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Abstract

Uncovering hidden cues related to cultures is a fundamental challenge in anthropo-
logical research. In this thesis, I explore the application of machine learning models
and TF-IDF representation to detect important cues within specific categories of the
eHRAF database. By classifying cultural concepts and analyzing feature weights, I
identify key words and analyze text that contribute to cultural categorization. My
results demonstrate the effectiveness of ML models in revealing hidden cues in the food
quest category using TF-IDF. Furthermore, I discuss the implications of these cues on
the (in)dependence of cultures, highlighting the interaction between individuals within
different cultural practices. In the discussion, I propose future strategies to generalize
the application, such as refining the set of preserved terms and incorporating automated
summarization techniques. By leveraging machine learning and linguistic analysis, this
research sheds light on the nuanced fabric of dependency among individuals in various
cultures, and paves the way for further anthropological investigations.
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Chapter 1

Introduction

The study of cultures has traditionally relied on qualitative methods, such as ethno-
graphic fieldwork and textual analysis (AlAfnan, 2021; Omobowale, 2014). However,
recent advancements in machine learning (ML) and natural language processing (NLP)
have opened up new possibilities for quantitative analysis of cultural data. Cultural
analysis plays a vital role in anthropology, as it allows us to understand the complexities
and nuances of human societies. According to Fischer (2007), in order to understand
cultures, it is crucial to understand the relations between different cultural forms. This
understanding can be achieved by analyzing anthropological data. In this context, the
eHRAF (electronic Human Relations Area Files) database is a vast repository of an-
thropological data, offering a wealth of information about diverse cultures worldwide,
and will be used in this thesis.

Analyzing such extensive textual data manually is a daunting task, requiring the
utilization of computational techniques to extract meaningful insights. Machine learn-
ing (ML) models, in particular, have emerged as powerful tools for this purpose. These
models find patterns in text by learning specific features that we provide. Among these
features, TF-IDF (Term Frequency-Inverse Document Frequency) has proven effective
in identifying important cues within textual data. For instance, Ramos et al. (2003) has
enhanced the query results by using the important words of a corpus found by TF-IDF.
And ML models may be able to discern the significance and relevance of features (i.e.
words) within a given cultural context.

This research aims to address the research question: Can ML models detect which
(hidden) cues are important for different OCM (Outline of Cultural Materials) codes
using TF-IDF? Additionally, I seek to explore the implications of these hidden cues
for understanding the (in)dependence among individuals in different cultures within
the eHRAF database. By examining the interplay between ML models, TF-IDF, and
cultural data, this study endeavors to shed light on the intricate relationships and
dynamics that shape different cultural expressions.

Understanding the (in)dependence of cultures holds significant importance for an-
thropological research and broader societal understanding. It allows us to comprehend
the ways in which cultural practices, beliefs, and values influence the social fabric of
communities. It is important to mention that I could not find any previous work that
attempted to analyze text using NLP in order to find cues that are potentially related
to the interaction of individuals within different cultures using the eHRAF database.
However, by uncovering hidden cues through ML models using TF-IDF, I hypothesize
that we can gain deeper insights into cultural patterns, uncovering implicit connections
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2 CHAPTER 1. INTRODUCTION

and uncovering previously unnoticed aspects of cultural interdependence or indepen-
dence. This hypothesis is mainly about hidden cues. Hidden cues are defined as words
that are not obvious with regard to the OCM code being classified. For instance, cues
such as collecting and gathering are considered obvious if we classify text whose OCM
code is collecting (222). However, there may be hidden cues that can tell more about
certain phenomena or practices within a culture that lead to the interply within cul-
tures. These interplays may be of different forms and can vary fundamentally. This is
mainly due to the idea of cultural relativism. Tilley (2000) suggests that judgment or
prejudges are relative to the morals within a culture. What is right in culture A, may
be wrong in culture B. We will see that in some cultures (within the eHRAF database),
women participate in certain activities, while in others, they do not. Also, it is well es-
tablished that individuals (slightly) depend on each other (Boyd and Richerson, 1988).
They learn from each other through imitation, or other forms. As a matter of fact, we
will observe that some individuals wander off the groups and, for instance, hunt on their
own. However, it is crucial to mention that any claim that seemed to be made in my
study is local in its essence, and not universal by no means due to cultural relativism
and the fact that cultures are not unique at all (Whiten, 2005).

The methodology employed in this research encompasses a systematic approach,
beginning with exploring the data, selecting certain OCM codes and further the pre-
processing of textual data. TF-IDF serves as a feature representation, enabling the
identification of key cues within the analyzed texts. ML models, such as Support
Vector Machines (SVM) and Logistic Regression (LR), train on this representation to
evaluate the importance of features and ultimately detect hidden cues that contribute
to the classification process.

Through my analysis, I observe intriguing patterns in the performance of ML mod-
els and the features they prioritize. For instance, in the binary classification task of
hunting and trapping (224) versus fishing (226), the top features identified by the SVM
model, words such as fishing or hunting, are closely related to the OCM codes at hand.
These words serve as obvious cues associated with the cultural practices and activities
specific to hunting and fishing. As I delve deeper into the iterations of feature removal,
I uncover hidden cues that shed light on the (in)dependence within cultures. Conse-
quently, in other runs, I discover that the occurrence of certain words (e.g., game or
woman) becomes more prominent as we remove the obvious features. These hidden
cues provide insights into the interplay between gender roles, cooperation, and inter-
dependence within cultural practices. For example, the presence of women in hunting
and fishing activities, as reflected in the texts, highlights the collaborative nature of
these cultural practices. Finally, I will show that the chosen ML models are able to
have high performance using TF-IDF, and I further will reveal certain hidden cues that
contribute to the understanding of cultural dynamics. Through this exploration, I aim
to enhance the use of NLP in analyzing and discovering anthropological phenomena
which may lead to enriching our understanding of the diverse expressions of human
cultures within the eHRAF database, and beyond.

The structure of this thesis is as follows. Firstly, a brief discussion on related work
concerning the utilization of TF-IDF to identify significant features within a text corpus
will be presented. Secondly, the methodology chapter will delve into the exploration
of the data, the data preprocessing step, and an explanation of the methods employed
throughout this thesis. Subsequently, the result and analysis chapter will begin by
presenting the outcomes of the models across different classification runs. Furthermore,
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the approach of eliminating cues and uncovering hidden ones will be expounded upon,
enabling the selection of a model based on its f1-score. The next chapter will engage
in a discussion of specific observations and propose various future ideas. Finally, the
thesis will conclude with a chapter summarizing the overall concept and the key findings
derived from the results and analysis.



Chapter 2

Related Work

In recent years, the field of machine learning has witnessed significant advancements
in various domains, including text classification and natural language processing. Re-
searchers have explored the use of machine learning models in analyzing textual data to
extract meaningful insights and detect patterns. In this section, we discuss the related
work that focuses on the utilization of machine learning models in conjunction with
the TF-IDF representation for text analysis and classification tasks.

TF-IDF is a commonly used technique in information retrieval and text mining for
representing the importance of terms in a corpus. It calculates the weight of a term
by considering its frequency in a specific document and its inverse document frequency
across the entire corpus. The TF-IDF representation captures the significance of terms
in a document and has been widely adopted as a feature representation for various text
classification tasks.

Several studies have employed TF-IDF in combination with machine learning mod-
els to classify documents and extract meaningful features. For instance, Ahuja et al.
(2019) used TF-IDF as a feature representation and several ML models including RF,
SVM and LR for sentiment analysis of social media data. They achieved high per-
formance regarding different metrics in classifying positive and negative sentiments in
social media posts. Furthermore, Dadgar et al. (2016) utilized TF-IDF along with an
SVM classifier to classify news articles into different categories. Their study demon-
strated the effectiveness of TF-IDF in capturing the distinguishing features of different
news topics and achieving accurate classification results.

Another pertinent field to consider is stylometry, which focuses on the study of
discerning the writing style of individuals through various linguistic features. In the
work by op Vollenbroek et al. (2016), the authors employed stylometric analysis to
discover the linguistic attributes associated with the age and gender of writers. Their
investigation yielded high accuracy in gender detection by utilizing diverse linguistic
features, such as parts of speech (PoS), punctuation, grammatical correctness, and cap-
ital tokens. They trained an SVM classifier using these features to predict age, gender,
and both simultaneously. Although my approach differs in that I am not aiming to
classify societies based on their inclination towards certain practices (e.g., fishing or
collecting), but rather to uncover hidden cues indicative of these practices within the
text. Nevertheless, a similar task was undertaken using TF-IDF as the primary fea-
ture. Brassard and Kuculo reported that by leveraging TF-IDF, their models achieved
comparable accuracy in gender identification and demonstrated superior performance
in age classification.
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In the context of cultural analysis, the application of TF-IDF and machine learning
models has unfortunately not been used. And in my thesis, I leverage the power of
TF-IDF and machine learning models to detect hidden cues related to cultures in
anthropological data. I apply TF-IDF as a feature representation for text documents
from the eHRAF database and utilize machine learning models for classification tasks.
By training these models on annotated data, I aim to identify important features and
hidden cues that contribute to the classification of cultural concepts and practices. My
approach is inspired by the existing literature that has successfully employed TF-IDF
and machine learning models in various text classification tasks. However, my focus is
thus unique in the sense that I aim to uncover hidden cues specific to cultural analysis,
shedding light on the (in)dependence of cultures within the eHRAF database.



Chapter 3

Methodology

In this chapter, the eHRAF dataset will be examined, followed by an explanation of the
data cleaning and preprocessing procedures. Subsequently, a comprehensive description
of the experimental setup will be provided, detailing the models and tasks involved.
Finally, the process of data selection will be explained through examples, along with
the introduction of a technique aimed at achieving a balanced dataset, when needed.

3.1 Data

In this section, I will describe the data used for the research conducted in this master
thesis. The data consists of collections from the eHRAF(electronic Human Relations
Area Files) database,1 which contains ethnographic and archaeological texts that are
documenting past and present cultures from various regions across the world. The
database provides information about cultural practices, beliefs, and traditions of dif-
ferent societies. The HRAF Collection of Ethnography, which forms the basis of the
eHRAF database, was initiated in 1949 in both paper and microfiche formats. Over
the years, the collection has expanded, and now includes documents from 385 societies
selected from the Outline of World Cultures (OWC). The database is regularly updated
with new documents from previously unrepresented cultures.

The data was collected and curated by Yale University in collaboration with expert
anthropologists. The role of the anthropologists is providing guidance on which docu-
ments to include and index within the database. The data is primarily sourced from old
microfiche collections of ethnography, supplemented by additional and related cultural
materials. The selected cultural data, which are digitized, are continually updated with
new and relevant materials. To facilitate efficient retrieval and analysis, the documents
in the eHRAF database are indexed using the Outline of Cultural Materials (OCM).
The OCM is an ethnographic subject classification system developed in the 1930s by
G.P. Murdock and his colleagues. Each paragraph within the eHRAF documents is
indexed according to its corresponding OCM subject categories. This indexing process
enables the systematic organization and categorization of the data.

The data comprises a total of 202,387 instances from the eHRAF database. These
instances represent a diverse range of cultural contexts and societies. Every instance in
the dataset consists of textual content providing a description of a particular society,
along with metadata that includes codes offering relevant information about the society

1https://ehrafworldcultures.yale.edu/
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3.2. DATA EXPLORATION 7

being discussed. Further, the data consists of 28 columns. Here is a list of the most
informative ones:

• title

• culture

• place: specific area/location that the text targets.

• textrecord

• byline: author.

• pub.type: publication type.

• pub.lang: publication language.

• pub.date: publication date.

• field.date: time span in which ethnographic data were collected.

• coverage: date ranges where the text is applicable on the respective culture.

• ocms: codes added by humans that indicate a topic e.g., 626 = social control

Most of the columns are self-explanatory. Some of them require further consider-
ation to use them in a rational manner, or to be able to interpret the data correctly.
The coverage column can be very important to consider before making any conclusion.
That is, the text, that was provided by experts who provided information about a
certain culture for a some topic, may be obsolete. The obvious reason for this is that
certain practices, beliefs, or even rules change over time, and if a text covers a topic
for a period of time that has passed, then it may not be applicable today.

3.2 Data Exploration

Data exploration is split into two important steps. The first one is exploring the columns
by checking their distribution with regard to the OCM codes. Doing this will gives us
a good understanding of the nature of data. The second is check for anomalies in text
records.

3.2.1 Distribution

The first column we will explore is the pub.lang. This is the publication language of
the text in the dataset.

Figure 3.2 shows the count of the top 10 occurring languages in the data. Most of
the records we have are in English. The total count of original English text is 176.462
thousands record (see Appendix A.1 for details). Nevertheless, the data is thus not
only in English, nor is it only in other languages. Some text records are translated
from other languages, others are a mix of various languages. For example, we have
German, Latin and English, English translation from Finnish, or German, English and
Indonesian together.
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Figure 3.1: OCM codes, grouped by categories.

Figure 3.2: 10 most reoccurring publication languages after English.

The next column to explore and check is the labels, namely the OCM codes. First,
I have included an additional plot that shows the codes (which will be called categories
as well) in Appendix A.2. As the distribution here is not clear, another idea is to
group the subcategories by their main category. For instance, the topics fishing and
collecting are part of the category food quest. And thus they can be grouped as being
subcategories of the said, main category. Moreover, the data that we have may assign
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different codes for one text record. Meaning if a text record is related to more than
one code, each code is counted for that record, once. The category counts we see in
Figure 3.1 are based on the occurrences of these categories. We can see that categories
food quest (220) and agriculture (240) have the highest number of occurrences in the
data set. Each of them occurred in almost 100 thousand records and the counting only
applies if at least one subcategory appears in a text record. Clearly, the categories
are overlapping, since a text record may be annotated with more than one category.
Another plot that shows the same phenomena is listed in Appendix A.3.

Figure 3.3: Top reoccurring cultures (left) and geographical locations (right).

Finally, the two plots, that are worth considering, are the culture and geographical
location that the experts target with the text records. These are shown in Figure 3.3.
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We can see that we have relatively diverse cultures and locations, with the United
States being the top one.

3.2.2 Chosen Categories

Figure 3.4: Subcategory Overlaps of the 220 and 240 OCM categories.

In the previous subsection, we have discovered that the top categories are food quest
(220) and agriculture (240). Also, the experts have suggested using either of these
two categories. The primary rationale behind selecting these two categories lies in
their ability to provide valuable insights into the concept of (in)dependence among
individuals across diverse cultures. In order to choose the specific categories that we



3.2. DATA EXPLORATION 11

will be analyzing, we need to examine them in depth. Figure 3.4 shows the number of
instances of each subcategory of the parent category food quest (220). As the legend
suggests, we have two main scenarios: no overlap with any other category and overlap
with relative subcategories, only. A relative subcategory is an OCM code that has the
same parent category, 220 in this case.

For instance, the subcategory hunting and trapping (224), that is related to food
quest, has the most non-overlapping occurrences. That is, about 3500 instances have
non-overlapping with any other category. The fishing (226) subcategory has about 1000
instances that overlap with at least one relative subcategory, and about 2200 instances
that have 226 as their only OCM code. Similarly, we can see the top non-overlapping
subcategories of the 240 category in the same plot. It is important to understand that a
subcategory is always associated with a parent category, while other or relative subcat-
egories encompass the OCM codes that share the same parent category. For example,
within the parent category of food quest (220), there exist various subcategories such
as fishing (226) or collecting (222). Thus, if we consider collecting (222) as our selected
subcategory, its relative subcategories would encompass all other subcategories within
the parent category of food quest (220). This association is adopted because the OCM
codes are organized in a way that the general topic (e.g., agriculture) always takes a
code that is a multiple of ten (e.g., 240), and all related topics (e.g., tillage or vegetable
production) fall within that particular range of tens, such as tillage (241). Note that
the subcategory overlap is a strict measure where an instance would be counted if and
only if it co-occurs with other relative subcategories. This means that subcategories
that have very few instances may still be considered if we soften this restriction. That
is, we could split by non-overlapping (as we did above) and overlap with any other
OCM codes, which is more general than overlapping with subcategories only. For in-
stance, annual cycle (221) has very few instances that either do not overlap or overlap
with subcategories only. However, we know that its total count (see Appendix A.4) is
about 18 thousand instances, and thus it co-occurs with any other OCM code in ap-
proximately 17.5 thousand instances; since in 500 times, it occurs alone. This is useful
when we build a classifier with certain categories as target labels and will be explained
in detail later in the upsampling section.

3.2.3 Anomalies

As shown in the previous subsection, the dataset contains several language sources.
Since these sources are not from English origins and the fact that this thesis is not
intended to be multilingual, every text record whose language is not (translated into)
English is considered an anomaly. Therefore, every row in the dataset that does not
adhere to this rule will be excluded. From this point onward, the dataset will be filtered
and only English text will be preserved, thus every plot or result I will show will be from
this filtered dataset. Detecting whether or not a text record is in English is achieved
by utilizing the Python implemented version langdetect,2 which is based on Google’s
Java implementation. This library uses dictionary matching and Naive Bayes with
character n-grams to detect the language at hand. It has 99% precision detecting 53
languages, as the library documents.3

Other anomalies include image captions or titles, punctuation, words that provide

2https://pypi.org/project/langdetect/
3https://code.google.com/archive/p/language-detection/
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no meaning nor context to the text and very short text that barely contains any infor-
mation. Each of these cases is handled in the data preprocessing step.

3.3 Data Preprocessing

In this section, I describe the data preprocessing steps employed to clean and trans-
form the raw text data. The preprocessing functions utilized include text cleaning,
tokenization, stop word removal, and punctuation removal. The tools used here are:
Pandas, Numpy, Scikit-learn and other built-in modules. All functions can be found in
the code-base on Github.4 The following functions were used for text cleaning:

• unneeded_tokens(tokens): This function removes specific tokens, such as table
and graphic, from a given list of tokens. These tokens occur when, for instance,
there are tables or plots in the text, and are thus unnecessary and provide no
further information.

• insufficient_info(text): This function checks if a text has insufficient infor-
mation based on certain patterns. It identifies cases where the text starts and
ends with the tilde character ~, or is enclosed within square brackets [ and ]. Texts
with these patterns are considered to have insufficient information and are ex-
cluded from further processing. This is because some text records contain image
captions or titles, which should be removed.

• remove_punct(token): This function removes punctuation from a given token
using regular expressions. Specifically, it replaces all non-alphanumeric characters
except spaces with an empty string.

Furthermore, the tokenize_data(doc, **kwargs) function tokenizes a document
and performs various filtering operations. It takes a document (text) as input and
applies the following steps:

1. Tokenization: The given document is split into individual tokens based on white
spaces.

2. Lemmatization: Every word is lemmatized using Wordnet from NLTK. This will
lead to smaller feature space and perhaps allow for better performance.

3. Punctuation Removal: Punctuation marks are removed from each token using the
string.punctuationmodule and the translate() function. Numeric tokens are
exempted from punctuation removal.

4. Stop Word Removal: Stopwords are filtered out using the NLTK library’s stop-
words list for the English language. Stop words are common words that do not
carry significant meaning and are excluded to enhance the quality of the text
data.

5. Short Token Removal: Tokens with a length less than or equal to one character
are filtered out. Sometimes, words are 2 character long and provide no context
whatsoever to the text.

4https://github.com/hasan-sh/masters-thesis

https://github.com/hasan-sh/masters-thesis
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6. Exclude Words: If the exclude parameter is provided, tokens matching any of the
words in that list are removed from the final token list.

The resulting tokens from the preprocessing steps can then be used by our models
depending on the feature representation, explained next.

3.4 Feature Engineering: TF-IDF

The TF-IDF technique was employed as the primary feature representation for this
study. TF-IDF computes a numerical value for each term in a document to indicate
its importance within the corpus. It takes into account both the term frequency (TF)
and inverse document frequency (IDF) to assign weights to terms. TF represents how
frequently a term occurs within a document, while IDF measures its significance by
considering its rarity across the entire corpus.

I utilized the TfidfVectorizer class from the scikit-learn library, a powerful tool
for computing TF-IDF scores and generating feature matrices automatically. The only
parameter that I changed is the min_df=3. This is a threshold relating to the minimum
document frequency of a term. For instance, if a term occurs only 2 times across all
documents, the vectorizer should neglect it. Also, the NLTK’s stopwords list is used
for the vectorizer.

3.5 Experimental Setup

In this section, I outline the experimental setup that is used to evaluate the performance
of the selected models on two classification tasks. The first task involves classifying one
subcategory against the remaining relative subcategories, while the second task focuses
on classification between specific categories.

3.5.1 Models

I selected three popular models for our classification tasks: Random Forest, Logistic
Regression, and Support Vector Machines.

Random Forest (RF)

Random Forest is an ensemble learning method that combines multiple decision trees
to make predictions. It operates by constructing a multitude of decision trees using
samples of the training data, and randomly selecting a subset of features at each split.
The final prediction is determined by aggregating the predictions of individual trees
through majority voting (Breiman, 2001).

Logistic Regression (LR)

Logistic Regression is a linear classification model that estimates the probabilities of
the outcome classes using a logistic function. It models the relationship between the
predictor variables and the binary outcome by fitting a curve to the training data. The
decision boundary is determined by a threshold applied to the predicted probabilities
(Hosmer et al., 2013).
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Support Vector Machines (SVM)

Support Vector Machines is a powerful classification technique that constructs an op-
timal hyperplane in a high-dimensional feature space to separate the classes. The
hyperplane is chosen in a way that maximizes the margin, i.e., the distance between
the hyperplane and the closest data points of each class. SVM can handle both linearly
separable and non-linearly separable data by using different kernel functions (Cortes
and Vapnik, 1995).

3.5.2 Classification Tasks

I designed two distinct classification tasks to evaluate the models’ performance. Each
task can be used for different sets of subcategories depending on the evaluation. The
details of each evaluation run can be found in the subsequent chapter.

Task 1: Binary Classification

This classification task is designated to the classification of one subcategory and an-
other. There can be two types of this task. First, the classification of two distinct
subcategories. For instance, between fishing (226) and hunting and trapping (224).
Second, between one subcategory and its relative subcategories. To illustrate, take
fishing (226) as an example. We first sample all non-overlapping instances that have
fishing (226) as OCM code. Subsequently, we sample all subcategories of the parent
class food quest (220), except for the subcategory being classified, fishing (226) in
this example. Both types are dedicated to find any interesting, hidden cues. Finally,
I will measure the models’ performance using standard classification metrics such as
precision, recall, and F1 score.

Task 2: Multi-class Classification

The second task focuses on multi-class classification between specific categories. Unlike
Task 1, this task involves more than two OCM codes to classify. For instance, fishing
(226), collecting (222) and hunting and trapping (224) are three different subcategories
and the goal is to classify each instance in our dataset into one of these OCM codes.
Similar to Task 1, I will evaluate the models’ performance using standard classification
metrics, assuming we have a balanced dataset. If the selected categories lead to class
imbalance, we use upsampling (explained below) to obtain a balanced dataset.

3.5.3 Data Selection

In this subsection, I will describe the data selection process employed for the two tasks
conducted in this study. The selection of relevant data was performed using Pandas
and NumPy libraries, utilizing methods such as groupby, map, and apply.

The number of instances obtained for both tasks can be observed from the plots
presented in Figure 3.4. Although the selected data size is significantly smaller com-
pared to selecting an entire parent category, it does not pose any issues as the smallest
chosen subcategory consists of approximately 500 instances. Furthermore, since the
models are trained on TF-IDF, the number of features is determined by the words
in the text. This approach ensures that the instances contain exclusive words, which
makes evaluation easier and more robust. To illustrate, consider instances that have
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hunting and trapping (224) and fishing (226) as their OCM codes. If the text records
encompass both of these subcategories, it becomes challenging to differentiate terms
that are specific to each individual subcategory. Conversely, instances that possess non-
overlapping OCM codes yield more precise terms, namely exclusive words in relation
to the targeted subcategory.

Moreover, the reason why I chose to select instances with at most one OCM code is
motivated by the need to prevent confusion for the models. Given the dataset imbal-
ance, particularly in the selected categories (Appendix A.2), selecting instances with
multiple OCM codes would result in repetitive content. Moreover, it would be more
challenging to identify hidden cues from the underrepresented categories. Additionally,
aiming for instances with exclusive words, rather than instances with different OCM
codes that likely share common words, strengthens the validity of the conclusions drawn
and mitigates potential evaluation difficulties and problems.

For instance, in Task 1, if we were to select all instances that have at least the
specified subcategories, regardless of overlap with other OCM codes, we would still
have two main categories: fishing (226) and its relative subcategories, along with a
larger amount of data. However, the instances with multiple labels may contain general
words (i.e., since they target several OCM codes) that are not closely related to our
subcategory fishing (226) and its relative subcategories, making it difficult to draw
accurate conclusions. This can be, for example, due to the fact that in texts targeting
more than one topic, the language used is not specific to that topic unless they are very
closely related, which is why I group subcategories whose parent category is the same
for Task 1. However, sometimes this cannot be avoided. Collecting (222), for instance,
has very few non-overlapping instances compared to hunting and trapping (224), and
classifying them together would be more problematic than the aforementioned problem
about generic words. In such cases, we could retrieve more instances using upsampling.

Upsampling

Upsampling is a technique employed when a subcategory within a classification task
has very few instances that do not overlap with other categories. This shortage of
instances makes it challenging to include the subcategory in the classification process
effectively. To address this issue, upsampling involves sampling additional instances of
the particular subcategory, thereby increasing its representation in the dataset. This
technique focuses on identifying instances whose OCM code corresponds to a specific
subcategory and any other OCM code from a different parent category.

For example, consider the classification of two subcategories: hunting and trapping
(224) and collecting (222). In this scenario, there is a significant class imbalance, as
shown in Figure 3.4. To mitigate this imbalance, we can upsample the instances of
the collecting (222) subcategory until we reach an equal number of instances as the
hunting and trapping (224) subcategory. The newly added instances would target
collecting (222) and other OCM code(s) excluding hunting and trapping (224). This
process of increasing the number of instances in the collecting (222) subcategory is what
gives upsampling its name. If there are insufficient instances available for upsampling,
we sample as many additional instances as possible within the dataset.

It is important to note that the upsampling algorithm operates on Pandas dataframes.
By providing the algorithm with two dataframes, one containing the dataset and an-
other having the needed categories, it automatically performs the upsampling procedure
for all OCM codes in the needed dataframe until no instances are left to sample. Up-
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sampling serves as a means to address the issue of class imbalance and enhance the
representation of subcategories with limited, non-overlapping instances. By generat-
ing additional instances through upsampling, we can improve the performance and
potentially avoid overfitting.

The methodology chapter of my thesis presented an overview of the research ap-
proach employed to investigate hidden cues and their implications for (in)dependence
in cultures. The study utilized the eHRAF database as the primary data source and
leveraged ML models, namely Random Forest, Logistic Regression and Support Vector
Machines, using TF-IDF for predicting OCM codes and detecting important words.



Chapter 4

Results and Analyses

In this chapter, I will present and analyze the results of the models. Firstly, the
classification results will be listed and discussed. Secondly, I will perform an analysis
in which I show the effectiveness of the models in classifying OCM codes and finding
obvious words. Finally, I attempt to discover hidden cues after removing obvious
ones, which allows us to draw conclusions related to the notion (in)dependence within
different cultures.

4.1 Classification Results

In this section, I evaluate the performance of the proposed models on the classification
task. I use recall, precision, and F1 score as evaluation metrics to assess the models’
performance in predicting the target labels. After evaluating the models, the next
section will perform analysis to uncover hidden cues in the text data and examine their
relevance to the research questions.

4.1.1 Aim

There are several important aspects of this evaluation. The first important step is to
answer whether our ML models can in fact classify the OCM codes using TF-IDF. This
will act as a minimum requirement upon which we can select the best model(s) and
perform further analysis. After I discuss the results and show that the models perform
effectively, the next step is to remove obvious features (i.e., words) relating to the food
quest practices, and check whether the models still achieve acceptable performance on
different practices. This step assures us that the models are able to find hidden cues.
Recall that obvious features are those that are closely related to the practices, while
hidden ones may seem not related, but still interesting to the idea of (in)dependence
within cultures. Consequently, the last crucial step is analyzing the hidden cues. In
this step, I will give several examples from the text and discuss their relevance on the
phenomena of how individuals depend on each other, within different cultures.

4.1.2 Metrics

To evaluate the classification models, we calculate the following metrics:

• Recall: Also known as true positive rate, which measures the proportion of
correctly predicted positive instances out of all actual positive instances. It helps

17
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us understand the models’ ability to identify relevant instances.

• Precision: Precision calculates the proportion of correctly predicted positive in-
stances out of all instances predicted as positive. It indicates the models’ accuracy
in predicting positive instances and avoiding false positives.

• F1 Score: The F1 score is the harmonic mean of recall and precision, provid-
ing a balanced measure of the models’ overall performance. It also considers
both false positives and false negatives and is particularly useful when classes are
imbalanced.

4.1.3 Performance

Binary Classification

The first performance is shown in Figure 4.1. The total numbers of ground truth (i.e.
actual labels) are 1066 instances for hunting and trapping (224) and 659 for the fishing
(226) class. The confusion matrix shows the true and false positives and true and false
negatives. For instance, the LR model has 1055 true positives, 101 false positives, 11
false negatives and 558 true negatives with respect to the hunting and trapping (224)
OCM code. Similarly, 558 true positives, 11 false positives, 101 false negatives and
1055 true negatives for the fishing (226) OCM code. Consequently, we can calculate
the f1-score based on the confusion matrix. The f1-score that I will be showing is the
macro average. The macro average of our metrics gives an equal importance for each
class regardless of the frequency or size of these classes. The score is calculated for each
class separately and the average is taken across all classes. Thus, it provides a measure
that is not biased towards the majority class, if any. This is the primary reason why I
chose to use the macro average. Nevertheless, the overall f1-score of each of our models
is approximately 93%. This indicates that there is very little difference between the
precision and recall of our models, since the f1-score is the harmonic mean of both
of them. Clearly, the models performed quite impressively using the TF-IDF feature
representation.

Figure 4.1: Performance RF on the 224 and 226 OCM codes.
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Another interesting performance is the binary classification of the subcategories
hunting and trapping (224) and fishing (226) with their relative subcategories; i.e. the
rest of the food quest (220) parent category. Note that we have two performances since
each subcategory is evaluated against its relative subcategories, separately. Also, I have
used the upsampling technique (explained in Subsection 3.5.3) in order to avoid data
imbalance. As a result, for hunting and trapping (224) more instances will be sampled
up to have the same number as instances of the rest of food quest subcategories. That
is, we had about 3000 instances that do not overlap, but the instances of the rest of food
quest subcategories add up to around 5000, which means our upsampling algorithm will
sample about 2000 instances more for hunting and trapping (224). The same rationale
applies in the case of fishing (226).

Figure 4.2: Binary classification of (1) hunting and trapping vs relative subcategories
and (2) fishing vs relative subcategories.

Although this classification may be similar to the previous one, it acts as an extra
check that the models are able to distinguish between the chosen subcategories and
their relative subcategories, since they are similar. Recall that relative subcategories



20 CHAPTER 4. RESULTS AND ANALYSES

are subcategories that share the same parent category. The f1-score of the best model
(LR in this case) is approximately 87% for hunting and trapping (224) against its
relative subcategories, and around 85% for fishing (226) and its relative subcategories.
The relative subcategories of fishing (226), for instance, are those pertaining to the
food quest (220) parent category; i.e., all except the fishing itself. Check Figure 3.4 to
see all subcategories of the food quest (220) parent category. Regardless, the f1-score
of the other two models is within a range of about 3% under the LR’s f1-score. This
performance shows that the models effectively classify subcategories. A noticeable
observation is that all models had a low recall and high precision for hunting and
trapping (224), and the opposite for its relative subcategories (grouped by food quest).
This indicates that the models were more cautious in making positive predictions and
tried to minimize false positives. For fishing (226) and its relative subcategories, on the
other hand, we have the exact opposite. This indicates that the models had a higher
tendency to classify negative instances as positives (e.g. 438 false positives for LR)
compared to correctly classifying actual positives. Nevertheless, it is not clear just yet
what the crux of this behavior is. However, the performance is acceptable given that
we had to apply upsampling, which may be the cause of this behavior (as I discussed
why in Subsection 3.5.3).

Multi-Class Classification

The next performance to report is the multi-class classification task between: 221, 222,
223, 224, and 226. The main reason of choosing this set of subcategories is due to the
fact that they are considered to be a good representation of the food quest category.
Moreover, the number of non-overlapping instances, for each, is above 500 instances,
which is a reasonable amount of training data. Nevertheless, we can observe that
the models performed relatively well on this task. We can specifically notice that RF
was not able to catch up with SVM and LR, even though it was initialized with 100
estimators (i.e. decision trees). Despite this low performance of RF, the f1-score of all
models has declined more than 10% from our previous, binary classification task. The
confusion matrix in Figure 4.3 alone can not provide a direct answer on why that is the
case. Therefore, this should be examined more in the analysis chapter. However, we
can see that the only subcategory that confused the model was collecting (222). This
is the case for all models. The most subcategory with which it was confused by the
models is annual cycle (221). We can see around 223 instances for SVM and LR, and
230 instances for RF. These are all false positives by the models. A similar number
of false positives with other subcategories can be observed as well. Another intriguing
phenomenon is the observation that the primary false negatives for the category of
collecting (222) were misclassified as annual cycle (221), with hunting and trapping
(224) and fowling (223) following closely behind. For example, 77, 25, and 14 instances,
respectively, by the LR model. This misclassification is not surprising. We can agree
that the mentioned subcategories are very interrelated. That is, it is not astonishing
that terms that describe collecting (222) will highly be used in the description of, for
example, hunting and trapping (224). Despite this interesting phenomena, the LR
has a higher precision than SVM. Hence their f1-scores are approximately 79% and
78%, respectively. This similar performance supports the effectiveness of the TF-IDF
vectorizer and the models. Also, RF predicted with approximately 76% f1-score.

Finally, all models’ results can be found in the table in Appendix B. In that table,
you can find the precision, recall and f1-score for each model in different runs.
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Figure 4.3: Performance of LR, SVM and RF on the 221, 222, 223, 224 and 226 OCM
codes.

4.2 Analysis

In the previous section, we explored the performance of different models and demon-
strated the effectiveness of TF-IDF in predicting OCM codes. In this section, our focus
shifts towards understanding the relationship between indicative words and cultures.
Our objective is to uncover hidden cues and discuss their potential implications for
the cultures targeted by the OCM codes. The process of removing obvious features
in our analysis holds intuitive significance for anthropologists. It is not surprising to
find that individuals engage in fishing activities or utilize specific tools like bows and
arrows for hunting within the context of food acquisition. However, the identification of
cues that are indirectly associated with food quest practices, yet relate to the concept
of (in)dependence, introduces the notion of hidden cues. If certain cues, for instance,
provide insights into the gender-specific roles or behaviors related to hunting games,
they can be considered as hidden cues. The subsequent subsection will elaborate on
the approach for considering and selecting these hidden cues.

4.2.1 Set up

There are different processes of this analysis:

1. Manual Analysis: In this approach, we manually remove the top features, which
are the most indicative words, from the models.

2. Automatic Analysis: In contrast to the manual approach, the automatic anal-
ysis involves removing the top features for a specified number of iterations (N
iterations). The automatic process does not involve subjective judgment but
relies on training models and iteratively eliminating features.

It is anticipated that the performance of the models will decrease in both man-
ual and automatic analyses. This decline in performance is expected because we are
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eliminating the most indicative cues. Each approach has its own advantages and dis-
advantages. The manual process requires considerable time and effort, but it ensures
the retention of interesting features while discarding obvious ones. Conversely, the
automatic process is efficient but may eliminate both obvious and interesting features
without discrimination. The consequences can affect the performance. Imagine we
remove top 10 features at each iteration. These features are considered obvious. How-
ever, with the manual or automatic approach, we cannot assure that in subsequent
iterations, the previously removed features would not correlate with the emerging new
features. Thereby, we would lose a potential correlation that would otherwise help
discover hidden cues, which could provide more deeper insights than obvious ones.

To make a balance between the manual and automatic approaches, I propose a
semi-automatic process. In this method, I incorporate a predefined set of words re-
lated to the topic of (in)dependence between individuals in different cultures. These
words, suggested by the experts,1 encompass terms of dependence (e.g., ”group”, ”to-
gether”, ”coordinate”, ”cooperate”, ”community”, ”team”) and terms of independence
(e.g., ”alone”, ”individual”, ”independent”) along with relevant pronouns (e.g., ”they”,
”she”, ”he”). Synonyms and related terms for these predefined words are obtained us-
ing resources like WordNet and stored locally. The semi-automatic process involves
removing features for N iterations while preserving the predefined set of terms. Finally,
by employing this semi-automatic process, I aim to strike a balance between efficiency
and preserving meaningful features. Thereby, facilitating a systematic exploration of
hidden cues while ensuring that relevant terms related to (in)dependence are retained
and considered. This approach combines the advantages of both manual and automatic
analyses, offering valuable insights into the relationship between indicative words and
cultures.

4.2.2 Chosen Model

Since the removal of features is expected to lead to a slight decrease in performance,
a comparative analysis will be conducted over 10 iterations for each run presented in
Section 4.1.3. The goal is to identify the most stable model and provide a reasonable
analysis based on the results.

A primary observation from the main run, as depicted in Figure 4.4, is that the
performance of all models experiences a drop of approximately 5% after removing the
top 10 features. Additionally, a quick examination suggests that the RF model can
be confidently excluded from consideration. While it initially performs reasonably
well in the first two iterations, its performance deteriorates significantly starting from
the third iteration. By the third iteration, the top 30 features have been removed.
Conversely, both the SVM and LR models consistently maintain good performance even
after several iterations. Upon closer inspection of these models, SVM exhibits superior
recall, whereas LR achieves higher precision overall. Furthermore, the precision of the
LR model remains relatively stable, with a noticeable downward trend of approximately
1 to 2% following the first iteration. Similarly, SVM displays a similar precision trend,
but it appears that the impact of the first 10 removed features is more pronounced for
SVM than for LR. An intriguing phenomenon arises in iterations 4 to 6, in which both
models experience a decline in recall scores. While LR’s recall continuously decreases
without any apparent exceptions, the recall of the SVM model is influenced by the

1Psychologist Daniel Balliet and anthropologist Kristen Syme.
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Figure 4.4: Performance of LR, SVM and RF over 10 iterations on the 224 and 226
OCM codes.

features removed in iteration 4, but does not impact the subsequent performance in
iteration 6. Although SVM appears to be the better-performing model, caution is
warranted due to the aforementioned effects and the marginal 1% difference in the f1-
score. Consequently, both models demonstrate stability and perform well in the given
context.

Through this first analysis, it is evident that the SVM and LR models exhibit
promising performance across multiple iterations using the TF-IDF feature represen-
tation. This makes them suitable candidates for further investigation and inference.
Likewise, upon examining Figure 4.5, the RF model has the worst performance. Not
only does it experience a significant performance drop after the second iteration, but
it also lags behind the other models by approximately 3% in both runs.

For the classification of hunting and trapping (224) and its relative subcategories,
two noteworthy observations can be made from the plot. Firstly, both SVM and LR
exhibit a decline of approximately 4% in performance across all metrics after the first
iteration. Secondly, at the ninth iteration, LR’s performance decreases while SVM’s
performance improves, resulting in their f1-scores becoming almost equal after all itera-
tions. One plausible explanation for this phenomenon is that certain features interacted
with each other and influenced the models in subsequent iterations. It is likely that
these features are the ones that are removed rather than the ones that are preserved.
That is, the obvious features. The importance of preserving features is explained in
detail in Subsection 4.2.1. Nonetheless, both LR and SVM demonstrate stable and
acceptable performance, with only an 8% loss in f1-score after removing 100 indicative
features (10 per iteration).

Similarly, for the classification of fishing (226) and its relative subcategories, LR
and SVM remain the best-performing models, with SVM slightly outperforming LR. It
is clear that both models face a decline of about 2% in f1-score in iteration 5. Thus,
features in the sixth iteration can be analyzed later as an attempt to check which ones
could have caused this behavior. Although SVM experiences an overall decrease in
f1-score of approximately 8%, and LR’s score decreases by 10%, it is not conclusive
that SVM is superior. Because throughout all iterations, their performances are very
similar, except for the last iteration, which adds some weight on the discrepancy in
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f1-score. Overall, SVM demonstrates a more stable trend after the first iteration.

In conclusion, both LR and SVM exhibit stable and acceptable performance across
the iterations, making them good choices for the analysis. While SVM may have a slight
advantage in certain cases, the differences between the models are not significant. The
slight decreases in overall f1-score can be attributed to the removal of 100 indicative
features, indicating that the models maintain their effectiveness even with a reduced
set of important features.

Figure 4.5: Performance of LR, SVM and RF over 10 iterations on the 224 vs relative
subcats (top), and 226 vs relative subcats (bottom).

The subsequent plot, shown in Figure 4.6, provides an excellent opportunity to
observe the impact of the upsampling technique. The top subplot depicts the models’
performance on a balanced dataset, while the bottom subplot shows their performance
on an imbalanced dataset. It is evident that for the imbalanced data, all models are
unstable and perform poorly on all metrics, particularly in terms of recall.

Furthermore, both LR and SVM models demonstrate relatively stable performance
on the balanced data across all iterations, except for the second one where the first 10
obvious features were removed in the previous iteration. It is important to note that
all plots presented in this section are affected by this issue, which can be attributed
to the critical importance of the top 10 indicative features to the models, in addition
to lemmatizing the text, which amplifies the significance of these top 10 features (e.g.,
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women and woman, in text, will be lemmatized to woman). Nevertheless, after the
first iteration on the balanced data, we observe a decrease of approximately 6-7% in
performance for both LR and SVM models. Subsequently, there is a clear trend of
1-2% decrease in f1-score in the remaining iterations. This loss in performance also
distinguishes SVM from LR, with LR exhibiting slightly better performance overall.
Finally, while in all previous runs I have excluded the RF model, in the run with
imbalanced dataset, its precision score seems to be more stable as it competes with the
other models’ scores. However, since the dataset here is imbalanced, we cannot consider
the RF to provide good performance nor be stable. It is worth mentioning that the
upsampling technique is useful in improving the recall score affecting the f1-score, as
illustrated in the plots.

In summary, the models’ performance on imbalanced data is notably poor, high-
lighting the necessity of addressing class imbalance through techniques such as upsam-
pling. Despite the slight performance drop observed after the first iteration, both LR
and SVM models display stability and maintain reasonable performance throughout
the iterations, with LR slightly outperforming SVM in terms of f1-score.

Figure 4.6: Performance of LR, SVM and RF over 10 iterations on the 221, 222, 223,
224, and 226, balanced (top) and imbalanced (bottom) datasets.
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4.2.3 Hidden Cues

In this section, I aim to explore the relationship between the features and the (in)dependence
topics within the cultures of our dataset, focusing primarily on the performance of the
first binary classification run between hunting and trapping (224) and fishing (226).
Considering that both the LR and SVM models demonstrated similar and stable per-
formance, I will use the features identified by the SVM model for this analysis. These
features are what the models used to successfully predict the OCM codes with our
TF-IDF. Additionally, I will examine some features, from the other runs, that led to
edge-cases, as mentioned in the previous section.

The top-left most Figure 4.1 displays the top 10 features identified by the SVM
model. These features demonstrate a clear connection to the selected OCM codes for
this task. Words such as fish and fishing are indicative of fishing (226), while hunt
and hunting relate to hunting and trapping (224). Additionally, other words shown in
the plot align with our expectations. For example, we can reasonably anticipate that
words like water and net would be relevant in the context of fishing. Similarly, hunters
typically employ traps to hunt or catch animals.

Table 4.1: 10 Iterations: top 10 features of hunting and trapping (224) vs fishing (226).
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Upon removing the initial obvious features, we uncover more interesting cues.
Specifically, the words his and game emerge as significant indicators. After examining
the instances where these words appear together and are correctly predicted by the
model, we find intriguing topics ranging from superstitions to specific hunting rituals.
For instance, some cultures believe that disposing of deer bones or using red-painted
grains before a hunting expedition brings good luck. Moreover, certain hunters wear
hunting (buckskin) cloaks ornamented with various decorations, such as blackbirds sewn
on top, to mitigate animals’ fear. These hunters are usually leaders. Additionally, the
use of large dogs is primarily aimed at intimidating animals like jaguars or pumas to
facilitate hunting. Another interesting note, from the text, is that hunting can be for
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recreational purposes or to fulfill a group’s need. The word his is associated with the
game. And the word game refers to the animals being hunted. A striking observation
is the exclusive use of the male determiner his to refer to the game, while other deter-
miners such as her or their were not employed. This linguistic pattern may suggest a
strong male-oriented perspective within the cultural context, where the possession and
control of game are predominantly associated with men. This finding provides insights
into the gender dynamics and power structures within the cultural practices related to
hunting and trapping.

Another set of interesting words emerges in the fourth iteration. In addition to
words related to the animals being hunted (e.g., fox or rat) and words facilitating the
hunting process (e.g., bait), we observe words that provide additional context to the
topic of (in)dependence in cultures. More specifically, the words they and his, along
with the word woman, are particularly noteworthy. At this point, the SVM model
achieves approximately 85% overall F1 score, which decreases by approximately 8% af-
ter removing the top 30 features up to this fourth iteration. The inclusion of the word
woman as a feature highlights the involvement of women in these cultural activities.
Examining the text samples, in which these words appear, we observe a roughly equal
distribution between the two OCM codes. In some cultures, such as the Copper Inuit
and Ingalik ones, women actively participate in hunting activities. For example, women
join in shooting with bows and arrows, using their own, husbands’ or children’s equip-
ment, demonstrating marksmanship skills just as men could do. Similarly, in fishing
activities, women play significant roles, often engaging in fish-catching using nets, while
men may participate in fishing as a sport or during ceremonies. Women are also men-
tioned in the context of gathering shellfish and sea urchins. Consequently, the presence
of women in these activities underscores the interdependence and cooperation within
the cultural framework, where different members of a community contribute their skills
and efforts. On the other hand, the words his primarily describes the man who ini-
tiates the hunt, and they refers to either the group of hunters within a community or
the women supervising or coordinating activities, such as in Navajo culture. These
words provide valuable insights into the dynamics within a community with respect to
hunting or fishing. The notebook on Github2 provides more text examples from the
dataset accompanied with more statistics and extra helpful information.

‘{226} The men and sometimes the women would run into the water with
their spears and fish will bite as the line is being drawn in.‘ — Copper Inuit
culture within the eHRAF database.

It is important to note that by focusing on the removal of obvious features, we are
able to shed some light on interesting results. Upon removing the obvious words, such as
arrow or bow, we uncover the collaboration between males and females in these cultural
activities. And in the subsequent iteration (5), bothman and woman appear among the
top 10 features. Examining relevant text samples, we observe that these words reflect
gender-specific roles and responsibilities within each culture’s activities. For instance,
in the Lau Fijian culture, women engage in discussions and negotiations regarding
participation in fishing rituals. Similar to the Copper Inuit culture, Mundrurucu men
and women collaborate to catch fleeing fish, with women using hand-nets and men
impaling fish with arrows or clubbing them.

2Hidden cues in text with more statistics

https://github.com/hasan-sh/masters-thesis/blob/main/Model%20112%20(hidden%20cues%2C%20text).ipynb


4.2. ANALYSIS 29

Lastly, the remaining iterations do not provide additional meaningful features. Al-
though some fluctuations in feature importance occur as new features appear, such as
the word their interacting differently with other words, this variation is expected and
can be attributed to various reasons. Nevertheless, it is worth noting that the analyzed
passages suggest that these cultural groups may possess distinct hunting traditions and
practices, potentially reflecting variations in the degree of dependence or interdepen-
dence on hunting within their respective cultures. Also, the discussions highlight the
division of work among individuals, where each individual in a culture takes a specific
role based on their abilities.

Figure 4.7: Iterations 8-10: top 10 features of hunting and trapping (224) vs relative
subcategories.

For the classification between hunting and trapping (224) and its relative subcate-
gories, we noticed negative trends in model performance as more features were removed,
with an exception in the last three iterations. To better understand this behavior, we
can refer to Figure 4.7. Although there could be multiple factors contributing to these
trends, the plot provides valuable insights.

We observe that the overall feature weights increase with the occurrence of the
words family and country. Upon further investigation, we can attribute this effect to
two main observations. First, in the previous iteration, these words occurred more fre-
quently in one of the classes, specifically the relative subcategories class. Consequently,
their removal from the feature set had a negative impact on the model performance.
Secondly, after these features were removed, the features in iterations 9 and 10 be-
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gan to occur in both hunting and trapping (224) and its relative subcategories. This
indicates that the presence of these words was not observed earlier, likely due to the
higher weights assigned to the previously removed words in combination with the pre-
served words. Notably, the preserved words occurred approximately equally between
the hunting and trapping (224) and its relative subcategories classes, resulting in a
roughly 50-50 distribution overall.

‘Men do not rely on the women to supply them with all the vegetable food
that they need. They wander off into the bush individually for a while
almost every day to satisfy their hunger. They gather vegetable food only
for their own needs and normally bring none back to camp.‘ – Hazda culture
within the eHRAF database.

These observations suggest that the presence of specific words, such as family and
country significantly contributes to the classification of hunting and trapping (224) and
its relative subcategories. The removal of these features, which were more prevalent
in the relative subcategories class, led to a decrease in model performance. There-
fore, the interaction between different features and their weights is a crucial factor in
understanding the observed trends in performance.

Figure 4.8: Iterations 1-2: top features of hunting and trapping (224) vs relative sub-
categories.

As a final step in this analysis, we will briefly examine the features of the last
run, which includes the classes 221, 222, 223, 224, and 226. Since this is a multi-class
classification task, we can plot the effect of features on each class, as shown in Figure 4.8.
In the first iteration, where the f1-score approaches 80%, we can observe a combination
of both obvious and non-obvious features. It is notable that several features in the
subsequent iterations relate to the concept of (in)dependence in cultures. For instance,
we observe the words game, man, his, and camp. The word man shows a positive
correlation with hunting and trapping (224) as well as fishing (226), which we have
previously analyzed in detail. On the other hand, the word game specifically relates
to hunting and trapping (224), representing the act of hunting itself. Furthermore, the
word camp appears to be relevant to different subcategories, as depicted in the plot.
In the text, this word is used in various contexts, such as settlement disputes, visiting
relatives or friends, camping in different locations for better foraging opportunities,
controlling land, and most importantly, gathering food individually. For example, read
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the sentence example in Quote 4.2.3. This suggests a level of independence and mobility
among individuals within the this cultural context. Similarly, the individual foraging
trips of Ojibwa men highlight a level of independence in acquiring vegetable food,
demonstrating a self-reliant approach within their culture.

By examining these features, we gain insights into the dynamics of (in)dependence
within different cultural contexts. The presence and importance of words like man,
game, his, and camp provide clues about the roles, activities, and relationships within
these cultures. These observations suggest that certain cultural groups exhibit distinct
traditions and practices, which may reflect variations in the degree of (in)dependence
on specific activities within their respective cultures.

In summary, this analysis has demonstrated that the models were successful in
identifying the obvious features associated with the selected food quest practices and
achieved satisfactory performance on both classification tasks. Subsequently, these ob-
vious features were removed to uncover hidden cues. While it was expected that the
performance would decrease after removing the obvious cues, the models still achieved
acceptable results, particularly in the binary classification task. Furthermore, top fea-
tures were iteratively removed while preserving potentially hidden cues, which were
suggested by domain experts and deemed relevant to the concept of (in)dependence
within cultures. I also provided examples from the corpus to support the findings and
discussions.3 Importantly, the insights gained from this analysis highlight the potential
of this approach, but their meaningfulness ultimately depends on the interpretation
and utilization by users, such as anthropologists.

3All results and text examples are within a notebook on Github. I use a specific random state seed
argument across all results. This allows reproducing the same results on any device.
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Discussion and Future Remarks

In this study, I have successfully employed machine learning models and TF-IDF rep-
resentation to extract hidden cues and classify cultural concepts within the eHRAF
database. However, there are several aspects to consider in terms of limitations, gen-
eralizing the application and further enhancing its effectiveness.

One approach to improve the generalizability of the models is to establish a set of
terms that should be preserved during feature selection. Currently, these terms are
determined based on expert suggestions and some of their related words are obtained
using WordNet. By refining and expanding this set of terms, we can ensure that
important cultural cues are consistently captured across various domains and cultural
practices. Another approach would be considering words that occur either more or
less often than other words, and preserve them as potential hidden cues. This would
enhance the interpretability and reliability of the model’s predictions, which would lead
to more robust comparisons between different cultures.

While my analysis is based on finding terms automatically, I still have to retrieve
the text records using a script I coded, read them through, and then summarize what
they are conveying. Therefore, incorporating an automatic summarization method
to consolidate the results of our model would be an invaluable addition. Language
models, such as transformer-based ones, have shown promising results in generating
coherent and concise summaries of textual information. Leveraging these models to
summarize the key features and findings derived from our analysis would facilitate a
more accessible and comprehensive understanding of the cultural phenomena present
in the eHRAF database. Also, these automatic summaries could provide researchers
and anthropologists with quick insights and facilitate cross-cultural comparisons.

We have seen that certain features interact together. The removal of certain fea-
tures, may either lead to interesting features, which was the case in our evaluation,
but we cannot say with high certainty that these are the only interesting, hidden cues.
Consequently, I propose the iterative evaluation of the f1-score and a more selective
approach to feature removal. Currently, the removed obvious features are all features
excluding the ones that I want to preserve. However, the f1-score of the models after
removing certain features (i.e., at each iteration) could be leveraged. By monitoring
the performance of our models and considering the impact of removing specific features
on the classification accuracy, we can refine our feature selection process. This itera-
tive approach would enable us to prioritize and retain the most informative features
while discarding less relevant ones, which could potentially lead to improved model
performance and a more nuanced understanding of cultural phenomena.
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In terms of future research, it would be valuable to explore the analysis of cultural
concepts and hidden cues at the individual culture level. Currently, our study focuses
on the classification of OCM codes and the identification of features that contribute
to these classifications. However, by examining the results and analyzing the features
within each specific culture, we can gain deeper insights into the unique characteris-
tics and nuances of individual cultures. This comparative analysis would allow us to
identify cultural patterns, similarities, and differences more closely, providing a richer
understanding of cultural dynamics and interdependencies.

Furthermore, exploring the integration of additional data sources, such as ethno-
graphic fieldwork, would enhance the contextual understanding of cultural practices.
Ethnographic data can provide valuable insights into the social, historical, and cultural
aspects that shape specific practices and beliefs. By incorporating such data alongside
textual analysis, we can achieve a more comprehensive and holistic understanding of
cultural dynamics, going beyond the limitations of textual representations alone.

Overall, the application of machine learning models and TF-IDF in uncovering hid-
den cues related to cultures presents a promising avenue for anthropological research.
By addressing the mentioned future remarks and continually refining our approaches,
we can advance our understanding of cultural diversity, interdependencies, and the fac-
tors that shape cultural practices. It is worth mentioning, however, that in order to
gain actual anthropological insights and conclusions, this study would be an interdis-
ciplinary one, which is certainly out of the scope of this thesis.
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Conclusion

In this thesis, I have explored the utilization of machine learning models in conjunc-
tion with the term frequency-inverse document frequency (TF-IDF) representation to
uncover hidden cues related to cultures in anthropological data. My objective was
to investigate whether ML models can effectively detect important cues and features
associated with different OCM codes using TF-IDF. Additionally, I aimed to analyze
the implications of these hidden cues for understanding the (in)dependence of cultures
within the eHRAF database.

The methodology employed in this study consisted of several sequential steps aimed
at uncovering hidden cues and understanding their relevance to the OCM codes. Ini-
tially, the focus was on identifying and validating the presence of obvious features di-
rectly associated with the specific OCM codes. The goal was to confirm the models’ ca-
pability to accurately classify the codes based on the identified features. Subsequently,
the removal of these obvious features was undertaken, allowing for a re-validation of
the classification performance. By eliminating the obvious cues of the OCM codes, the
analysis aimed to uncover and explore the emergence of alternative hidden cues and
still perform well. The final step was to investigate and discuss these newly revealed
cues, aiming to explain their meaningful connections to the (in)dependence of cultures
represented in the dataset.

Through my analysis, I have demonstrated the effectiveness of TF-IDF and machine
learning models in extracting meaningful features and accurately classifying cultural
concepts and practices. The top-performing models were logistic regression (LR) and
support vector machine (SVM) models on annotated data. The best task was the
binary classification task in which I used two distinct OCM categories and obtained
approximately 93% f1-score. Further, I was able to identify key features that contribute
to the classification of different OCM codes.

My findings reveal that certain, obvious words strongly correlate with specific cul-
tural practices. For instance, in the context of hunting and trapping (224), words such
as hunt, trap, or bait were found to be significant indicators. Similarly, for fishing
(226), words like fish and fishing were highly informative. These results align with our
expectations and indicate that ML models, using TF-IDF, can effectively capture the
underlying cues associated with such cultural activities.

Furthermore, my analysis uncovered hidden cues that provide insights into the
(in)dependence of cultures. For instance, the presence of words like his, they, and
woman shed light on the dynamics within a community with respect to hunting and
trapping (224). These cues highlight the collaborative nature of hunting activities,
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the involvement of women in various cultural practices, and the division of roles and
responsibilities within different cultures. These findings suggest that the chosen cultural
practices are shaped by interdependence and cooperation among community members,
emphasizing the interconnectedness of individuals in cultural frameworks.

By leveraging TF-IDF and machine learning models, we have been able to unravel
meaningful information and hidden cues from anthropological data. Once my approach
is generalized, it would provide a powerful framework for analyzing and understanding
on how individuals collaborate under different circumstances and for different practices.
This would allow us to gain valuable insights into the intricacies of different cultural
practices. However, it is important to acknowledge the limitations of my study. While
the models have achieved high performance in classifying OCM codes, there are inherent
challenges in representing the complexity and richness of cultural practices solely based
on textual data. Further research could explore the integration of additional data
sources, such as ethnographic fieldwork, to complement the textual analysis and provide
a more comprehensive understanding of cultural dynamics.

In conclusion, my thesis contributes to the field of cultural analysis by demonstrat-
ing the effectiveness of ML models and TF-IDF in detecting important cues and features
associated with different OCM codes. The uncovering of hidden cues provides valuable
insights into the (in)dependence of cultures within the eHRAF database. By under-
standing these cues, we deepen our understanding of cultural diversity and the factors
that shape cultural practices, covering the way for future research and applications in
anthropology and related fields.
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Figures

Figure A.1: 10 most reoccurring publication languages.
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Figure A.2: OCM codes all subcategories.

Figure A.3: OCM codes, grouped by categories.
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Figure A.4: Top 10 OCM codes.



Appendix B

Other Results

Table B.1: All results of all models. The name of the model
consists of of iteration, which OCM labels and
then the ML model. Best performances for the
main tasks are in bold.

0 (224, 226) LR 0.946649 0.918209 0.929195

0 (224, 226) SVM 0.945181 0.926417 0.934249

0 (224, 226) RF 0.942542 0.920816 0.929648

1 (224, 226) LR 0.899358 0.866671 0.878301

1 (224, 226) SVM 0.883793 0.866146 0.873291

1 (224, 226) RF 0.883621 0.858228 0.867728

2 (224, 226) LR 0.886462 0.850958 0.863064

2 (224, 226) SVM 0.869056 0.853220 0.859684

2 (224, 226) RF 0.859551 0.828500 0.839125

3 (224, 226) LR 0.876200 0.836653 0.849428

3 (224, 226) SVM 0.854744 0.837328 0.844220

3 (224, 226) RF 0.824725 0.788370 0.799308

4 (224, 226) LR 0.856992 0.819464 0.831411

4 (224, 226) SVM 0.842609 0.825520 0.832227

4 (224, 226) RF 0.829768 0.792522 0.803744

5 (224, 226) LR 0.852861 0.810539 0.823244

5 (224, 226) SVM 0.842361 0.824471 0.831421

5 (224, 226) RF 0.814301 0.776920 0.787722

6 (224, 226) LR 0.840327 0.794247 0.807124

6 (224, 226) SVM 0.827341 0.810497 0.817018

6 (224, 226) RF 0.806691 0.768974 0.779586

model precision recall f1-score

Continued on next page
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Table B.1: All results of all models. The name of the model
consists of of iteration, which OCM labels and
then the ML model. Best performances for the
main tasks are in bold. (Continued)

7 (224, 226) LR 0.828967 0.784424 0.796698

7 (224, 226) SVM 0.815045 0.800316 0.806106

7 (224, 226) RF 0.793328 0.752682 0.763158

8 (224, 226) LR 0.828008 0.781859 0.794296

8 (224, 226) SVM 0.813553 0.799378 0.804985

8 (224, 226) RF 0.786782 0.755799 0.764847

9 (224, 226) LR 0.824242 0.773692 0.786442

9 (224, 226) SVM 0.806513 0.789514 0.795907

9 (224, 226) RF 0.778921 0.736969 0.746927

0 (224) LR 0.871701 0.869262 0.869349

0 (224) SVM 0.867668 0.864380 0.864433

0 (224) RF 0.849041 0.840848 0.839245

1 (224) LR 0.831843 0.829769 0.829783

1 (224) SVM 0.822462 0.820103 0.820076

1 (224) RF 0.800632 0.793634 0.791803

2 (224) LR 0.821978 0.819798 0.819782

2 (224) SVM 0.811924 0.809845 0.809811

2 (224) RF 0.787351 0.782298 0.780798

3 (224) LR 0.815678 0.813007 0.812936

3 (224) SVM 0.803637 0.801482 0.801420

3 (224) RF 0.777717 0.772975 0.771477

4 (224) LR 0.804075 0.801090 0.800948

4 (224) SVM 0.796580 0.794410 0.794327

4 (224) RF 0.774726 0.770081 0.768585

5 (224) LR 0.805595 0.802356 0.802194

5 (224) SVM 0.795596 0.793095 0.792973

5 (224) RF 0.750370 0.746303 0.744774

6 (224) LR 0.803878 0.800410 0.800217

6 (224) SVM 0.793945 0.791492 0.791370

6 (224) RF 0.751692 0.747887 0.746451

7 (224) LR 0.795424 0.792409 0.792230

7 (224) SVM 0.789312 0.786653 0.786491

model precision recall f1-score

Continued on next page
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Table B.1: All results of all models. The name of the model
consists of of iteration, which OCM labels and
then the ML model. Best performances for the
main tasks are in bold. (Continued)

7 (224) RF 0.750988 0.749124 0.748936

8 (224) LR 0.791241 0.788231 0.788034

8 (224) SVM 0.790351 0.787962 0.787836

8 (224) RF 0.743188 0.739238 0.737684

9 (224) LR 0.786551 0.783398 0.783163

9 (224) SVM 0.784049 0.781876 0.781754

9 (224) RF 0.741122 0.737005 0.735377

0 (226) LR 0.860083 0.852653 0.851265

0 (226) SVM 0.842478 0.836434 0.835141

0 (226) RF 0.853010 0.844250 0.842604

1 (226) LR 0.810790 0.801712 0.799563

1 (226) SVM 0.797675 0.792542 0.791112

1 (226) RF 0.783301 0.775756 0.773613

2 (226) LR 0.806058 0.796848 0.794612

2 (226) SVM 0.795847 0.790504 0.789011

2 (226) RF 0.765581 0.759288 0.757261

3 (226) LR 0.803885 0.794302 0.791957

3 (226) SVM 0.795987 0.791237 0.789883

3 (226) RF 0.762644 0.756462 0.754433

4 (226) LR 0.792548 0.783269 0.780835

4 (226) SVM 0.784040 0.779916 0.778631

4 (226) RF 0.754254 0.749697 0.748058

5 (226) LR 0.789991 0.780952 0.778537

5 (226) SVM 0.783388 0.778191 0.776631

5 (226) RF 0.747631 0.743753 0.742269

6 (226) LR 0.788498 0.779661 0.777274

6 (226) SVM 0.781484 0.776631 0.775143

6 (226) RF 0.743550 0.739892 0.738445

7 (226) LR 0.787208 0.778870 0.776584

7 (226) SVM 0.776371 0.771264 0.769667

7 (226) RF 0.742835 0.737931 0.736068

8 (226) LR 0.783724 0.775287 0.772930

model precision recall f1-score

Continued on next page
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Table B.1: All results of all models. The name of the model
consists of of iteration, which OCM labels and
then the ML model. Best performances for the
main tasks are in bold. (Continued)

8 (226) SVM 0.771307 0.766141 0.764484

8 (226) RF 0.735231 0.729768 0.727626

9 (226) LR 0.751690 0.750531 0.750454

9 (226) SVM 0.764327 0.759699 0.758128

9 (226) RF 0.737897 0.733058 0.731162

0 (221..226) LR 0.874700 0.668644 0.737363

0 (221..226) SVM 0.830356 0.734309 0.773422

1 (221..226) LR 0.827671 0.556481 0.624470

1 (221..226) SVM 0.786918 0.646865 0.697953

2 (221..226) LR 0.817168 0.515930 0.580061

2 (221..226) SVM 0.779437 0.619659 0.675101

3 (221..226) LR 0.811495 0.498871 0.559698

3 (221..226) SVM 0.757517 0.604154 0.657117

4 (221..226) LR 0.811390 0.468933 0.523969

4 (221..226) SVM 0.743679 0.567866 0.624313

5 (221..226) LR 0.803834 0.454520 0.507054

5 (221..226) SVM 0.720260 0.560383 0.612849

6 (221..226) LR 0.783298 0.435896 0.480739

6 (221..226) SVM 0.737946 0.553015 0.609926

7 (221..226) LR 0.790979 0.420323 0.459427

7 (221..226) SVM 0.733738 0.548264 0.605822

8 (221..226) LR 0.798907 0.414500 0.452679

8 (221..226) SVM 0.731624 0.537917 0.596154

9 (221..226) LR 0.799001 0.402003 0.436885

9 (221..226) SVM 0.710598 0.530580 0.586002

0 (221..226) RF 0.851309 0.614085 0.680776

1 (221..226) RF 0.801789 0.524668 0.585592

2 (221..226) RF 0.747866 0.495176 0.548623

3 (221..226) RF 0.738444 0.467789 0.516853

4 (221..226) RF 0.710818 0.442393 0.485489

5 (221..226) RF 0.700016 0.429130 0.470631

6 (221..226) RF 0.705065 0.416352 0.457397

model precision recall f1-score

Continued on next page
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Table B.1: All results of all models. The name of the model
consists of of iteration, which OCM labels and
then the ML model. Best performances for the
main tasks are in bold. (Continued)

7 (221..226) RF 0.672984 0.403081 0.441327

8 (221..226) RF 0.732322 0.404934 0.446912

9 (221..226) RF 0.676659 0.388919 0.425158

model precision recall f1-score
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