciation errors, is limited by its design and training focus on long-form speech. The findings
of this study suggest that further exploration of alternative ASR models, as well as the refine-
ment of model settings and methods, is necessary to improve the accuracy and reliability of
automated systems for pronunciation assessment.
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