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Abstract

Accessible information for all people is a fundamental societal need. However, textual
complexity often hinders reading comprehension, especially for those with low literacy
or language skills. The Natural Language Processing (NLP) task of Lexical Simpli-
fication aims to facilitate the comprehensibility of textual information. In this task,
complex words in a text are replaced with simpler, easier-to-understand alternatives.

This thesis presents various methodologies for English Lexical Simplification, based
on Masked Language Model (MLM) technology combined with additional methods. It
focuses on the consecutive stages of generating, selecting, and ranking alternatives for
given complex words, adhering to the requirements for the TSAR-2022 Shared Task on
Multilingual Lexical Simplification. In addition, this research introduces an innovative
model for Lexical Simplification, outperforming LSBert, a recent benchmark. The
model uses MLM technology and BERTScore’s contextualized embeddings for enhanced
semantic accuracy. Despite the lack of a designated simplicity-ranking mechanism,
it surpasses comparable models with such properties, suggesting a need for further
investigation into the notion of ‘simplicity’ in this context. The various needs of different
reading audiences should be incorporated in such research. These needs should be
reflected in the instructions for a Lexical Simplification task, among which the task’s
principal system evaluation metrics. For this purpose, this study proposes a novel
measure grounded on target audience requirements.

Post-evaluation improvements leverage WordNet’s semantic hierarchy to determine
whether substitutes serve as hypernyms for the complex word, introducing an inno-
vative approach in Lexical Simplification. The promising results suggest additional
studies into WordNet’s capabilities to enhance Lexical Simplification models, possibly
in conjunction with other relevant categorizations.

This thesis also explores the real-world applicability of the obtained insights to an
existing readability analyzer for English and Dutch. Notably, the Dutch version could
face potential challenges due to resource scarcity and morphological characteristics.
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Chapter 1

Introduction

The United Nations state that all people should have the right to accessible informa-
tion1. This is crucial to social inclusion and active participation in society, as laid out
by Stajner (2021). But how do we define accessibility? Even if people are getting access
to information, the information in a variety of textual sources can be too complex for
people to understand. For example, this can be the case for citizens with low literacy,
cognitive disabilities, or low command of the native language of their country of citi-
zenship. Therefore, although people may have clear access to information, if they don’t
understand this information, they are unable to make informed choices concerning es-
sential matters such as healthcare decisions, legal assistance, education, or democratic
rights (Stajner et al., 2022). This presents a significant challenge to governments and
other organizations as they strive to effectively communicate essential information to
the people involved. The OECD Adult Literacy Report (OECD, 2019; Stajner, 2021)
reveals that this problem is not limited to just a few people. Six proficiency levels in
literacy were defined, against which the reading abilities of a representative subset from
32 countries were evaluated. The results show that 19,8% of this population did not
score higher than the lowest two literacy levels (OECD, 2019, p.43), corresponding to
this group’s need for simplification of any text that exceeds a basic vocabulary.

Understanding and addressing the complexity of textual information to make it
more comprehensible has led to the emergence of an Natural Language Processing
(NLP) task known as Text Simplification. This involves summarization, making sen-
tences shorter, using easier grammar, expressing concepts more straightforward, etc.
– all with the goal to maintain the meaning of the original message. Another impor-
tant subtask of Text Simplification entails methodically replacing textually complex or
difficult phrases in a text with more straightforward, easily understood alternatives,
while preserving the context-specific meanings of these complex phrases. This sub-
task is called Lexical Simplification, which plays a vital role within the field of Text
Simplification, having been addressed by a variety of strategies over time.

Initial attempts to perform automated lexical simplification made use of hand-
crafted resources that relied on linguistic knowledge. These resources offer a wealth
of knowledge that can help improve a system’s understanding of natural language.
WordNet (Fellbaum, 1998) represents one such resource. It is an English language
database where words are classified into synonym clusters, known as synsets, each
expressing a distinct concept. WordNet also maps the semantic relationships between

1https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities/

article-9-accessibility.html, last accessed on 2023-08-14.

1

https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities/article-9-accessibility.html
https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities/article-9-accessibility.html


2 CHAPTER 1. INTRODUCTION

these synsets, providing a rich network of interconnected language data. In a later
stage, parallel corpora became available to simplify texts, like (the more complex)
English Wikipedia2 aligned with (the simpler) Simple Wikipedia3.

Despite the benefits of using such manually designed resources for text simplifica-
tion, there are a number of limitations. Starting from the semantic angle, the exact
meaning of a word is influenced by its surrounding context. This is disregarded when
using a word from a “stand-alone” corpus as a replacement for a complex word, as
the complex word’s unique context is not taken into account. Another issue arises
when considering language variation. Since language changes all the time, handcrafted
linguistic corpora will always stay incomplete. These corpora may also be limited
to specific domains, which may make them not suitable to simplify texts outside the
scope of these domains. The scale and diversity of the over 7,000 languages in the
world present another challenge, as creating and updating resources manually for every
language is not feasible. It is also very costly, as linguists are needed to create and
continuously update these resources. The shortcomings of manually created corpora
have become more evident since the world-wide adoption of the internet in the 1990’s,
making it virtually impossible to keep these corpora up to date with the ever-increasing
amount of available textual information. Lastly, standard applications of simplification
corpora may not meet the various simplification needs that different target audiences
have. In other words, what one person considers a simple word can another person
consider a complex word. For instance, recent research has shown that simplification
needs seem to be different for native and non-native speakers (Yimam et al., 2017,
2018). For non-native speakers, simplification requirements may not only depend on
a person’s language proficiency level (Lee and Yeung, 2018), but also on the specific
native language of that person (Aprosio et al., 2018). A differential approach could
also be appropriate for people with cognitive impairments vs. those with reading im-
pairments (Orasan et al., 2018). The variety of all these simplification needs are not
taken into account by the “one-size-fits-all” approach of the vast majority of standard
linguistic resources.

These insights call for alternative solutions that can: 1) take the context into ac-
count; 2) scale up quickly to serve a wide reading audience of a variety of languages;
and 3) accommodate the specific simplification needs of various subgroups within this
audience. With regard to the latter requirement, especially if it would be possible to
accommodate the unique reading requirements of each person involved, this could be
considered as the ultimate goal to achieve for simplifying texts.

During the past decade, the NLP community has given considerable attention to
advance the task of Lexical Simplification. For example, a variety of Shared Tasks have
been organized around this topic, providing a platform for comparing performances
across various systems executing the same task. The development of such systems was
often triggered by governments and related civil organizations that have become more
aware of the impact of social inclusion and participation in society, and how readable
information can contribute positively to these crucial aspects of civic engagement. Sev-
eral publicly funded projects have been conducted to build systems to assist people
in understanding written information (Stajner, 2021). Next to governmental-related
initiatives, organizations in the private sector have also found their way to NLP com-
munities to facilitate text comprehension for a variety of audiences, such as second

2https://en.wikipedia.org/wiki/Main_Page, last accessed on 2023-08-14.
3https://simple.wikipedia.org/wiki/Main_Page, last accessed on 2023-08-14.

https://en.wikipedia.org/wiki/Main_Page
https://simple.wikipedia.org/wiki/Main_Page


1.1. LEXICAL SIMPLIFICATION 3

language learners (Saggion et al., 2022). All these developments have helped the field
of Lexical Simplification to accelerate in maturity. An increasing number of researchers
in NLP use hybrid approaches in which they combine the strengths of lexical resources
and parallel corpora with advanced machine learning applications that can derive pat-
terns from large textual resources containing words in their context. This progression
brings us closer to achieving the United Nations’ objective of enabling all people to
access and understand information.

1.1 Lexical Simplification

Figure 1.1: Lexical Simplification pipeline, taken from Paetzold and Specia (2017a).

As introduced in the previous section, Lexical Simplification entails methodically
replacing textually complex or difficult phrases in a text with more straightforward,
easily understood alternatives, while their context-specific meanings are retained. To
develop a system to automate this task, the following steps are often (Paetzold and
Specia, 2017a) carried out:

1. Complex Word Identification (CWI): in this step, words that are difficult to
understand are detected. In the sentence “The cat perched on the mat”(Paetzold
and Specia, 2017a) in figure 1.1, the word perched was identified as complex.
Aspects that influence perceived word complexity are covered in section 2.1.

2. Substitute Generation (SG): this step pertains to generating potential candidates
to replace the complex word identified in the first step. It focuses on creating
potential candidates for replacing a complex word, ensuring that no promising
candidates are excluded. Balancing this step is important. A strategy could be to
generate a smaller set of good substitutes, whereas an alternative design decision
could be producing many substitutes including less fitting ones and filter or adapt
these during the next step. In the latter case, the flow of candidates produced
during the SG step could also include unsimilar and grammatically incorrect
candidates. Both strategies can be applied, as long as no suitable substitutes
are missed. As exemplified in figure 1.1, “The cat perched on the mat” could
feature several candidate replacement words for perched. Some of these could
bear semantic similarity to the complex word, such as rested and sat, whereas
others like alighted could not. Another potential substitute could be, for example,
the verb lounge. However, in its current form, it does not align with the third
person singular and the past tense, thus breaking the grammatical structure.
The generation of such a substitute in this initial phase depends on the above-
mentioned design decision.
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3. Substitute Selection (SS): in this step, the only words that are retained are those
that are similar in meaning to the complex word in its context and that fit the
grammatical structure. The latter may also involve adapting an ungrammatical
substitute to the inflection of the complex word4. When revisiting the sentence
“The cat perched on the mat” in figure 1.1 and the complex word perched, the
words rested and sat would be retained when checked on similar meaning in the
context of the sentence. The word alighted will be discarded, as it expresses a
motion, as opposed to the complex word that connotes a static position. An
ungrammatical substitute such as lounge could be morphologically adapted to
the inflection of the complex word, resulting in the grammatically fitting word
lounged.

4. Substitute Ranking (SR): this step involves ranking of the selected replacement
words on how easy they are to understand. From the retained words rested and
sat in figure 1.1, the word sat has been identified as most easy, and is therefore
the preferred simplification word for perched in the sentence “The cat perched
on the mat”. Factors that influence whether one word is perceived as easier than
others are covered in section 2.3.

1.2 Research Objectives

As laid out in the beginning of this chapter, access to understandable information is
pivotal to social inclusion and active participation in society. Lexical Simplification can
promote the accessibility and understanding of reading materials for various audiences.
This includes native speakers who may have reading challenges or impaired reading
abilities, as well as non-native speakers with low command of the native language of
their country of citizenship.

The principal objective of my thesis project is to help carry forward the continuous
pursuit of improving text understanding. It focuses on steps two through four of the
Lexical Simplification task, as laid out in section 1.1, for the English language. The
thesis project is defined, carried out, and evaluated according to the requirements for
the TSAR-2022 Shared Task on Multilingual Lexical Simplification (Stajner et al., 2022;
Saggion et al., 2022). In this Shared Task, participants carried out the exact same steps
of the Lexical Simplification process. The main goal of this task was how complex words
can be transformed into simpler alternatives while preserving the meaning of these
complex words in their context. The outcomes of this first Shared Task on Multilingual
Lexical Simplification established new reference points in Lexical Simplification.

An additional value of this thesis project lies in its application, due to its develop-
ment in collaboration with EDIA. EDIA is a company based in the Netherlands that
provides insights on content by automating metadata associated with that content.
EDIA is currently working on a project with the Dutch government to assist citizens
who have a language deficiency. To do so, EDIA uses its multilingual readability an-
alyzer Papyrus5. Papyrus can identify the complexity of words by attaching CEFR
(Common European Framework of Reference for Languages)6 language proficiency lev-

4This adaptation process may also be executed as a separate step (Saggion et al., 2022), which may
be essential for languages with more morphological complexity than English.

5https://www.edia.nl/papyrus, last accessed on 2023-08-14.
6https://www.coe.int/en/web/common-european-framework-reference-languages, last ac-

cessed on 2023-08-14.

https://www.edia.nl/papyrus
https://www.coe.int/en/web/common-european-framework-reference-languages
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els to these words. The CEFR framework categorizes language competence into six
distinct levels: A1, A2, B1, B2, C1, and C2. The A1 and A2 levels signify elemen-
tary proficiency, B1 and B2 represent intermediate proficiency, and C1 and C2 indicate
advanced levels of language competence. Consequently, Papyrus can identify complex
words — the higher the CEFR level, the more complex the word — corresponding to
the first step in the Lexical Simplification process outlined in section 1.1. Furthermore,
Papyrus generates substitutes that are related to a complex word, i.e., the second step
of the Lexical Simplification process. From the generated substitutes, it selects words
in accordance with the third step of the Lexical Simplification process. However, this
Substitute Selection method could be improved, as Papyrus still retains many words
that are not semantically similar to the complex word. With regard to the fourth step
of the Lexical Simplification process, in which substitutes are ranked on simplicity,
Papyrus uses the CEFR levels of the selected words — the lower the CEFR level, the
more simple the word — although it does not rank these words based on their levels.
After specifying a target CEFR level, Papyrus will provide all substitutes below that
level.

The results of this thesis project will be offered to and explored by EDIA. Due to the
discussed improvement needs of Papyrus on the Substitute Selection step, I have given
special attention to assessing the impact of resources that accommodate retrieving
semantically fitting substitutes. For ranking substitutes on simplicity, I included an
approach based on CEFR language level, just like EDIA’s Papyrus.

The perspectives laid out above have resulted in the following research question:

“How do different approaches for Substitute Generation, Selection and Ranking com-
pare in the context of building a Lexical Simplification system for the English lan-
guage?”

In the pursuit of advancing Lexical Simplification for the English language, I imple-
mented multiple models for the Substitute Generation, Selection, and Ranking steps.
I based my design of these models on both existing literature and pioneering concepts.
For each of the steps in the Lexical Simplification process, I evaluated the individual
contributions of these models. This systematically executed modular approach resulted
in a final model design that obtained highly competitive results on the English track
of the TSAR-2022 Shared Task on Multilingual Lexical Simplification. To connect my
thesis to EDIA’s project with the Dutch government on assisting citizens who have a
language deficiency, part of the Discussion chapter of this thesis is dedicated to ana-
lyzing how my methodology may be applied to the Dutch language.

1.3 Outline

This paper is structured as follows: chapter 2 discusses recent approaches with regard
to the task of Lexical Simplification, excluding the most recent Shared Task on this
subject, the TSAR-2022 Shared Task on Multilingual Lexical Simplification (Stajner
et al., 2022; Saggion et al., 2022), to which chapter 3 is dedicated. This is the Shared
Task this thesis project focuses on, for the English language. In chapter 4, the method
with which I aim to answer my research question is addressed. Chapter 5 follows up
with the results of the applied method and the answers to my research question, which
I discuss in chapter 6. A summary of this thesis in chapter 7 concludes this paper.
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Chapter 2

Related Work

In this chapter, I delve into literature associated with the historical development of Lex-
ical Simplification techniques. Over the past few decades, this field has been subject to
substantial research. Therefore, the sections below are limited to a selection of recent
publications. The first section discusses related work on Complex Word Identification
(CWI). Due to the fact that CWI is not the focus of this thesis project, this section is
kept concise. The next section covers related work on Substitute Generation (SG) and
Substitute Selection (SS), which are combined here as both steps are often intertwined,
as introduced in section 1.1. The subsequent section provides related work on Substi-
tute Ranking (SR). The last section in this chapter discusses a relatively new Lexical
Simplification method, where similar, contextually valid, and simpler substitutes are
generated from the start of the Lexical Simplification process.

This chapter does not cover the literature and methodologies that were presented
in the TSAR-2022 Shared Task on Multilingual Lexical Simplification (Stajner et al.,
2022; Saggion et al., 2022), which is the task that this thesis project focuses on. Chapter
3 is dedicated to describing this Shared Task, and includes a literature review of the
participating systems.

2.1 Complex Word Identification (CWI)

The initial subtask in the Lexical Simplification process is Complex Word Identifica-
tion (CWI), which aims to detect words or phrases in the text that may pose difficulty
for the target audience. While some approaches bypass this step and treat all content
words as potential candidates for simplification, incorporating a CWI component in
the beginning of the Lexical Simplification process has proven beneficial. As unneces-
sary simplifications and associated errors are minimized, the CWI step enhances the
effectiveness of Lexical Simplification systems (Paetzold and Specia, 2015).

CWI has been investigated in a variety of NLP projects. There have been two
recent Shared Tasks on CWI: SemEval 2016 CWI (Paetzold and Specia, 2016b) for the
English language, and BEA 2018 CWI Shared Task (Yimam et al., 2018) for multiple
languages.

In the SemEval 2016 CWI Shared Task, words which might be perceived as difficult
by non-native English speakers were predicted by the participating teams. Machine
learning techniques such as decision trees, using a tree-like structure to make decisions,
and ensemble methods, employing multiple models to improve overall performance,
performed well on this task. Machine learning models that used word frequencies were

7
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most effective in predicting word complexity: often-occurring words were perceived as
less complex than words that appear only scarcely (Paetzold and Specia, 2016b).

The second Shared Task on CWI, BEA 2018 CWI Shared Task, was conducted for
multiple languages: English, German, French, and Spanish. For this task, words which
might be perceived as difficult by native as well as non-native English speakers were
predicted. Conventional methods, predominantly reliant on word length and word
frequency, remained the most effective in predicting word complexity, similar to the
results of the SemEval 2016 CWI Shared Task. However, neural networks, designed
to recognize patterns from data, gained improvement compared to the neural networks
that had been applied to the SemEval 2016 CWI Shared Task (Yimam et al., 2018).

2.2 Substitute Generation (SG) and Substitute Selection
(SS)

In the Lexical Simplification process, the Substitute Generation (SG) step may involve
generating a wide range of candidates for replacing a complex word. After carrying
out the SG step, only those candidates that can substitute the complex word, while
preserving the grammatical structure and the contextually appropriate meaning of the
complex word, are retained during the Substitute Selection (SS) step. Methods used to
deploy the SG and SS steps are frequently intertwined and carried out simultaneously,
depending on the model design.

As introduced in the first chapter, traditional methods generated substitutes with
manually-designed linguistic vocabularies and parallel corpora. For example, Horn
et al. (2014) used English Wikipedia aligned with Simple Wikipedia, introduced in the
first chapter. However, Glavaš and Štajner (2015) argued that, while simple words are
indeed prevalent in simplified text, they are also found in considerable quantities in
standard text. Therefore, they used English Wikipedia and Gigaword 51, an extensive
text corpus with newswire text data, for their candidate extraction. Paetzold and
Specia (2016a) also implemented an unsupervised method, generating substitutes from
a corpus of movie subtitles. They chose this source due to its effective capture of
word familiarity, surpassing other corpora in this regard (Brysbaert and New, 2009).
One year later, Paetzold and Specia (2017b) altered their strategy. They generated
substitutes with a combination of parallel corpora, among which the Newsela corpus
(Xu et al., 2015) that contains professionally created simplifications divided into five
reading levels. They additionally generated substitutes with word embeddings, which
was later followed by Gooding and Kochmar (2019). In the years before, Glavaš and
Štajner (2015) and Paetzold and Specia (2016a) had already applied word embeddings,
but only during the SS step.

The technique of word embeddings involves mapping tokens, i.e. words or parts of
words known as subwords, to vectors in a continuous space. In the context of lexical
simplification, cosine similarity scores are calculated between the vector of the complex
word and the vectors of the other words in the continuous space. The cosine of the
angle between both vectors can range from -1 to 1, where -1 means that two vectors are
the opposite of each other in terms of similarity, zero means that there is no similarity,
and 1 means that they, as they occupy the same space, are similar. Words with a cosine
close to a value of 1 would most likely be chosen as candidates for simplification.

1https://catalog.ldc.upenn.edu/LDC2011T07, last accessed on 2023-08-14.

https://catalog.ldc.upenn.edu/LDC2011T07
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Yet, the word embeddings in those times had a severe drawback. Words can have
different meanings, i.e., polysemous words. The embeddings were unable to distinguish
these different meanings, as all possible interpretations of a word were incorporated into
a single numerical vector. This vector was calculated disregarding the context of the
word, thereby merging all conceivable meanings into one single representation. That
this posed a problem is most evident for homonymous words, which are polysemous
words that have unrelated meanings. An example of a homonym is the word bank, of
which two common unrelated meanings are financial institution and land alongside a
river, the difference of which can only be inferred from the context in which the word
is situated. For example, the sentences “The Netherlands has many banks where you
can get a loan” and “The Netherlands has many banks due to its many rivers” express
different ways in which the word bank should be interpreted. Next to the clear need
for context in case of homonymous words, it is also crucial to know the context of
polysemous words that have related meanings. Although their relatedness can be due
to the same conceptual origin, the word may have an entirely different meaning based
on its contextual surroundings. For instance, the word pool in “They all took a swim in
the pool” should be associated with a synonym related to a collection of water, whereas
a synonym for the word pool in “They all contributed to the lottery pool” should be
related to a collection of monetary fundings. Apart from the above use cases, words
can be polysemous based on many other aspects, such as culture, figurative speech,
and ambiguity in their appearance in syntactic constructions. Context is crucial for
determining meaning in these cases. Therefore, using word embeddings to retrieve
appropriate simplifications for polysemous words can only be successful if the context
in which these words appear is taken into account.

Paetzold and Specia (2016a) had realized the limitations of embeddings without
context, as reflected in their development of a corpus annotated with the following
Part of Speech (PoS) tags: verbs, nouns, adverbs, and adjectives. Using these tags,
they constructed what they called ‘context-aware word embeddings’. This method
distinguished different meanings of a word if these were based on its PoS tag. For
example, the word park has different meanings depending on whether it is used as
a noun or a verb. The noun implies an — often public — location, usually covered
with grass and trees, where people can stroll and relax, whereas the verb refers to
the action of positioning a vehicle somewhere. Words like these were thus assigned
distinct representations depending on their specific PoS tags. Although this method
was an improvement compared to the limitations of traditional embeddings, it still faced
considerable constraints. While it was capable of disambiguating words based on their
PoS tags, it did not capture the variations in meaning that a word can have within the
same PoS. Take, for instance, the noun bank, the homonymous word discussed earlier. It
could indicate financial institution or land alongside a river. In fact, all factors beyond
a word’s PoS tag that determine word meaning, among which the aspects mentioned
earlier in this section, are not taken into consideration with this method. Therefore,
despite the fact that the authors labeled these embeddings as ‘context-aware’, these
did, in reality, not effectively capture the surrounding context within which words are
used.

Gooding and Kochmar (2019) were able to make substantial progress in addressing
the problem of polysemy. Recall from earlier in this section that they had based their
substitute generation on a combination of linguistic resources and non-contextualized
word embeddings. However, in their substitute selection method, they applied contex-
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tualized embeddings, by using ELMo (Embeddings from Language Models) embeddings
(Peters et al., 2018). ELMo is one of the first models that incorporated contextual in-
formation into its word embeddings. Unlike conventional word embeddings, ELMo uses
embeddings based on the context in which words appear in very large corpora, which
are called contextualized embeddings. The benefit of contextualized embeddings is that
a word can be attributed different vectors that depend on the meaning of that word in
different contexts, enabling a richer understanding of word semantics. This approach
allows the model to capture polysemous words much better. The vectors are derived
from a biLSTM (bidirectional Long Short-Term Memory), constituting a variation of
recurrent neural networks (RNNs), equipped to process sequential data such as texts.
Unlike the traditional standard LSTM (Long Short-Term Memory), which is unidi-
rectional, i.e., it processes data from the beginning of the sequence to the end only,
biLSTM also considers information from the opposite direction. It consists of two sep-
arate LSTMs: one that processes the sequence in its natural order (forward), whereas
the other LSTM handles it in the reverse order (backward). By analyzing the sequence
in both directions, a biLSTM can capture patterns that a unidirectional LSTM might
overlook. Recall the earlier-mentioned sentences “The Netherlands has many banks
where you can get a loan” and “The Netherlands has many banks due to its many
rivers”, where crucial information for determining the meaning of the homonymous
word banks comes after that word. A biLSTM like ELMo could be able to capture
these different meanings, whereas a unidirectional LSTM could not. A widely recog-
nized model that took ELMo’s bidirectionality to a new level is BERT (Devlin et al.,
2019). Section 2.4 discusses the application of BERT for the task of Lexical Simplifi-
cation.

Regarding the morphological features of the substitute candidates, both Horn et al.
(2014) and Paetzold and Specia (2016a, 2017b) limited the generation of these sub-
stitutes to candidates with the same PoS tag as the complex word, thereby aiming to
maintain grammatical correctness in the resulting sentences. This is because words
with different PoS tags often cannot be substituted without jeopardizing the grammat-
ical correctness or the intended meaning of the sentence. Consider the sentence “The
cat sat on the mat” as an example. If the word sat, categorized with the PoS tag
‘verb’, is substituted with the noun seat, the resulting sentence “The cat seat on the
mat” would not be grammatical. Horn et al. (2014) further excluded candidates tagged
as proper nouns. Proper nouns refer to specific entities such as persons, locations, or
organizations. These can typically not be used as a substitute without changing the
meaning of the word to be substituted. Take a sentence like “I will visit Lissabon this
summer”, for instance. The proper noun Lissabon could be replaced by another proper
noun, e.g., Portugal, but it will lose crucial information, as it is not known which city in
Portugal will be visited. Furthermore, they (Horn et al., 2014) enriched their substitute
list with morphological variants of both the complex word and its substitute candidates.
By adding these different word forms, they aimed at making their system more flexible
and robust so that it could generalize better towards different usage scenarios.

In their respective studies, Glavaš and Štajner (2015) as well as Paetzold and Specia
(2016a) implemented a method that excludes morphological derivations of the complex
word from the Substitute Generation process. Their approach might stem from the idea
that if a substitute simply represents another version of the complex word, the chances
of successfully simplifying the complex word would be reduced. In addition, morpho-
logical derivations may convey divergent meanings. The most obvious illustration of
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this is negation. A (compound) word can be the opposite of another word just by the
incorporation of a negation prefix, such as ‘un’, ‘in’, and ‘ir’. Word pairs like clear
vs. unclear, appropriate vs. inappropriate, and relevant vs. irrelevant are examples of
this. Given that these words look much alike and can be used in similar contexts as
well, it may present a challenge for NLP systems to distinguish their distinct meanings.
Therefore, the strategy of excluding morphological derivations of the complex word as
part of the SG step can be beneficial for the success of further steps in the Lexical
Simplification process.

Glavaš and Štajner (2015) adapted substitutes to the morphological form associ-
ated with the PoS tag of the complex word, to ensure grammatical consistency of the
substitute with the complex word. For example, if we take a sentence like “The artist
wants to revolutionize the art world”, an ungrammatical substitute candidate for the
complex word, the infinitive revolutionize, is the third person singular transforms. How-
ever, when adapted to the infinitive form, in this case, transform, the modified word
has become a suitable substitute.

Finally, Gooding and Kochmar (2019) removed candidates that would rarely occur
in the context of the preceding and following word. They obtained these results by
calculating bigram frequencies of the generated substitute candidates and the previous
and following word. They derived their benchmark frequencies from the COCA (Corpus
of Contemporary American English) corpus2 (Davies, 2009), and removed candidates
for which the frequency in the context of that corpus was equivalent to 0.

2.3 Substitute Ranking (SR)

After the substitute candidates have been generated in the SG step, and after only those
that preserve the grammatical structure and have a contextually appropriate meaning
are retained in the SS step, they undergo the Substitute Ranking (SR) step, involving
ranking on simplicity. Providing that only semantically similar substitutes have been
selected during the SS step, the context of the original sentence is not the main issue
anymore in the SR phase.

Traditional methods to carry out the SR step were often based on word frequency
measures, from the general knowledge that most frequent words are usually simpler
(Horn et al., 2014; Glavaš and Štajner, 2015; Paetzold and Specia, 2016a). For the
purpose of ranking on simplicity, Pavlick and Callison-Burch (2016) created the Sim-
ple Paraphrase Database, which is contained within the PPDB (Paraphrase Database)
developed by Ganitkevitch et al. (2013), a large-scale lexical resource and collection of
paraphrases constructed by automated processes. They (Pavlick and Callison-Burch,
2016) created the Simple Paraphrase Database by adapting the PPDB for text simpli-
fication through manual simplicity annotation. Paetzold and Specia (2017b) addressed
reader simplification needs by using the Newsela corpus (Xu et al., 2015) that con-
tains professionally created simplifications divided into five reading levels. Gooding
and Kochmar (2019) performed the SR step by using word complexity information
from the CWI dataset of Yimam et al. (2017), which they applied to every substitute
in the context of the original sentence, resulting in contextual simplicity scores.

2https://www.english-corpora.org/coca/, last accessed on 2023-08-14.

https://www.english-corpora.org/coca/
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2.4 BERT: a Transformative Shift in Lexical Simplifica-
tion

Until 2019, English3 Lexical Simplification systems did not employ contextualized word
embeddings, or not until after the SG step had been executed — as introduced in section
2.2, where Gooding and Kochmar (2019) had started using contextualized embeddings
from the SS step onward. As these systems had not taken the context of the complex
word in its original sentence into account during the SG step, they were likely to
generate an abundance of irrelevant or erroneous substitutes, potentially disrupting the
results in the next steps of the Lexical Simplification process: if there are no simpler
alternatives among the substitute candidates for a complex word, then the selection
and ranking steps in the Lexical Simplification process lose their purpose (Qiang et al.,
2021). Another drawback of considering the context of the complex word only after
the SG step is that substitutes that would have been appropriate based on the unique
context of that sentence may be overlooked. Since only the results obtained in the SG
step will be considered for the SS and SR steps, overlooked substitutes during the SG
step are subsequently also disregarded in the ultimate simplification results.

These limitations were addressed by the groundbreaking capabilities of a novel
model introduced in 2019: BERT (Bidirectional Encoder Representations from Trans-
formers), developed by Devlin et al. (2019). Due to its unique characteristics, BERT
achieved remarkable success in various NLP tasks, among which in Lexical Simplifica-
tion. BERT has been pre-trained on text data contained in the BookCorpus, introduced
by Zhu et al. (2015), and English Wikipedia, discussed in the opening chapter. These
sources provided a substantial volume of text data, forming a considerably large train-
ing dataset. As BERT can be applied to raw text, it is widely scalable to Lexical
Simplification of many languages. Like ELMo, the RNN variant introduced in section
2.2, BERT learns contextual representations for words in a bidirectional way, i.e., from
the direction of both preceding and following words. Yet, the Transformer architecture
(Vaswani et al., 2017) upon which BERT is based, elevated ELMo’s bidirectionality
to a new standard by doing this simultaneously instead of in (step-by-step) sequences.
This innovative approach of considering all tokens at the same time leads to more ac-
curate understanding of the context in which words appear, as the model is capable
of capturing meanings of words influenced by other words that appear much earlier
or later in the text. Another noteworthy feature is that BERT is a masked language
model (MLM), able to replace certain words in the input text with [MASK] tokens, af-
ter which it can predict the original words that were replaced by these [MASK] tokens,
based on the surrounding context. This masking property supports the generation of
several contextually fitting words for each masked token, a characteristic that is partic-
ularly beneficial for the SG step in the Lexical Simplification process. After masking a
complex word, BERT uses the contextual information of the sentence to make predic-
tions for the masked words. The top predictions from this process can be considered
as potential substitutes, offering context-aware alternatives for the complex word.

In conclusion, BERT’s unique ability to grasp the semantic role of words within
their specific context, along with its competence to generate context-aware substitutes
directly from the initial SG step onward, has been a milestone in transforming the
process of Lexical Simplification.

3TUNER (Ferrés et al., 2017) applied contextualized word embeddings during the SG step in 2017
for Spanish, which will be discussed in section 3.7.
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2.5 From BERT to LSBert

Figure 2.1: Substitute Generation with LSBert, taken from Qiang et al. (2021).

Qiang et al. (2021) developed a Lexical Simplification model, LSBert, that they
had based on BERT’s architecture, bidirectional approach, and masking functionality.
Like BERT, LSBert is capable of retrieving context-aware substitutes directly from the
start of the Substitute Generation step. From the generated substitutes, it selects the
most semantically similar and the most simple alternatives, which makes it an all-in-one
approach for Lexical Simplification.

LSBert, for which Bert-Large, Uncased, WWM (Whole Word Masking)4 was chosen
for the SG step, has adapted BERT’s [MASK] functionality by adding the original
sentence in which the complex word is not masked. To prevent only considering the
context around the complex word without assessing the meaning of the complex word
itself, the original sentence including the complex word is added to the sentence in
which the complex word is masked, together forming a sentence pair. To compensate
for the fact that the sentence pair generates double contextual information, 50% of the
words in the original sentence excluding the complex word is randomly masked. Then,
the sentence pair is fed to the model. Thus, from the start of the SG step, the model is
enabled to generate contextually fitting substitute candidates that are also semantically
close to the meaning of the complex word. At the end of the SG step, morphological
derivations of the complex word are removed from the candidate list.

LSBert’s Substitute Generation process is visualized in figure 2.1. The tokens
[MASK], [CLS], and [SEP] are three unique tokens. While [MASK] masks a specific
word, [CLS] can be found at the beginning of each piece of text, in this case, a sentence.
Finally, [SEP] is a separator token that, in this case, is added between the end of a sen-
tence and the beginning of a new sentence. For the example sentence “The cat perched
on the mat”, the top three candidates for the complex word perched would be sat,
seated, and hopped. These candidates comply with the grammatical structure of the
word perched in the original sentence and also fit in its context. However, they are not
all equally semantically similar nor equally simpler alternatives to the complex word
perched. The authors (Qiang et al., 2021) aim to solve this during the subsequent SS
and SR steps, which they combined into one step. In that step, they use the averaged
result of five features, where the first three are related to semantic fit, and the last two
to simplification:

4https://huggingface.co/bert-large-uncased-whole-word-masking, last accessed: 2023-08-14.

https://huggingface.co/bert-large-uncased-whole-word-masking
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1. BERT’s cross-entropy loss of the masked word. During pre-training, BERT learns
to predict masked tokens by using the context provided by the unmasked tokens.
This context is defined as a symmetrical range with a size of five tokens centered
around the masked complex word. How well BERT predicts masked tokens in
this context is computed by cross-entropy loss (Devlin et al., 2019), a measure
that determines how well the predicted probability of an event matches the actual
outcome. A lower cross-entropy loss corresponds to a smaller deviation from the
actual outcome, and, in the context of Lexical Simplification, results in a higher
ranking of the substitute as a valid alternative for the complex word.

2. BERT’s prediction order, referring to BERT’s probability distribution on new
input sentences after it has been pre-trained. BERT bases its prediction of the
masked token on the surrounding context (Devlin et al., 2019). LSBert uses these
predicted probabilities to rank substitutes for a complex word. The higher the
probability predicted by BERT, the higher LSBert ranks the substitute.

3. Word semantic similarity, using the vector representations of the FastText (Bo-
janowski et al., 2017) word embedding model that maps words broken down into
subword character n-grams to vectors in a continuous space, and calculates the
cosine similarity between the vectors. The advantage of using subword character
n-grams is that vectors for rare or previously unseen words can be provided as
well. The more similar the vectors, the higher LSBert ranks the substitute.

4. Word frequencies obtained from large text corpora, based on a common under-
standing that the most frequently used words tend to be simpler, as discussed in
section 2.3. The more frequent the word, the higher LSBert ranks the substitute.

5. The paraphrase database PPDB (Ganitkevitch et al., 2013), discussed in section
2.3. If the candidate occurs in the PPDB database in a pair together with the
complex word, LSBert ranks it higher than if both words do not occur together.

For each substitute, its scores on the above-mentioned five features are averaged. Sub-
sequently, the substitutes are ordered on their respective averaged scores.

Owing to BERT’s architecture, LSBert achieves two of the three main objectives
outlined in the opening chapter: 1) contextual understanding — in this case, during the
SG step — and 2) scalability, by processing raw text without relying on hand-crafted
corpora. Yet, LSBert does not meet the third objective of adapting the substitutes to
readers with different simplification needs. Moreover, the FastText word embeddings,
used to calculate semantic similarity during the combined SS-SR step, are uncontextu-
alized. As stated in section 2.2, uncontextualized embeddings consolidate all meanings
of a word into one static vector. Although LSBert uses uncontextualized embeddings
only for substitutes that have already been generated in the context of the sentence,
these embeddings might yet prove counterproductive for polysemous substitutes. For
example, a contextually ideal substitute might obtain lower embedding scores because
of the generalized representation of its diverse senses in uncontextualized embeddings.
Consequently, such substitute might not be prioritized when it should be.

Yet, LSBert proved to be the most successful model for Lexical Simplification in
2021 (Qiang et al., 2021), and was defined as one of the two English baseline models
for the TSAR-2022 Shared Task on Multilingual Lexical Simplification (Stajner et al.,
2022; Saggion et al., 2022). Chapter 3 describes this Shared Task with regard to its
English track, which is the task that this thesis project concentrates on.



Chapter 3

Task Description

The TSAR-2022 Shared Task on Multilingual Lexical Simplification (Stajner et al.,
2022; Saggion et al., 2022) was the first Shared Task on Multilingual Lexical Sim-
plification. Participants carried out steps 2 through 4 of the Lexical Simplification
process laid out in section 1.1. The main goal was to find out how complex words can
be transformed into simpler alternatives while keeping the meaning of these complex
words in the context of the original sentence in place. The Shared Task featured tracks
in English, Spanish, and (Brazilian) Portuguese, for which the instruction was equal:
“Given a sentence/context and one target (complex) word in it, provide substitutes for
the target word that would make the sentence easier to understand. It was allowed
to submit up to ten substitutes, ordered from the best to the least fitting/simple one.
Ties were not allowed” (Saggion et al., 2022, p.3).

The authors did not mention what target audience they had in mind regarding
‘easier to understand’ and ‘from the best to the least fitting/simple one’ (Saggion et al.,
2022, p.3). Moreover, a definition of ‘simpler’ was not given by Stajner et al. (2022) or
Saggion et al. (2022). The implications of the ambiguity of these instructions will be
addressed in section 6.2.

The subsequent sections offer an exploration of the English track in this Shared
Task. I discuss the used dataset and its associated constraints, along with the employed
annotation guidelines. Next, I explain the evaluation metrics to assess participating
systems. Subsequently, I examine the baseline models which served a the competitive
benchmark for the participating systems in this Shared Task. Lastly, I cover how
participating systems solved the task, followed by a review of their results.

3.1 Data Collection

Recall from section 1.1 that the identification of complex words (CWI) is the initial
step in the Lexical Simplification process. As denoted in section 2.1, this step enhances
the effectiveness of these systems by minimizing superfluous simplifications and related
errors.

For this purpose, the TSAR-2022 Shared Task on Multilingual Lexical Simplifica-
tion evaluated the submitted systems on a dataset in which certain words had previ-
ously been identified as complex. This concerned the data Yimam et al. (2017) had
used for the 2018 CWI for Multilingual Lexical Simplification Shared Task (Yimam
et al., 2018), introduced in section 2.1. For the English language, this data consisted
of three writing genres: News (articles authored by professionals), WikiNews (articles

15
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written by amateurs), and articles from Wikipedia. Information about the specific
topics that the texts in the corpora are about is not readily available. The writers of
the text corpora consisted of a mix of experts and amateurs in news writing. A total
of 183 annotators participated in this task, crowdsourced by the Amazon Mechani-
cal Turk (MTurk) crowdsourcing platform. The annotators encompassed native (134)
native and non-native (49) speakers, of which the non-native speakers reported differ-
ent proficiency levels (beginner, intermediate, advanced). Whether these annotators
possessed supplementary linguistic skills for the annotation task was not specified. De-
mographic properties such as age, gender, race, ethnicity, or socioeconomic status were
not disclosed either. Collectively, the annotators labeled 34,897 words based on their
perception of the complexity of these words. Each word was annotated by at least ten
native and at least ten non-native speakers. The result show significant differences in
perceived word complexity between native and non-native speakers, indicating distinct
simplification needs for these groups (Yimam et al., 2017, 2018), as introduced in the
opening chapter.

For the TSAR-2022 Shared Task (Stajner et al., 2022; Saggion et al., 2022), the
complex words were selected from all three text genres represented in the 2018 CWI
dataset discussed above. Instances that had been marked in the CWI Shared Task 2018
as complex by at least five of the ten native English annotators were first selected for
the TSAR-2022 dataset. After removing duplicates, approximately 400 instances were
chosen by a native English speaker, based on personal judgment whether at least one
simpler word for that instance in that context could be found. In each sentence, one
complex word was selected. According to Stajner et al. (2022), this choice was made for
two reasons. First, to avoid complications in the validation of annotations, as replacing
multiple words within the same sentence could produce sentences that feel unnatural,
due to the subtle variance in meanings between the replacements and the original
complex words. Second, simplifying more than one word per sentence would conflict
with the current setup of most state-of-the-art simplification systems that simplify one
word per sentence per iteration. If more than one word had to be simplified in a
sentence, the context would alter slightly each iteration, due to the subtle meaning
change caused by the simplification of a complex word from the previous round.

The approximately 400 words marked as complex and the sentences in which they
occurred were supplied for annotation via the Amazon Mechanical Turk (MTurk)
crowdsourcing platform. No demographic information was collected for this annotation
task. Only native English annotators were requested to perform this task, although this
was not individually verified. Annotators received annotation guidelines for guidance
on executing this task. In short, they had to provide one simpler synonym for each
marked complex word, while preserving the meaning of the original sentence. These
annotation guidelines are further discussed in the subsequent section. Each instance
was annotated by 25 annotators and reviewed by at least one native English-speaking
computational linguist. Where necessary, affix changes were applied to the annotations
to fit the context grammatically. Instances with unsuitable annotations — i.e., where
the annotation guidelines had not been followed — were removed. In those cases,
further annotations were requested so that each instance had 25 annotations in the
end. Instances that did not get good suggestions were removed, resulting in 383 final
instances1.

1The Shared Task datasets are available at https://www.github.com/LaSTUS-TALN-UPF/

TSAR-2022-Shared-Task, last accessed on 2023-08-14.

https://www.github.com/LaSTUS-TALN-UPF/TSAR-2022-Shared-Task
https://www.github.com/LaSTUS-TALN-UPF/TSAR-2022-Shared-Task
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3.2 Annotation Guidelines

One significant step in preparing data for NLP tasks is annotation, which involves
labeling language data by humans. The foundation for this process is formed by anno-
tation guidelines, which are vital for the success of NLP tasks, irrespective of whether
the annotations are only used for system evaluation. Unclear guidelines can result in
inconsistent annotations and unreliable evaluations. Moreover, they can make it chal-
lenging to identify system weaknesses, given the complexity in distinguishing whether
errors stem from system issues or ambiguous annotations. Moreover, unclear guide-
lines can lead to misinterpretation, potentially fostering individual biases, which can
be harmful especially in critical sectors such as healthcare.

For the TSAR-2022 Shared Task on Multilingual Lexical Simplification, Annotation
Guidelines2 (Stajner et al., 2022) were provided to guide annotators through the task.
An extract is displayed in figure 3.1. The full Annotation Guidelines form that was
provided to the annotators is supplied in appendix A.

Parts of these guidelines can be understood in different ways, which potentially
could have introduced misinterpretation and subsequent personal biases.

For example, the guidelines did not contain a definition of ‘simpler’ in the given
context of ‘a simpler word’, nor did they explain their phrase ‘easier to understand’
(figure 3.1). Moreover, the audience to which this should apply was not stated. Would
the word to be simplified have to be easier to understand by the specific annotator only,
or would the annotator have to find simplifications that in this person’s opinion, would
be easier to understand by other readers? If so, to which subgroup of these readers
would this apply? As highlighted in the opening chapter, simplification needs seem to
be different depending on the target audience.

Figure 3.1: Extract of Annotation Guidelines for English track of TSAR-2022 Shared
Task, taken from Stajner et al. (2022).

2https://www.frontiersin.org/articles/10.3389/frai.2022.991242/full#

supplementary-material, last accessed on 2023-08-14.

https://www.frontiersin.org/articles/10.3389/frai.2022.991242/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2022.991242/full#supplementary-material
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Furthermore, the following sentence in the guidelines, as shown in figure 3.1, may
be perceived as ambiguous:

“In that case that it is not possible to replace with a single word, then you can use a
more complex substitution. For example, in the sentence “The dresses were Iranian”,
the word Iranian could be replaced by from Iran.”

The phrase ‘a more complex substitution’ had not been explained. ‘More complex’
might erroneously be perceived as more complex than the complex word, and does
furthermore not resonate in the accompanying example of ‘more complex’: the phrase
from Iran, which is essentially a simplification consisting of two words. This specific
example also made clear that annotators were allowed to use more than one word as a
substitute, which was also confirmed in one (Stajner et al., 2022) of the Shared Task’s
papers. I will cover the implications of multi-word annotations in the context of this
Shared Task in section 6.1.2.

In summary, the absence of definitions of what should be understood by ‘simpler’
and ‘easier to read’, together with the ambiguous example regarding ‘more complex’,
could have introduced individual biases to the annotation task. I will reflect on the
impact associated with personal biases regarding this particular Shared Task in the
subsequent section, as well as in sections 6.2 and 6.5.

3.3 Data Limitations

Stajner et al. (2022) discuss two limitations of the data. First, as all instances are taken
from news sites and Wikipedia, reliable lexical simplification results are limited to these
specific genres only. Second, the simpler synonyms are proposed by crowdsourced
contributors instead of experts. With 25 annotators for each instance, this issue is
somewhat diminished by the ranking of the suggested replacements according to how
often they had been proposed. However, a linguist would be required to verify this, as
the synonyms had only been professionally checked on grammar and meaning, but not
on their perceived simplicity (Stajner et al., 2022).

In addition to the above constraints and the ambiguities in the Annotation Guide-
lines reviewed in the previous section, there are further concerns regarding the collected
data. The roughly 400 complex words had been selected by one native English speaker.
This person had chosen these particular complex words based on whether at least one
simpler word could replace the original complex word within its context. The linguis-
tic expertise of this individual is not stated, introducing uncertainty about potential
vulnerabilities. This includes the risk of personal biases and lack of linguistic precision
in the selection process, which could consequently compromise the representativeness
of the data.

An additional issue linked to the collected data is the absence of alignment between
the expertise of the annotators and the topics of the texts. The lack of correspondence
could inhibit their understanding when tasked with replacing complex words with sim-
pler alternatives. Moreover, the fact that the annotation task was paid might have
encouraged a focus on financial gain rather than a genuine engagement with the task.
This could have affected the overall quality of the annotations.

The potential compromise on annotation quality became more apparent when I
examined the annotated substitutes in the trial set, which is a small subset of the dataset
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discussed in section 3.1. Nearly all annotations demonstrated a semantic relation to
the complex word. However, a considerable portion of them did not appear to align
with the primary objective of the Shared Task, which is to offer simpler alternatives.
This observation was also consistent with the most frequently suggested annotation
provided with that trial set, illustrated in table 3.1.

Complex Word Most Frequently Suggested Annotation Occurrences
compulsory mandatory 11
instilled infused, introduced 3
maniacs fanatics 5
observers watchers 8
shrapnel bullet 4
disguised concealed, dressed 4
offshoot branch 6
symphonic musical 12
deploy send 5
authorities officials 11

Table 3.1: Complex words in trial set and their most frequently suggested annotation.
Annotations marked in bold do not seem simpler.

Particularly, the annotations highlighted in bold do not seem simpler than the
complex word. I examined these assumptions after I had created and tested my models
on the trial set. The results will be detailed in section 4.4.3.

3.4 Format of Annotated Dataset

As introduced in section 3.1, the English dataset contains 383 instances. These in-
stances are represented as rows in a TSV (Tab Separated Values) file. The columns
in the file represent the sentence containing the complex word (the first column), the
complex word (the second column), and the columns with annotations. As introduced
in section 3.1, 25 annotations per complex word were provided. Therefore, the file spans
27 columns3, consisting of the sentence, the complex word, and the 25 annotations.

The annotations are systematically arranged in descending order, based on the
frequency of their suggestions by annotators. For example, an annotation appearing
six times would occupy the first six columns behind the initial two with the sentence and
complex word. This most frequent annotation was considered the simplest alternative
to the complex word. Successive columns accommodate the next highest frequent
annotations, and so forth, concluding with the least frequent annotations. Notably,
annotations with equal frequencies seem to have been ordered randomly in relation to
each other.

The above dataset was divided into a trial and a test set, consisting of 10 and 373
instances respectively. For the participants in the Shared Task, the test set was provided
with the sentence and the complex word only, whereas the trial set was additionally
provided with the annotations. Consequently, participants could try their systems on a
small gold-labeled (i.e., human-annotated) dataset before submitting their final outputs
on the test set.

3Occasionally, a 28th column is filled with an annotation, marking the instances where 26 annota-
tions were provided.
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Table 3.2 presents an example of the gold-labeled trial set. For overview purposes,
the Gold Labels column contains all unique annotations with their respective frequen-
cies. However, as mentioned earlier in this section, the TSV file contains all 25 gold
labels in separate columns, ordered by their frequency.

Sentence Complex Word Gold Labels
A local witness said a separate
group of attackers disguised in
burqas (the head-to-toe robes worn
by conservative Afghan women)
then tried to storm the compound.

disguised concealed:4, dressed:4, hidden:3,
camouflaged:2, changed:2, cov-
ered:2, disguised:2, masked:2, un-
recognizable:2, converted:1, imper-
sonated:1

Table 3.2: Example from annotated trial set, taken from Saggion et al. (2022, p.5).

Annotations equal to the complex word4 were disregarded from the final evaluation
results. For the example shown in table 3.2, the complex word disguised had been
annotated two times as a proposed substitute for itself. Consequently, these two anno-
tations were considered invalid and were thus not used when evaluating the submitted
models.

Across the entire English dataset, the number of unique annotations for a complex
word varied from two to 22, with an average of 10.55 (Saggion et al., 2022). I will
discuss the influence of this average on my design decisions in section 4.3.

3.5 Submission Format for Predicted Substitutes

As mentioned in the beginning of this chapter, participating systems in this Shared
Task could submit up to ten substitutes for each complex word. This implies that less
than ten substitutes could be submitted as well. Furthermore, multi-word substitutes
were also possible, as pointed out in section 3.2. The predicted substitutes should be
ranked from “the best to the least fitting/simple one” (Saggion et al., 2022, p.3).

As outlined in the preceding section, the test set of 373 instances was used for
submission of the system outputs. The required submission format for the predicted
substitutes is a TSV file with 373 rows, with the initial two columns featuring the
example sentence and the complex word, followed by up to ten columns for the predicted
substitutes, each of the predictions occupying a separate column.

Table 3.3 visualizes the submission format for an example from the trial set with
fictive predictions for the complex word. For overview purposes, the Fictive Predictions
column contains all predicted substitutes, instead of each of them in a separate column.

Sentence Complex Word Fictive Predictions
A local witness said a separate
group of attackers disguised in
burqas (the head-to-toe robes worn
by conservative Afghan women)
then tried to storm the compound.

disguised dressed, draped, masked, wrapped,
cloaked, concealed, covered, hid-
den, decorated, camouflaged

Table 3.3: Submission format: example from trial set with fictive predictions, ranked
from “the best to the least fitting/simple one” (Saggion et al., 2022, p.3).

4Annotators had been instructed to enter the complex word as their annotation in case they would
not know a simpler word, as shown in the Annotation Guidelines in figure 3.1.
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3.6 Evaluation Metrics

From the predicted substitutes in the submitted outputs, the evaluation script filtered
out substitutes equal to the complex word, as well repeated substitutes. Then, the
following evaluation metrics were calculated (Stajner et al., 2022; Saggion et al., 2022):

• ACC@K@top1. This metric represents the proportion of instances for which
a minimum of one of the top-K ranked predicted substitutes equals the most
often suggested gold label (K = 1, 2, 3). For example, for K = 3, it indicates
the proportion of instances for which minimally one of the top three predictions
aligns with the most often suggested gold label.

• MAP@K (Mean Average Precision@K). This measurement concerns the propor-
tion of instances for which all top-K ranked predicted substitutes appear in the
list with gold labels for that instance (K = 1, 3, 5, 10). For example, for K
= 3, it represents the proportion of instances for which all top three predicted
substitutes can be found in the list with gold labels.

• Potential@K. This measure reflect the proportion of instances for which a mini-
mum of one of the top-K ranked predictions appears in the list with gold labels for
that instance. (K = 1, 3, 5, 10). For example, for K = 3, it indicates the propor-
tion of instances for which minimally one of the top three predicted substitutes
can be found in the list with gold labels.

As MAP@1 and Potential@1 are factually the same as per their definitions (also
called ACC@1 (Saggion et al., 2022)), in total ten different metrics were assessed:
ACC@1, ACC@1@top1, ACC@2@top1, ACC@3top1, MAP@3, MAP@5, MAP@10,
Potential@3, Potential@5, Potential@10.

The fact that the gold labels could vary from 2 to 22 different simplifications with
an average of 10.55, as laid out in section 3.4, implies that for the MAP@K metrics, if
K = 3, 5, or 10, there are not always 3, 5, or 10 different gold labels to evaluate the
submitted outputs on. For example, if K=5, for MAP@5 to evaluate as positive on a
particular instance, there should also be five unique gold labels for this instance. The
number of different gold labels do not influence the Potential@K and ACC@K metrics
in that respect, as these metrics only assess at least one of the top K ranked predicted
substitutes, as opposed to all top-K ranked predicted substitutes for the MAP related
metrics.

As concluded by Saggion et al. (2022), it is important to realize that the methodolo-
gies used for evaluation of the simplification submissions operate under the assumption
of a singular optimal simplification universally applicable to all users. The simplifica-
tion identified as ‘the simplest’ is derived from a broad spectrum of annotators and
corresponds to the most frequently suggested gold label. As pointed out in the intro-
ductory chapter, users exhibit diverse simplification requirements based on their indi-
vidual contexts and needs. Following this perspective, an efficient simplification system
should produce an output tailored to the distinct requirements of the individual user,
underlining the importance of personalization in the simplification process.
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3.7 Baseline Models

Two baseline models were used for benchmarking the participating systems for the
English language, TSAR-TUNER and TSAR-LSBert.

TSAR-TUNER, a variant of TUNER (Ferrés et al., 2017), a Lexical Simplification
system designed for the Spanish language, is a non-neural lexical simplification system.
For the TSAR-2022 Shared Task, it has been adapted to English. TSAR-TUNER
(Stajner et al., 2022, p.11-12) performs four sequential tasks: Sentence Analysis, Word
Sense Disambiguation (WSD), Synonym Ranking, and Morphological Generation. The
Sentence Analysis task executes tokenization, sentence splitting, part-of-speech (PoS)
tagging, lemmatization, and Named Entity Recognition. The WSD algorithm uses a
word vector model which it generated from a text corpus, alongside a context vector
generated by the words in immediate vicinity of the complex word. By calculating
the cosine distance between the context vector and the word vector, the algorithm
determines the similarity between them. Subsequently, it selects the sense with the
smallest cosine distance as the most optimal semantically fitting word. The Synonym
Ranking task ranks synonyms based on frequencies in Simple English Wikipedia, a
resource discussed in the first chapter. Finally, the Morphological Generation task
adapts the selected synonyms to the correct grammatical form of the complex word.

The second baseline model, TSAR-LSBert, is fully based on LSBert (Qiang et al.,
2021), the model discussed in section 2.5. It has only been adapted for the Shared Task
to match the submission format for the predicted substitutes outlined in section 3.5.

3.8 Participating Systems

In total, 13 teams submitted 31 systems. Each team was allowed to submit three
systems, resulting in, on average, 2.4 systems per team. This section is limited to
discussing the ten teams that had submitted a research paper (the teams that had not
submitted a paper are all but one — i.e., CL Lab PICT, ranked ninth — listed in
the lowest quartile of the results). Table 3.4 provides an overview of the ten teams,
references to their respective research papers, and their highest-ranked contribution on
the ACC@1 metric, which is the performance measure that the results on this Shared
Task are sorted on. Further results of these teams are covered in section 3.9.

Team Reference Highest Rank
UniHD Aumiller and Gertz (2022) 1
MANTIS Li et al. (2022) 3
UoM&MMU Vásquez-Rodŕıguez et al. (2022) 4
TSAR-LSBert Qiang et al. (2021); baseline for Shared Task 5
RCML Aleksandrova and Brochu Dufour (2022) 6
GMU-WLV North et al. (2022) 8
TeamPN Katyal and Rajpoot (2022) 11
PolyU-CBS Chersoni and Hsu (2022) 15
PresiUniv Whistely et al. (2022) 17
CILS Seneviratne et al. (2022b) 19
CENTAL Wilkens et al. (2022) 23
TSAR-TUNER Ferrés et al. (2017); baseline for Shared Task 24

Table 3.4: Participating teams and their highest-ranked contributions. The rankings
of the two baseline models, TSAR-LSBert and TSAR-TUNER, are also included.
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The subsequent sections detail the highest-performing contribution from each team.
Their strategies to attain these scores are outlined for every step in the Lexical Simpli-
fication process.

3.8.1 Substitute Generation (SG)

For the process of generating substitutes for the complex words, all ten teams that had
submitted a research paper utilized transformer-based (Vaswani et al., 2017) models,
discussed in section 2.4.

Seven of them (PresiUniv, UoM&MMU, PolyU-CBS, CENTAL, TeamPN, MAN-
TIS, and GMU-WLV) relied on a Masked Language Model (MLM) to accomplish the
SG step. Two of these seven teams, MANTIS and GMU-WLV, added the original
sentence including the complex word to the sentence in which the complex word had
been masked, and fed the sentence pair into their MLM, similar to LSBert discussed in
section 2.5. However, they had not incorporated LSBert’s strategy to randomly mask
50% of the words in the original sentence excluding the complex word. Conversely,
CENTAL and TeamPN merged the substitutes obtained by their MLMs with substi-
tutes retrieved from a variety of linguistic databases. UoM&MMU crafted prompting
templates (referred to as ‘prompts’) to request their MLM to generate simplification
candidates. They had first fine-tuned their MLM with a variety of lexical simplification
corpora, among which a dataset based on CEFR levels (Uchida et al., 2018).

As opposed to the seven teams that had chosen MLMs, three teams opted for a
different transformer-based model. CILS and RCML used XLNet, developed by Yang
et al. (2019). This model considers all possible permutations of the input sequence
and bases its predictions for each token on these permutations. RCML additionally
employed the LexSubGen (Arefyev et al., 2020) database to generate substitutes for
complex words in the context of the original sentence. Just like UoM&MMU, UniHD
prompted their model with templates to request simplification candidates, but instead
of an MLM they used GPT-3 (Generative Pretrained Transformers, version 3 (Brown
et al., 2020)). GPT-based models deploy the transformer architecture as their founda-
tion but have expanded it specifically for generative tasks. Their numerous transformer
layers help effectively capture complex relationships, thereby generating contextually
appropriate responses. UniHD had prompted the GPT-3 model with six different tem-
plates. These templates varied in the level of context they provided, depending on
whether the sentence was given or only the complex word.

3.8.2 Substitute Selection (SS)

Recall from section 2.2 that the SS step involves selecting only those candidates that
can substitute the complex word while preserving the grammatical structure and the
contextually appropriate meaning of the complex word.

With regard to adherence to the grammatical structure of the complex word, CEN-
TAL and TeamPN adapted the candidates to the morpho-syntactic form of the complex
word. CENTAL also removed those for which this form did not exist. MANTIS elimi-
nated morphological derivations of the complex word from the substitute candidate list.
UoM&MMU excluded non-existing words and duplicate candidates. UniHD eliminated
duplicate candidates and expressions consisting of more than one word. Furthermore,
they excluded prepositions from generated infinitives, such as to in to deploy. PresiU-
niv filtered out words with different PoS tags than the complex word. The other four



24 CHAPTER 3. TASK DESCRIPTION

teams (CILS, PolyU-CBS, GMU-WLV, and RCML) did not report actions related to
preserving grammatical structure in their best-scoring models.

To select the generated substitutes on semantic similarity, various methods were
applied. The most popular method concerned application of cosine similarity scores be-
tween the embeddings of the complex word and the embeddings of each of its substitute
candidates, in some cases combined with the base probability from the results retrieved
in the SG step. Cosine similarity scores were used by CILS, PresiUniv, PolyU-CBS,
and RCML. They all leveraged contextualized embeddings to obtain their similarity
scores, except for PresiUniv who used conventional embeddings. RCML applied the
relatively new BERTScore (Zhang et al., 2020) for their contextualized embeddings.
BERTScore calculates the similarity of the sentence containing the complex word with
each of the sentences containing a different substitute candidate for that complex word.

Application of linguistic vocabularies and parallel corpora was also part of the ap-
proaches used for semantic similarity. CILS usedWordNet (Fellbaum, 1998) to calculate
WordNet similarity scores (Seneviratne et al., 2022a) alongside contextual embedding
scores. UoM&MMU leveraged Wordnet to remove antonyms of the complex word from
the substitute list generated by their prompt-based MLM. MANTIS applied LSBert’s
feature distribution as described in section 2.5, but with attribution of more weight to
word semantic similarity and less weight to Bert’s prediction order. Furthermore, they
excluded LSBert’s cross-entropy loss feature from the distribution.

Four teams (CENTAL, TeamPN, GMU-WLV, and UniHD) had not considered sep-
arate measures for selecting semantically similar alternatives, relying on the order of
substitutes obtained in the SG step. As discussed in the preceding section, they had
either added the original sentence with the unmasked complex word to the sentence
with the masked complex word and fed the sentence pair into their MLM (GMU-WLV),
or merged the substitutes acquired from their MLM with substitutes sourced from a
variety of linguistic databases (CENTAL and TeamPN), or used various prompts to
request GPT-3 to return simplification candidates (UniHD).

3.8.3 Substitute Ranking (SR)

As laid out in section 2.3, the SR step involves ranking the final list of candidates
on simplicity. To determine this order, some teams used approaches such as word
frequencies obtained from large text corpora. This approach comes from the common
knowledge that in general, frequently occurring words are perceived as less complex
than words that appear less often in texts.

Conversely, CENTAL used a simplification database for ranking the substitutes.
TeamPN used FitBert (Havens and Stal, 2019), which is a fine-tuned BERT model for
tasks where a given sentence has blank or missing words or phrases, thereby trained to
predict the most appropriate words or phrases to fill in these blanks. As discussed in
the previous section, MANTIS had adapted LSBert’s feature distribution that contains
similarity and simplicity related features, by which they combined the SS and SR
step. After ranking, as a post-processing step, they removed candidates that had
equivalence scores that were lower than the mean equivalence scores of all candidates.
They based their equivalence scores on textual entailment. Textual entailment refers
to the relationship between two text fragments, where the truth of one logically follows
from the other. For the purpose of the Lexical Simplification task, it served as a
measure to assess how well a substitute in a simplified sentence retained the meaning
of the complex word in the original sentence. To measure textual entailment, they used
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Roberta-large-mnli5, an MLM based on the RoBERTa (Liu et al., 2019) architecture6,
but fine-tuned on the Multi-Genre Natural Language Inference corpus7. This model
provides entailment scores, representing the probability that one text fragment logically
entails another, capturing the logical connection between the two fragments. Finally,
RCML ranked their substitutes on simplicity by assigning CEFR English proficiency
levels to these substitutes. The CEFR levels were retrieved from English Vocabulary
Profile8, a large vocabulary with CEFR-labeled words.

Interestingly, six of the ten teams (CILS, PresiUniv, PolyU-CBS, GMU-WLV,
UoM&MMU, and UniHD) did not consider explicit simplicity measures when ranking
their substitutes, relying solely on the probability scores obtained during the previous
steps. Two of these teams (UoM&MMU and UniHD) had applied a prompt-based
model during the SG step. One (UoM&MMU) of these prompt-based models had been
fine-tuned with a variety of simplification datasets, among which a dataset based on
CEFR levels (Uchida et al., 2018). By fine-tuning their model in this way, they had
purposefully taken the SR step into account before the very first (SG) step.

3.9 Results of Participating Systems

Figure 3.2 displays the results for English of all 33 models, which includes the results of
the two baseline models TSAR-TUNER (Ferrés et al., 2017) and TSAR-LSBert (Qiang
et al., 2021) outlined in section 3.7.

The models were evaluated on the ten metrics discussed in section 3.6. As illustrated
in the figure, the outcomes were sorted on their results on the ACC@1 metric. For
the sake of brevity and clarity, given the potential complexity that might arise from
addressing ten metrics across ten systems, this section is limited to examining the
performances corresponding to this particular performance measure only. As pointed
out in section 3.6, the ACC@1 metric concerns the proportion of instances where the
highest-ranked predicted substitute appears in the list with gold labels. For example,
if a system obtained a score of 0.6000 on the ACC@1 metric, this meant that for 60%
of the complex words, the substitute that was predicted as most similar to the complex
word was found in the list with gold labels.

Starting with the results of the baseline models, the pre-trained MLM TSAR-LSBert
ranked fifth in the results, performing significantly better than the non-neural TSAR-
TUNER that obtained the 24th place. TSAR-TUNER, however, managed to outper-
form several other pre-trained language models.

Notably, of the 31 submitted models, only four of them topped TSAR-LSBert. Of
these four, three had used prompting templates to retrieve the substitutes. These mod-
els were submitted by UniHD, ranked first and second, as well as UoM&MMU, securing
the fourth place. UniHD’s model, featuring a collection of six distinct prompting tem-
plates offering varying levels of context, achieved the highest ACC@1 scores among
both models. Their second-ranked model employed a similar architecture but with just
one standard prompt, which was based on the sentence containing the complex word.
UniHD’s first and second ranked GPT-based systems obtained substantially higher

5https://huggingface.co/roberta-large-mnli, last accessed on 2023-08-14.
6I will discuss the RoBERTa architecture in section 4.1.
7https://huggingface.co/datasets/multi_nli, last accessed on 2023-08-14.
8https://www.englishprofile.org/wordlists, Cambridge University Press (2015), last accessed

on 2023-08-14.

https://huggingface.co/roberta-large-mnli
https://huggingface.co/datasets/multi_nli
https://www.englishprofile.org/wordlists
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Figure 3.2: Results submitted for the English track, taken from Saggion et al. (2022)

scores (0.8096 and 0.7721, respectively) on the ACC@1 metric than their runner-ups.
The highest-performing non-GPT based model was submitted by MANTIS. They

ranked third with an ACC@1 score of 0.6568. They had obtained this score with an
MLM, i.e., RoBERTa’s9 base variant. During the SG step, they had added the original
sentence including the unmasked complex word to the sentence in which the complex
word was masked, adopted from LSBert, but without the random masking of 50% of the
words in the original sentence excluding the complex word. During the SS and SR step,
which they had combined into one, they had reweighted LSBert’s feature distribution,
as discussed in section 3.8.2. As a post-processing step, they had removed candidates
that had equivalence scores that were lower than the mean equivalence scores of all
candidates. They had based their equivalence scores on textual entailment, as explained
in section 3.8.3. UoM&MMU, whose best model ranked fourth with an ACC@1 score of
0.6353, had fine-tuned the RoBERTa large MLM with a variety of simplification corpora
(among which a corpus with simplification substitutes based on CEFR levels (Uchida
et al., 2018)), before they prompted the model to return simplification candidates.
They had also removed antonyms with WordNet.

The above two models secured the third and fourth out of a total of 33 places by
applying an MLM based on RoBERTa during the SG step, surpassing the other MLMs
on their respective performances, indicating the valuable contribution of this specific
MLM to this Shared Task.

9I will discuss the RoBERTa architecture in section 4.1.



3.9. RESULTS OF PARTICIPATING SYSTEMS 27

Furthermore, the above-mentioned results illustrate the valuable contribution of com-
bining unsupervised approaches with supervised linguistic resources. Yet, the vast dif-
ference between the discussed second-ranking (0.7721) GPT based model — with just
a standard prompting template — and MANTIS’ third-ranking (0.6568) RoBERTa
MLM — obtained with a series of manual modifications — may indicate that GPT-
based models are not only the most effective, but also the most efficient way forward
in future Lexical Simplification tasks.

TSAR-LSBert’s fifth place represented a score of 0.5978. The teams ranking below
TSAR-LSBert exhibited a range of scores, with the highest being 0.5442 and the lowest
0.0455. With scores of 0.5442 and 0.5415, the sixth and seventh ranks were taken by
RCML. Their sixth ranked model, explained in section 3.8, featured the transformer-
based, yet non-MLM, XLNet model that bases its predictions on permutations of the
input sequence. The SS step was performed by selecting the generated substitutes
on their BERTScores, after which the SR step ranked the substitutes on CEFR level.
RCML’s other model, 7th ranked, was nearly similar, as the only difference was an ad-
ditional morphological measure to remove unfitting substitutes, based on a comparison
of their PoS and morphological features with those of the complex word.

Among the teams that had submitted research papers, PresiUniv recorded the low-
est score, occupying the 29th position with an ACC@1 score of 0.2600. However, they
had also submitted two other systems with higher scores of 0.4021 and 0.3780, securing
the 17th (described in section 3.8) and 21st positions, respectively. These two scores
were still superior to TSAR-TUNER’s score of 0.3404.

It is remarkable that, among all submitted MLMs, GMU-WLV managed to achieve
the eighth place with an ACC@1 score of 0.5174, despite having disregarded the separate
SS and SR steps. During the SG step, as explained in section 3.8.1, their MLM was
only supplemented with the original sentence including the unmasked complex word,
adopted from LSBert (next to the sentence in which the complex word was masked).
This illustrates that MLMs have the capability to attain reasonable ACC@1 scores
with minimal adjustments. Yet, as indicated earlier, hybrid approaches that combined
MLMs with supervised linguistic resources, such as the model ranked third (MANTIS),
demonstrated better results.

3.9.1 The ACCuracy of ACC@1

As introduced in the preceding section, the outcomes of the participating systems were
organized based on the ACC@1 metric results. Consequently, I sorted my final models
in chapter 5 on this metric to facilitate the comparison of their relative performances.
In hindsight, I discovered significant constraints associated with using ACC@1 as the
primary metric for evaluating lexical simplification system outputs. I will reflect on
these limitations in section 6.5.
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Chapter 4

Methodology

In the preceding two chapters, I covered a multitude of approaches that have been
applied to the task of Lexical Simplification. This thesis project aims to explore and
compare the contributions of a selection of these methods, while also introducing and
evaluating new concepts to accomplish lexical simplification. As introduced in section
1.2, the research question investigated in this thesis is the following:

“How do different approaches for Substitute Generation, Selection and Ranking com-
pare in the context of building a Lexical Simplification system for the English lan-
guage?”

The subsequent sections provide an overview of the methods designed and the ex-
periments conducted to address my research question, considering steps two through
four of the Lexical Simplification task for the English language: generating, selecting,
and ranking substitutes for complex words. These steps are carried out according to
the requirements for the TSAR-2022 Shared Task on Multilingual Lexical Simplification
(Stajner et al., 2022; Saggion et al., 2022), described in the previous chapter.

All experiments described in the current chapter are conducted on the trial set, as
this dataset was provided including gold labels, as denoted in section 3.4. The results
on the trial set gave me a slight indication of how my models could potentially perform
on the test set, which was the evaluation dataset for this Shared Task. To determine the
performance for each experiment on the trial set, I accumulated the results on all ten
metrics, explained in section 3.6, into one total score. Given that there are ten metrics,
each with a maximum score of 1, the cumulative total score could maximally reach
an upper limit of 10. The necessity for this comprehensive score arose from the fairly
small size of the trial set. Focusing on a single metric, such as @ACC1, could result in
overfitting, where models are disproportionately optimized for that particular metric,
compromising their generalizability on other datasets. The inclusion of multiple metrics
could help mitigate this risk of overfitting, facilitating a more balanced evaluation of a
models’ performance across various evaluation metrics.

After each Lexical Simplification process step, I assessed my models on the trial
set to assess the distinct impacts of the strategies employed in that step. My method
sequentially covers the steps of Substitute Generation (SG), Substitute Selection (SS),
and Substitute Ranking (SR). However, the design of my models required a division of
the SS step into two phases. The first phase contains a set of general selection criteria.
The highest-performing models resulting from this first phase of the SS step proceeded

29
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to the second phase, where I employed three separate strategies to further refine the
semantic similarity of the substitutes with the complex word. For each of these three
strategy types, the model exhibiting the highest performance systematically advanced
to the SR step. During the SR step, I applied two separate simplification strategies.
Consistent with the methodology for the prior steps, the highest-performing model for
each of these two strategy types was methodically carried forward to the next phase —
in this case, evaluation on the final test set.

This modular approach facilitated maintaining track of performance advancement
of the diverse strategy types throughout the steps in the Lexical Simplification process,
as well as an evaluation of all used strategy types on the test set. Nevertheless, it is
important to consider that this method might mean that if one type of strategy, applied
across multiple models, resulted in numerous top scores on the trial set, only the top-
performing model of that strategy would advance to subsequent stages and ultimately
undergo evaluation on the final test set. Other high-performing models within the same
strategy would be discarded. Conversely, if a different strategy led to lesser scores than
the previously mentioned one, its top model would still progress further in the process
despite lower scores. Although this might have negatively impacted the final test set
outcomes, I prioritized my assessment of diverse strategies — and the potential insights
that this would bring — over obtaining the highest possible score on the test set.

In addition to the above-mentioned method, the best-performing model per strategy
after phase two of the SS step was also directly evaluated on the test set, bypassing
the ‘ranking on simplicity’ SR step. This choice draws on the findings in section 3.3,
where a proportion of the most frequently suggested gold labels in the trial set did not
seem to be simpler. Consequently, evaluation on the test set of the models that scored
highest after the SS step — where substitutes are selected on their similarity with the
complex word — could provide valuable insights into the extent to which annotators
used similar words, regardless of whether these words would be simpler.

The following sections cover the specific strategies implemented to design a Lexical
Simplification model.

4.1 Substitute Generation (SG)

Section 2.4 elaborates on the advantages of MLMs, notably their capability to acquire
bidirectional and concurrent contextual representations for words. Their masking prop-
erty enables the generation of multiple contextually appropriate words for each masked
token, a feature that ultimately lends itself to the SG step of the Lexical Simplification
process. These advantages influenced my decision to use MLMs for the generation of
substitutes. I chose a total of six MLMs1, consisting of the base and large variants of
three main models: BERT (Devlin et al., 2019), discussed in section 2.4, RoBERTa
(Liu et al., 2019), and Electra (Efficiently Learning an Encoder that Classifies Token
Replacements Accurately, Clark et al. (2020)). While these models employ the Trans-
formers (Vaswani et al., 2017) architecture and BERT’s (Devlin et al., 2019) masking
property, they differ in training data size and masking strategy. In terms of train-
ing data, RoBERTa utilizes the largest corpus for training among the three models.
With regard to the masking strategy followed, BERT applies a single static mask dur-
ing data preprocessing, consistently using the same mask for each training instance

1All selected MLMs are pre-trained and publicly available at https://github.com/huggingface/

transformers, last accessed on 2023-08-14.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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throughout the epochs. In contrast, RoBERTa employs dynamic masking, generating
a new masking pattern for each sequence fed into the model. This dynamic masking
approach is particularly advantageous when pre-training for longer durations or with
larger datasets. Electra, on the other hand, applies a distinct approach called ‘replaced
token detection’, as it uses a generator to replace tokens with alternatives and a dis-
criminator to discern between original and replaced tokens. This approach renders
Electra computationally more efficient compared to the other two models.

I chose BERT due to its status as the pioneering MLM model. Furthermore, I
selected RoBERTa as it is BERT’s successor, claiming (Liu et al., 2019) state-of-the-
art results with its pre-training on the largest corpus of the three models, supported by
its impressive performance on the TSAR-2022 Shared Task for the English language,
as presented in section 3.92. Finally, I opted for Electra to assess the effectiveness of
its unique ‘replaced token detection’ strategy.

My models generated 30 substitutes, as my experiments with other amounts (20,
50, 100) obtained inferior results. The amount of 30 proved to maintain an adequate
balance between the generation of a smaller set of good substitutes vs. a larger number
that could possibly generate more suitable candidates, but could include less fitting
substitutes as well which would then have to be filtered out later.

I provided the above MLMs with the sentence in which the complex word had
been masked, supplemented by the original sentence including the unmasked complex
word, resulting in a sentence pair. I had derived this strategy from LSBert, described in
section 2.5. LSBert had also randomly masked 50% of the words in the original sentence
excluding the complex word, which I did not apply in my experiments. Feeding the
sentence pair to the model enabled it to consider both the context without the complex
word (i.e., the sentence with the masked complex word) and the complex word in its
context (i.e., the original sentence, with the complex word unmasked). Table 4.1 shows
an example of results (for this purpose, temporarily cut off to the ten highest-ranked
substitutes) obtained with and without the original (unmasked) sentence.

Sentence Complex Word
Without Original With Original

(Unmasked) Sentence (Unmasked) Sentence
UK police were ex-
pressly forbidden, at
a ministerial level, to
provide any assistance
to Thai authorities as
the case involves the
death penalty.

authorities nationals, citizens,
victims, refugees,
authorities, pris-
oners, migrants,
immigrants, people,
officials

authorities, officials,
police, authority,
people, government,
prosecutors, gov-
ernments, agencies,
investigators

Table 4.1: Example (trial set) of ten highest-ranked substitutes after SG step, pre-
dicted by Electra’s large variant, for versions with and without original sentence with
(unmasked) complex word. Note that duplicates and inflected forms of the complex
word will be removed in the first phase of the SS step.

Without the context of the complex word, although the model produced a variety
of alternatives that did suit the context, the model showed unawareness of the meaning
of the complex word. However, when the complex word in its context of the sentence

2I will mention my knowledge about RoBERTa’s performance on the Shared Task as a limitation of
my research in section 6.1.3.
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was additionally provided, the model was enabled to generate more words that would
accurately reflect the meaning of the complex word.

To ensure uniformity among the used models, I converted the substitutes to lower-
case to address the casing distinction present in RoBERTa’s identical substitutes. As an
additional pre-processing action, I eliminated empty elements and unwanted characters
like hashtags from the resulting list. This cleaning process resulted in the possibility of
having fewer than 30 candidates for the final input into the SS step.

SG — Trial Set Results

To enable calculating preliminary evaluation scores in this phase of the process, I tem-
porarily sized down the substitute list (consisting of a maximum of 30 substitutes) to
the ten highest-ranked substitutes. The scores obtained by my six models with and
without the original (unmasked) sentence are shown in table 4.2. As explained in the
introductory section of this chapter, these scores are accumulated scores, composed of
the aggregated individual scores on all ten metrics discussed in section 3.6.

Substitute Generation (SG)
Without Original With Original

(Unmasked) Sentence (Unmasked) Sentence
bertbase 2.165 4.242
bertlarge 2.1365 4.5206
electrabase 1.9819 4.1810
electralarge 1.6004 4.9233
robertabase 2.3809 4.9977
robertalarge 4.6356 4.7027

Table 4.2: Accumulated scores (trial set) after SG step, model versions with and without
original sentence with (unmasked) complex word. The scores only consider the ten
highest-ranked substitutes.

The results strongly confirm my design decision to provide the MLMs with these
sentence pairs instead of only with the sentence where the complex word was masked.
RoBERTa’s large variant was an exception, as it managed to achieve a high score with-
out such clues, surpassing three other models that were provided with them. However,
the table also shows that addition of the complex word in its context to this particular
model hardly contributed to higher results.

The six models shown in table 4.2 that had additionally been provided with the
original (unmasked) sentence were advanced to the first phase of the SS step.

4.2 Substitute Selection (SS) — Phase One

As pointed out in the introductory section of this chapter, my model design required a
division of the SS step into two phases. This section discusses the first phase, comprised
of a standard set of selection criteria. The six models that had progressed to this
phase were expected to gain from this phase, as it can be perceived as a semantic
pre-processing step.

From the list of maximally 30 substitutes obtained after the SG step, I removed
occurrences and inflected forms of the complex word. If the lemmas of the complex
word and its substitute were equal, the substitute was removed. This process took
care of removing duplicates of the complex word as well as its inflected forms. In
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addition, I eliminated antonyms of the complex word. Antonyms, i.e., words that have
a contrasting meaning as opposed to another word, often occur in similar contexts
as their synonyms. This makes them susceptible to being generated by MLMs as
substitute candidates for a complex word. Due to their dissimilarity to the complex
word, I excluded them from the predictions. I used the antonyms defined by WordNet
to determine whether a substitute candidate was an antonym of the complex word.
As introduced in the first chapter, WordNet organizes words with equivalent meanings
into sets of synonyms called synsets. Various relationships interlink these synsets,
including antonymy, a relation that maps words of opposite meanings to each other.
I leveraged this structure by filtering out antonyms from the substitute candidates.
I compared all synsets of both the lemmatized complex word and the lemmatized
substitute candidates, and only kept the substitutes without antonymic relationships
with the complex word. I based my approach (i.e., of comparing all synsets) on the
assumption that my systems do not know to which synset a specific word belongs.
This required a comparison of all synsets of a substitute with all synsets of the complex
word. Table 4.3 shows an example of the highest-ranked substitutes before and after
this first phase in the SS process. For this purpose, the substitute list is temporarily
cut off to the ten highest-ranked substitutes.

Sentence Complex Word
Before SS Step After SS Step

Phase 1 Phase 1
UK police were ex-
pressly forbidden, at
a ministerial level, to
provide any assistance
to Thai authorities as
the case involves the
death penalty.

authorities authorities, officials,
police, authority,
people, government,
prosecutors, gov-
ernments, agencies,
investigators

officials, police, peo-
ple, government,
prosecutors, gov-
ernments, agencies,
investigators, officers,
courts

Table 4.3: Example (trial set) of ten highest-ranked substitutes, predicted by Electra’s
large variant, before and after SS step phase 1, in which duplicates and inflected forms
of a complex word are removed, as well as its antonyms.

The table illustrates that the substitute authorities was excluded, as it was identical
to the complex word. The substitute authority, an inflected form of the complex word,
was adequately removed as well. This allowed for two other substitute, officers and
courts, to be included in the top ten substitutes (recall that the SG step initially
generates 30 substitutes). Note that the substitute lists generated for the — relatively
small — trial set coincidentally did not include any antonyms of the complex word.

SS Phase 1 — Trial Set Results

Equal to the method employed in the SG step, to compute preliminary evaluation scores
in this phase of the process, I temporarily sized down the (maximum of) 30 substitutes
to the ten that were ranked highest. The accumulated scores on the trial set, obtained
by my six models before and after SS step phase one, are shown in table 4.4. As ex-
pected from a semantic pre-processing step, the models demonstrated improvements,
yet marginal. Electra’s base model showed no difference. Consistent with the method
discussed in the opening section of this chapter, the two most promising models, Elec-
tra’s large variant and RoBERTa’s base variant, their respective scores of 4.9413 and
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5.1161 marked bold in the table, were advanced to phase two of the SS step.

Substitute Generation (SG) Before SS Step Phase 1 After SS Step Phase 1
bertbase 4.242 4.4439
bertlarge 4.5206 4.6492
electrabase 4.1810 4.1810
electralarge 4.9233 4.9413
robertabase 4.9977 5.1161
robertalarge 4.7027 4.8159

Table 4.4: Accumulated scores (trial set) before and after SS step phase 1; models with
scores in bold are advanced to phase 2 of the SS step. The scores only consider the ten
highest-ranked substitutes.

4.3 Substitute Selection (SS) — Phase Two

This section discusses the second phase of the SS step, where the best two models
resulting from the first phase were further refined on their capabilities to select semantic
similar substitutes for the complex words. I used three separate strategies for this:
shared synsets, shared hypernyms, and BERTScore. I executed all these experiments
separately to evaluate the individual contributions of each of these three methods. The
substitute selection experiments were conducted on the full list (up to 30) of substitute
candidates resulting from phase one of the SS step. After implementing each of these
three strategies, I trimmed the resulting lists of (up to 30) substitute candidates to final
lists that contained the ten highest-ranked substitutes. As this marked the conclusion
of the SS step’s second and final phase, these ten substitutes were deemed to be most
semantically similar to the complex word.

My choice of selecting ten substitutes was guided by knowledge about the average
number of unique annotations (10.55) for a complex word, provided by Saggion et al.
(2022), discussed in section 3.4. This average value was revealed after the execution
of the Shared Task, although the participants had been provided in advance with an
average of 9.64 (Stajner et al., 2022) unique annotations across the entire multilingual
dataset. Consequently, any advantage I might have had from knowing the average for
the English language is substantially limited, given the minimal difference with the
presupplied average for the multilingual dataset. In addition, average values can be
skewed by outliers, i.e., values that significantly deviate from the rest of the dataset.
This inherent limitation of average values makes them less informative than other —
not supplied in advance — measures of variation such as the median, which represents
the middle value of the unique annotations.

The following sections discuss the relevance and structure of my three strategies to
select substitute candidates based on their semantic similarity to the complex word, as
well as their individual contributions to the trial set results.

4.3.1 Synset(s) Shared

My first strategy to execute SS step phase two involves the identification of shared
synsets between the complex word and each of its substitute candidates. WordNet,
introduced in the opening chapter, classifies words into synonym clusters known as
synsets, each expressing a distinct concept. When words belong to the same synset,
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they have an equivalent meaning, although there may be slight variations in how they
are used or in the feelings they convey. Finding out whether the complex word and
a substitute share a synset may help determine the semantic similarity between the
complex word and the substitutes. This could lead to a more accurate selection of
substitutes that preserve the meaning of the complex word.

I compared all synsets of both the lemmatized complex word and the lemmatized
substitute candidates, and gave priority in ranking to substitutes that shared at least
one synset with the complex word, with their mutual sequence determined by their
placement in the original list resulting from SS step phase 1. Substitutes that did not
share a synset with the complex word or that were not present in WordNet (the latter
instances usually involved words generated during the SG step that were either very
rare or did not constitute real words) were subsequently added, retaining their original
sequence. Next, I trimmed the substitute list to the ten highest-ranked substitutes.

When revisiting the example of table 4.3, the list with substitutes for the complex
word authorities would now start with the substitutes that share at least one synset
with the complex word. Table 4.5 visualizes this example.

Sentence Complex
Word

Prediction =
shared synset

Before SS Step
Phase 2

After SS Step
Phase 2
Synset(s)
Shared

UK police were ex-
pressly forbidden,
at a ministerial
level, to provide
any assistance to
Thai authorities
as the case involves
the death penalty.

authorities agencies officials, police,
people, govern-
ment, prosecu-
tors, governments,
agencies, inves-
tigators, officers,
courts

agencies, officials,
police, people,
government,
prosecutors,
governments,
investigators,
officers, courts

Table 4.5: Example (trial set) of top ten predictions with Electra’s large variant, before
and after SS step phase 2; first strategy, where shared WordNet synsets are given
priority in ranking.

As agency, which is the lemmatized form of agencies, belongs to the same synset3

as authority, the lemmatized form of the complex word authorities, the substitute
agencies will be ranked first, after which the remaining substitutes are appended.

Upon further reflection, checking WordNet on non-lemmatized complex words and
their non-lemmatized substitute candidates might have improved synset coverage, po-
tentially leading to better outcomes. This is because WordNet includes non-lemmatized
words with unique senses different from their lemmatized versions. If words in the form
in which they originally appear, such as authorities, are found in WordNet, their in-
dividual senses would be better reflected in their synsets than in the synsets belonging
to their lemmatized forms. For example, authorities is listed in a synset4 that also
lists the word government. As government is one of the predictions, it would be ranked
as the substitute most semantically similar to the complex word. In this particular
case, government may indeed be more semantically similar to the complex word than
agencies. I further reflect on this topic in section 6.1.3.

3in the sense of an administrative unit of government.
4in the sense of the organization that is the governing authority of a political unit.
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SS Phase 2 — Trial Set Results — Synset(s) Shared

For both models resulting from phase one of the SS step, i.e., Electra’s large variant
and RoBERTa’s base variant, the shared synsets between the complex word and their
substitutes were identified. This led to the creation of two new models. Table 4.6 shows
their accumulated scores based on shared synsets.

Substitute Selection (SS) Before SS Step Phase 2
After SS Step Phase 2
Synset(s) Shared

electralarge - synset(s) shared 4.9413 5.1402
robertabase - synset(s) shared 5.1161 5.3215

Table 4.6: Accumulated scores (trial set) before and after SS step phase 2, strategy 1
(synsets shared); model with score in bold is systematically advanced to the SR step.

The results show, yet slight, improvements compared to the outcomes after phase
one of the SS step.

For the reasons given in the introductory section of this chapter, the model that
would attain the highest accumulated score for a specific strategy type was systemat-
ically advanced to the Substitute Ranking step. For this particular strategy involving
shared synsets, this applied to the model that was grounded on RoBERTa’s base vari-
ant before SS step phase two, and shared synsets after this phase, its score of 5.3215
marked bold in the table.

4.3.2 Hypernym(s) Shared

The previously used strategy compared whether the complex word and each of it sub-
stitute candidates were synonyms of each other, by retrieving their shared WordNet
synsets. While synonym relations maintain semantic similarity, this comparison might
overlook candidates that do not share a WordNet synset with the complex word due to
subtle variations in meaning, but that may still act as valid substitutes. The strategy
employed in the current section aims to overcome this limitation.

In this second strategy to execute SS step phase two, substitute candidates are
selected based on whether they share a hypernym with the complex word. Hypernyms
refer to the broad term used to categorize a collection of more specific items known as
hyponyms. To illustrate the concept of semantic hierarchy, consider the relationship
between the term poodle and its direct hypernym in WordNet, dog. As dog5 resides one
level higher in the semantic hierarchy, it indicates its broader meaning compared to
its hyponym poodle6. Further up the semantic chain, dog serves as a hyponym for its
direct hypernym domestic animal7. Consequently, domestic animal, reflecting a more
abstract semantic categorization, becomes a two-level up hypernym for poodle. By
examining shared hypernyms, the broader category to which both the complex word
and a substitute belong can be identified. This consideration may aid in determining
the coherence of a substitute’s meaning with the meaning of the complex word.

5http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=

&o4=&s=dog&i=0&h=00000000#c, last accessed on 2023-08-14.
6http://wordnetweb.princeton.edu/perl/webwn?s=poodle&sub=Search+WordNet&o2=&o0=1&o8=

1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=0, last accessed on 2023-08-14.
7http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=

&o4=&s=domestic+animal, last accessed on 2023-08-14.

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=dog&i=0&h=00000000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=dog&i=0&h=00000000#c
http://wordnetweb.princeton.edu/perl/webwn?s=poodle&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=0
http://wordnetweb.princeton.edu/perl/webwn?s=poodle&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=0
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=domestic+animal
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=domestic+animal
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To identify hypernyms for the complex word and its substitutes, I consulted Word-
Net again. I extracted shared hypernyms between the lemmatized complex word and
each lemmatized substitute, and gave priority in ranking to substitutes that shared at
least one hypernym with the complex word. I applied this method to hypernyms at
either one or at two levels up in the hierarchy (separately), and also checked whether
the complex word and each substitute shared either one-level up or two-level up hy-
pernyms, thereby expanding the search realm. The ranking process is similar to the
ranking process described for the synonym relations. Substitutes that shared a hyper-
nym with the complex word were given precedence in ranking, with their order decided
by their position in the initial list resulting from SS phase 1. Substitutes that did not
share a hypernym with the complex word or that were not present in WordNet were
subsequently added, retaining their original sequence. Next, I trimmed the substitute
list to the ten highest-ranked substitutes. Table 4.7 contains an example of predictions
that share one or several one-level up hypernyms with the complex word.

Sentence Complex
Word

Prediction
(Has Shared
Hyper-
nym(s))

Before SS Step
Phase 2

After SS Step
Phase 2
Hypernym(s)
Shared

UK police were ex-
pressly forbidden,
at a ministerial
level, to provide
any assistance to
Thai authorities
as the case involves
the death penalty.

authorities agencies,
investigators,
nationals

officials, police,
people, govern-
ment, prosecu-
tors, governments,
agencies, inves-
tigators, officers,
courts

agencies, investi-
gators, nationals,
officials, police,
people, govern-
ment, prosecutors,
governments, offi-
cers

Table 4.7: Example (trial set) of top ten predictions with Electra’s large variant, before
and after SS step phase 2; second strategy, where shared WordNet hypernyms are given
priority in ranking.

The substitute agencies, previously identified as a synonym of the complex word
in table 4.5, now appears in table 4.7 as a substitute sharing one or several one-level
up hypernyms with the complex word. This relationship can be inferred from its
synonymous relation with the complex word. As per WordNet’s structure, synonyms
in a particular synset share their one-level up hypernym(s) unless they reside at the top
of the semantic hierarchy — meaning that they are not associated with a hypernym.

Furthermore, the substitutes investigators and nationals share one or several one-
level up hypernyms with the complex word, despite not being its synonyms. This
observation underscores that the use of shared hypernyms can yield a broader coverage
of semantically related words compared to solely shared synonyms, although the latter
might imply a greater degree of semantic similarity. The names of the hypernyms that
each of these three substitutes share with the complex word are displayed in table 4.8.

SS Phase 2 — Trial Set Results — Hypernym(s) Shared

The identification of shared one-level up, two-level up, and one- or two-level up hyper-
nyms for each of both models resulting from phase one of the SS step, i.e., Electra’s
large variant and RoBERTa’s base variant, led to the creation of six new models. Table
4.9 shows their accumulated scores.
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Complex Word Prediction Shared Hypernym(s)

authorities

agencies administrative unit, administra-
tive body

investigators expert
nationals somebody, someone, soul, per-

son, individual, mortal

Table 4.8: Example of one-level up shared hypernyms between complex word and
predictions in WordNet.

Substitute Selection (SS) Before SS Step Phase 2
After SS Step Phase 2

Hypernym(s) Shared
electralarge
hypernyms (one-level up) shared 4.9413 4.7641
hypernyms (two-level up) shared 4.9413 5.0929
hypernyms (one- or two-level up) shared 4.9413 4.3687
robertabase
hypernyms (one-level up) shared 5.1161 4.535
hypernyms (two-level up) shared 5.1161 5.8015
hypernyms (one- or two-level up) shared 5.1161 4.8551

Table 4.9: Accumulated scores (trial set) before and after SS step phase 2, strategy 2
(hypernyms shared: one level up, two levels up, and either one or two levels up); model
with score in bold is systematically advanced to the SR step.

Both the Electra and RoBERTa model, italicized in the table, exhibited score im-
provements after implementation of the two-level up shared hypernyms.

Consistent with the procedure described in the introductory section of this chapter,
the model yielding the highest accumulated score for a particular strategy type was
systematically advanced to the Substitute Ranking step. For this specific strategy on
shared hypernyms, this applied to RoBERTa’s base variant before SS step phase two,
and two-level up shared hypernyms after this phase, its score of 5.8015 marked bold in
the table. Notably, the RoBERTa model obtained a significantly higher improvement
on two-level up shared hypernyms than the Electra model.

4.3.3 BERTScore

The third and last strategy to execute SS step phase two involves leveraging contextu-
alized word embeddings. As elaborated in section 2.2, contextualized word embeddings
capture individual word meanings in their contextual surroundings. This comprehen-
sive understanding facilitates the identification of appropriate substitutes that preserve
the intended meaning and grammatical structure of the original text.

BERTScore (Zhang et al., 2020) is a metric specifically designed to assess the sim-
ilarity between two pieces of text by using contextualized word embeddings. In the
context of the SS step, BERTScore can be applied to compare the contextualized em-
beddings of the complex word with those of its substitute candidates. It calculates
the degree of similarity between the sentence containing the complex word and each
sentence that includes a potential substitute candidate for the complex word. The
BERTScore pipeline is visualized in figure 4.1.
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Figure 4.1: BERTScore Pipeline (Zhang et al., 2020)

BERTScore encodes the complex word and its substitute by using a pre-trained MLM,
generating contextualized word embeddings that capture the semantic information in
the sentence context. Subsequently, pairwise comparisons are conducted between the
encoded embeddings of the complex word and those of each substitute to evaluate their
semantic similarity. The cosine similarity is then calculated based on these contextu-
alized embeddings. To maximize the matching similarity score between tokens in the
sentence with the complex word and tokens in the sentence containing the substitute
candidate, greedy matching is used. Greedy matching involves pairing tokens from
the ‘complex word sentence’ with their most similar counterparts from the ‘substitute
candidate sentence’, using the cosine similarity between the embeddings. Next to its
default application, BERTScore provides an optional feature, i.e., importance weight-
ing8, by using inverse document frequency (idf) scores, assigning higher weights to rare
words when calculating the similarity between the ‘complex word sentence’ and the
‘substitute candidate sentence’. This allows it to account for the potential impact of
less frequent words on the overall similarity calculation.

Table 4.10 shows an example of the top ten predicted substitutes after phase one
in the SS step vs. the ten substitutes retrieved with BERTScore in phase two.

Sentence Complex Word Before SS Step Phase 2 After SS Step Phase 2
BERTScore

UK police were ex-
pressly forbidden, at
a ministerial level, to
provide any assistance
to Thai authorities as
the case involves the
death penalty.

authorities officials, police, peo-
ple, government, pros-
ecutors, governments,
agencies, investigators,
officers, courts

officials, investiga-
tors, prosecutors,
police, magistrates,
officers, agencies,
government, courts,
prisons

Table 4.10: Example (trial set) of top ten predictions with Electra’s large variant, before
and after SS step phase 2; third strategy, where BERTScore determined the priority in
ranking.

In this example, the first position in the list stayed unaltered. The highest BERTScore
for the complex word authorities was obtained with the word officials, equal to this
substitute’s top-ranked position retrieved after the SG step. Furthermore, the words

8not implemented in my models.
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magistrates and prisons have now found their place9 in the top ten, at the cost of the
less appropriate people and governments (government is still adequately represented).

SS Phase 2 — Trial Set Results — BERTScore

Although the authors (Zhang et al., 2020) had presented RoBERTa’s large variant as
their default model due to its most promising results during their experiments, the
BERTScore design allows calculating BERTScore with other models. This enabled a
BERTScore calculation with each of the six models that I had used in the SG step.
When applied to my best two models resulting from the phase one of the SS step, i.e.,
Electra’s large variant and RoBERTa’s base variant, this process resulted in 12 new
models. Table 4.11 provides the results.

Substitute Selection (SS) Before SS Step Phase 2
After SS Step Phase 2
BERTScore (BS)

electralarge
BS with bertbase 4.9413 4.8968
BS with bertlarge 4.9413 4.8241
BS with electrabase 4.9413 4.7928
BS with electralarge 4.9413 4.7482
BS with robertabase 4.9413 5.0545
BS with robertalarge 4.9413 5.2386
robertabase
BS with bertbase 5.1161 4.5225
BS with bertlarge 5.1161 4.3017
BS with electrabase 5.1161 4.4871
BS with electralarge 5.1161 4.4776
BS with electralarge 5.1161 4.9036
BS with robertalarge 5.1161 5.2656

Table 4.11: Accumulated scores (trial set) before and after SS step phase 2, strategy 3
(BERTScore (BS)); model with score in bold systematically advanced to the SR step.

Both the Electra and RoBERTa model, italicized in the table, exhibited the highest
score improvements after implementation of BERTScore with RoBERTa’s large variant.
These two most improved models are indicated as ‘BS with robertalarge’. The superior
performance of RoBERTa’s large variant to compute BERTScore is consistent with
Zhang et al. (2020)’s results discussed in the previous paragraph.

As described in the introductory section of this chapter, the model that would
achieve the highest accumulated score for a specific strategy type was systematically
progressed to the SR step. For the strategy type ‘BERTScore’, this applied to the
model featuring RoBERTa’s base variant before SS step phase two, and BERTScore
with RoBERTa’s large variant after this phase, its score of 5.2656 marked bold in the
table.

4.3.4 Final Models Resulting from Substitute Selection — Phase Two

In sections 4.3.1 through 4.3.3 above, I described three strategies in SS step phase
two, designed to select substitutes on their semantic similarity to the complex word.

9As discussed in section 4.1, the SG step originally generates 30 substitute candidates, which are
ultimately refined to a final ten most similar substitutes at the end of the second phase in the SS step.
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After having implemented each strategy, I trimmed the substitutes, sorted on semantic
similarity to the complex word, to a final top ten of most similar substitutes to the
complex word. The highest-performing model on the trial set for each investigated
strategy during phase two of the SS step – i.e., synsets shared, hypernyms shared,
and BERTScore – was systematically advanced to the concluding phase of the Lexical
Simplification process, i.e., Substitute Ranking. These models are aggregated in table
4.12. Remarkably, all three models stem from Substitute Generation with RoBERTa’s
base variant.

SG SS Model Name After SS Step Phase 2
robertabase Synsets shared RB Syns-shared 5.3215
robertabase Hypernyms (2 levels up) shared RB Hyper2-shared 5.8015
robertabase BERTScore with robertalarge RB BSrl 5.2656

Table 4.12: Accumulated scores (trial set) of best three models after SS step phase two.

4.4 Substitute Ranking (SR)

The main objective of the SR step is to rank alternatives for a complex word, retrieved
after execution of the SS step, on their comparative simplicity. To assign simplicity
rankings to the lists of ten substitutes retrieved with the final models after phase two
of the SS step, I implemented two distinct strategies: hypernym-hyponym relations
and CEFR levels. I executed the experiments for each of both strategies separately
to evaluate their individual contributions to the trial set results. As explained in the
introductory section of this chapter, the best-performing model for each of these two
strategies was systematically carried forward to final test set evaluation.

The following sections discuss the structure and relevance of these two simplicity
ranking strategies, as well as their individual contributions to the trial set results.

4.4.1 Hypernym-Hyponym Relations

In devising my first strategy for ranking substitutes based on simplicity, I sought in-
spiration from the exploration of shared hypernyms that I had performed in phase two
of the SS step. In that specific model design, substitutes were prioritized if they held
a horizontal relationship with the complex word by means of their shared hypernyms.
However, for the SR step, I shifted focus to vertical hypernym-hyponym relationships
between each substitute and the complex word.

My approach fundamentally leans on the linguistic principle of how these hierarchi-
cal relationships influence perceived complexity. A related concept is the idea of “Basic
Level Categories” in cognitive psychology and psycholinguistics, introduced by Rosch
et al. (1976). Basic level categories represent terms in the linguistic hierarchy that are
neither too general nor too specific, and they are usually the terms most familiar to
people. For instance, while most people can easily visualize and draw a bird (belonging
to a basic level category), sketching specific species of birds can be more challenging.
This suggests that words belonging to these categories are simpler due to their general
nature. Their hyponyms, being more specific, may be perceived as more complex.

Beyond a certain height of the semantic hierarchy, hypernyms may be too general
or abstract to be perceived as simpler. I will adress this topic in section 6.3.
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Revisiting the ‘dog’ example of section 4.3.2, I explored if hypernyms such as dog are
present in the list with substitutes and match a more complex word such as poodle, its
one-level down hyponym. To identify hypernym-hyponym relationships, I determined
whether each of the ten substitutes retrieved with the final models after phase two of
the SS step served as a WordNet hypernym for the complex word. I distinctly verified
this for substitutes functioning as one-level up and two-level up hypernyms. I addi-
tionally examined substitutes that were either one-level up or two-level up hypernyms,
thereby broadening the scope of the search. Substitutes serving as hypernyms for the
complex word were prioritized in the simplicity ranking process, their respective orders
determined by their original positions in the top ten list of the selected substitutes re-
sulting from SS step phase two. Subsequently, I added the substitutes that were not a
hypernym of the complex word, also ordering them using the original position criterion.

SR — Trial Set Results — Hypernym-Hyponym Relations

Table 4.12 in section 4.3.4 presented the best three models resulting from phase two of
the SS step. These were advanced to the SR step. I applied my hypernym-hyponym
ranking method to the substitutes provided by these three models. As I experimented
with one-level up, two-level up, and combined one- or two-level up hypernym-hyponym
relations, I crafted nine new models. Table 4.13 provides the scores of these models. The
three italicized headers indicate the best three models resulting from SS step phase two
to which this ranking method was applied. As discussed in section 4.3.4, these models
all stem from Substitute Generation with RoBERTa’s base variant.

Substitute Ranking (SR) Before SR Step
After SR Step
Hypernym-Hyponym Relations

Synonyms shared (from SS step phase 2)
Hypernyms1-Hyponym 5.3215 4.9818
Hypernyms2-Hyponym 5.3215 5.1837
Hypernyms1or2-Hyponym 5.3215 4.844

Hypernyms2 shared (from SS step phase 2)
Hypernyms1-Hyponym 5.8015 5.3273
Hypernyms2-Hyponym 5.8015 5.5699
Hypernyms1or2-Hyponym 5.8015 5.0956

BScore-robertalarge (from SS step phase 2)
Hypernyms1-Hyponym 5.2656 4.8738
Hypernyms2-Hyponym 5.2656 5.5379
Hypernyms1or2-Hyponym 5.2656 5.0978

Table 4.13: Accumulated scores (trial set) before and after SR step with strategy 1
(hypernym-hyponym relations); model with score in bold is systematically advanced to
evaluation on the test set.

The results show, regardless of which of these three models was used, that substi-
tutes that were ordered first on whether they functioned as a two level up hypernym
of the complex word obtained the highest performance.

In line with the method discussed in the opening section of this chapter, the model
that would score best on a particular strategy was advanced to test set evaluation. For
this specific strategy on hypernym-hyponym relations, this applied to the model using
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SS with BERTScore computed by RoBERTa’s large variant, and SR with two-level up
hypernym - hyponym relations, its score of 5.5379 marked bold in the table.

Note that the model employing the SR step with two-level up hypernym - hyponym
relations, based on SS with shared two-level up hypernyms, featured a slightly higher
score (5.5699). However, this score was lower than the score obtained with its baseline
model (5.8015), which was also directly advanced to test set evaluation, as explained
in the opening section of this chapter. Since the SR-using model scored lower than the
model upon which it was based, it was not taken forward to evaluation on the test set.

Only one of the nine models that had implemented the SR step with hypernym-
hyponym relations attained higher scores than their respective baseline models. I will
reflect on this outcome in section 4.4.3.

4.4.2 CEFR Levels

I based my second SR strategy on my endeavors to align my thesis project with EDIA’s
readability classifier Papyrus, introduced in section 1.2. Papyrus uses CEFR language
proficiency levels to identify word complexity. I investigated a variety of CEFR-labeled
datasets on their applicability for simplicity ranking of the ten substitutes retrieved
with the final models after phase two of the SS step. I detail my approach below.

CEFR-J

The first dataset employed was the CEFR-JWordlist Version 1.5 (Tono, 2020), retrieved
from CEFR-J Vocabulary Profile version 1.510. This wordlist originates from English
textbook corpora used at primary and secondary schools (years three to ten) in China,
Korea, and Taiwan, in the period between 2004 and 2007. The corpora were sorted
on their respective CEFR levels and commonly used words across all textbooks were
extracted, each word accompanied by its Part of Speech (PoS) tag and CEFR level.

Since this dataset lacks words labeled with C1 and C2 CEFR levels, I added the
CEFR-J Octanove vocabulary profile11, created by Octanove Labs12. This vocabulary13

contains words annotated with C1 and C2 levels. After merging both files into a single
file, I obtained approximately 9,600 unique Word-PoS tag-CEFR level combinations.
Subsequently, I converted these CEFR levels into numeric values: level A1 to 1, level A2
to 2, level B1 to 3, level B2 to 4, level C1 to 5, and level C2 to 6. Then, I replaced the
complex word in the original sentence with each of its substitutes to retrieve the PoS
tag of the substitute in the context of the sentence, for which I used the NLTK library14.
Obtaining these PoS tags was needed since the CEFR-labeled dataset contained equal
words that had different CEFR levels assigned based on their respective PoS tags. For
instance, the word address was assigned the A1 level if it was used as a noun, whereas
the same word used as a verb was attributed the B1 level.

If a substitute (after lemmatization) was located in the CEFR-labeled dataset, and
the PoS tag of this substitute coincided with the PoS tag of the word in that dataset,
the numeric value corresponding to that word’s CEFR level was attributed to the

10https://github.com/openlanguageprofiles/olp-en-cefrj/blob/master/

cefrj-vocabulary-profile-1.5.csv, last accessed 2023-08-14.
11https://github.com/openlanguageprofiles/olp-en-cefrj/blob/master/

octanove-vocabulary-profile-c1c2-1.0.csv, last accessed 2023-08-14.
12http://www.octanove.com/, last accessed 2023-08-14.
13licensed under https://creativecommons.org/licenses/by-sa/4.0/, last accessed 2023-08-14.
14https://www.nltk.org/index.html, last accessed 2023-08-14.

https://github.com/openlanguageprofiles/olp-en-cefrj/blob/master/cefrj-vocabulary-profile-1.5.csv
https://github.com/openlanguageprofiles/olp-en-cefrj/blob/master/cefrj-vocabulary-profile-1.5.csv
https://github.com/openlanguageprofiles/olp-en-cefrj/blob/master/octanove-vocabulary-profile-c1c2-1.0.csv
https://github.com/openlanguageprofiles/olp-en-cefrj/blob/master/octanove-vocabulary-profile-c1c2-1.0.csv
http://www.octanove.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.nltk.org/index.html
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substitute. With regard to the ranking method, substitutes that had been attributed
the smallest numeric values, indicating the lowest CEFR levels, were placed at the top
of the substitute list. Substitutes with equal numeric values were arranged according
to their original positions in the top ten list of the selected substitutes resulting from
SS step phase two. Next, any substitutes not found in the combined vocabulary were
added, also maintaining their initial order resulting from phase two of the SS step.

CEFR-LS

The second dataset leveraged was CEFR-LS (Uchida et al., 2018)15. The dataset con-
tains input sentences and words occurring in those sentences. The sentences were
sourced from introductory chapters of university textbooks16, accessible on the Open-
Stax17 website, a digital initiative by Rice University (Houston, U.S.A). The words
occurring in those sentences were labeled with CEFR levels stemming from CEFR-J
wordlist version 1.3 (Tono, 2016) and English Vocabulary Profile18.

My approach for this dataset, in which all six CEFR levels were represented, was
largely similar to the strategy adopted for the combined CEFR-J and Octanova dataset.
The key difference was that, although the sentences containing CEFR-labeled words
were included in the CEFR-LS dataset, the corresponding PoS tags for these words
were not. Therefore, I leveraged the NLTK library, as previously for CEFR-J, yet now
to identify the PoS tags of the CEFR-labeled words in this particular dataset. After
removing duplicates, the dataset featured approximately 1,300 unique Word-PoS tag-
CEFR level combinations. The remainder of the process followed was equal to the
approach adopted for the CEFR-J dataset, explained in its last paragraph.

CEFR-EFLLEX

I used the EFLLEX (Dürlich and François, 2018) database as the third dataset to rank
substitutes on simplicity. It features approximately 15,300 Word-PoS tag combinations,
along with their frequencies in CEFR-graded text corpora across five CEFR levels
(excluding the C2 level). The corpora consist of 17 textbooks, 33 graded readers, and 7
online materials, all tailored for second language English learners. The materials were
sourced from publishers such as Cambridge University Press, Oxford University Press,
and Exam English Ltd.

Since the Word-PoS tag combinations in the EFLLEX database only had CEFR
level frequencies assigned, I implemented two distinct approaches to rank the substi-
tutes on CEFR level. The first focused on the mode (most frequently occurring) CEFR
level for the substitute words appearing in that database. To each substitute occurring
in that dataset, I assigned the mode CEFR level. A limitation of this method is that it
does not account for a word’s association with the other CEFR levels. A word might
be prevalent at a particular level but also have significant occurrences at other levels,
which are neglected in this method. In my second approach, I aimed to overcome this
drawback by considering the distribution of CEFR levels. For each substitute, I cal-
culated a weighted average of its frequencies across the different CEFR levels in the

15licensed under https://creativecommons.org/licenses/by-sa/4.0/, last accessed 2023-08-14.
16licensed under https://creativecommons.org/licenses/by-sa/4.0/, last accessed 2023-08-14.
17https://openstax.org/, last accessed 2023-08-14.
18https://www.englishprofile.org/wordlists, Cambridge University Press (2015), last accessed

2023-08-14.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://openstax.org/
https://www.englishprofile.org/wordlists
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dataset. This method assigned a more representative level to each substitute, based on
a word’s usage across various language proficiency levels. The remainder of the process
followed was equal to the approach adopted for the CEFR-J dataset, explained in its
last paragraph.

CEFR: All Datasets Combined

As highlighted in the opening chapter, one of the issues when using manually curated
datasets is their scope of coverage. In an attempt to reach a broader range of CEFR-
tagged words, I merged all previously mentioned CEFR datasets into one single dataset,
obtaining an initial total of roughly 26,000 instances. Next, I eliminated identical
duplicates and I averaged the CEFR levels of instances with matching Word-PoS pairs
but different CEFR levels, using the mapped numerical values discussed in the previous
sections. This process reduced the collective dataset from 26,000 to 19,000 unique
Word-PoS tag-CEFR level combinations.

Table 4.14 shows an example of how a list of substitutes would be ranked on CEFR
level for this CEFR dataset.

Sentence Complex Word
Before SR Step After SR Step

CEFR Levels
Syria’s Sunni majority is
at the forefront of the
uprising against Assad,
whose minority Alawite
sect is an offshoot of
Shi’ite Islam

offshoot extension, affiliate,
arm, offspring, out-
post, echo, evolution,
imprint, branch,
adjunct

arm: 1.97, branch:
3.37, evolution: 4.25,
extension: 4.5, off-
spring: 5.0, echo: 6.0,
affiliate, outpost, im-
print, adjunct

Table 4.14: Example (trial set), predicted substitutes before (SG with roberta-base,
SS BERTScores with Roberta-large) and after SR step, their ranking based on the
collective CEFR dataset, and numeric values mapped to CEFR levels (1: A1, 2: A2,
3: B1, 4: B2, 5: C1, 6: C2).

The words represented with a CEFR level in the CEFR database were put first in
the list. As the Word-PoS combinations for affiliate, outpost, imprint and adjunct had
not been listed in that CEFR database, they were appended at the end of the substitute
list. To enable calculation of evaluation scores, only the ranked words without their
CEFR levels were provided to the evaluation script.

SR — Trial Set Results — CEFR Levels

Table 4.12 in section 4.3.4 presented the best three models resulting from phase two of
the SS step. These were advanced to the SR step. I applied my CEFR ranking method
on these three models. As I experimented with in total five different CEFR datasets,
I crafted 15 new models. Table 4.15 provides the scores of these models. The three
italicized headers indicate the best three models resulting from SS step phase two to
which this ranking method was applied. As discussed in section 4.3.4, these models all
stem from Substitute Generation with RoBERTa’s base variant.

As explained in the introductory section of this chapter, the applied method involves
a systematic advancement to test set evaluation of the model scoring best on a particular
strategy type. For the strategy of applying CEFR levels, only the model grounded on
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Substitute Ranking (SR) Before SR Step
After SR Step
CEFR Levels

Synonyms shared (from SS step phase 2)
CEFR-J 5.3215 4.5136
CEFR-LS 5.3215 4.6283
CEFR-EFLLEX mode 5.3215 4.7042
CEFR-EFLLEX weighted 5.3215 4.3798
CEFR-All 5.3215 3.9378

Hypernyms2 shared (from SS step phase 2)
CEFR-J 5.8015 5.1728
CEFR-LS 5.8015 5.0678
CEFR-EFLLEX mode 5.8015 5.3633
CEFR-EFLLEX weighted 5.8015 5.0389
CEFR-All 5.8015 4.5969

BScore-robertalarge (from SS step phase 2)
CEFR-J 5.2656 5.6832
CEFR-LS 5.2656 5.4299
CEFR-EFLLEX-mode 5.2656 5.1089
CEFR-EFLLEX-weighted 5.2656 5.8195
CEFR-all 5.2656 6.0322

Table 4.15: Accumulated scores (trial set) before and after SR step with strategy 2
(CEFR levels); models with italicized scores performed better than their baseline; the
model with score in bold is systematically advanced to evaluation on the test set.

SG with RoBERTa’s base variant, SS with BERTScore with RoBERTa’s large variant,
and SR with the collective CEFR database in which all used CEFR datasets had been
integrated, was progressed to test set evaluation. This model had obtained the highest
score (6.0322) on the trial set.

Remarkably, the top four performing models out of the 15 models all originate from
the model that had performed Substitute Selection with BERTScore. Moreover, only
these four models, italicized in table 4.15, surpassed their respective baseline models
in their scores. A similar situation had occurred for the models employing hypernym-
hyponym relations, as denoted in the concluding paragraph of section 4.4.1. I will
reflect on this phenomenon in the subsequent section.

4.4.3 Substitute Ranking: Essential or Excess?

During the SR step, I implemented a total of 24 models: nine for the hypernym-
hyponym approach and 15 for the CEFR method. However, out of these 24 models, only
five surpassed their predecessor (baseline) models from the SS step phase two in terms
of performance scores. Of these five successful models, one stems from the hypernym-
hyponym ranking approach, and four originate from the CEFR ranking method.

There might be several explanations for this remarable outcome, and I cover two
that seem most plausible. First, the limited size of the trial set might have potentially
restricted the scope of conclusions to be drawn. I will further discuss this point in rela-
tion to test set evaluation in section 5.1. Second, the strategies used to rank potential
simpler substitutes during the SR step may not have been as effective on this particular
Shared Task. It may underpin my observation from section 3.3: a significant propor-



4.4. SUBSTITUTE RANKING (SR) 47

tion of the gold labels did not necessarily seem simpler. This might have contributed
to the stronger performance of their underlying models resulting from the SS phase.
In that particular phase, the focus is primarily on semantic similarity to the complex
words. This focus seemed consistent with the nature of the annotations, that clearly
demonstrated a semantic relation to the complex word, as remarked in section 3.3.

To investigate my observation that a significant proportion of the gold labels did not
seem simpler, I compared the CEFR levels of the most frequently suggested gold labels
with the CEFR level of the complex word they were intended to simplify. Based on the
collective CEFR dataset introduced in section 4.4.2, I compared the CEFR levels of the
lemmatized, PoS tagged complex words, with those from the lemmatized, PoS tagged
substitutes. To make sure the right Word - PoS tag combinations were retrieved, I had
first PoS tagged and lemmatized both the complex word and the substitutes within the
context of the original sentence. Table 4.16 shows the results.

Complex Word CEFR Most Freq. Gold Label Occurrences CEFR
compulsory 4.5 mandatory 11 5.0
instilled 4.0 infused 3 not listed

introduced 3 2.36
maniacs not listed fanatics 5 5.0
observers 4.09 watchers 8 3.76
shrapnel not listed bullet 4 3.76
disguised 4.5 concealed 4 4.5

dressed 4 2.77
offshoot not listed branch 6 3.37
symphonic not listed musical 12 2.42
deploy 5.0 send 5 2.58
authorities 3.87 officials 11 4.36

Table 4.16: Complex words (trial set), most frequent gold label, and numeric values
mapped to CEFR levels (1: A1, 2: A2, 3: B1, 4: B2, 5: C1) from collective CEFR
database. Gold labels with higher CEFR level than complex word are marked in bold.

The table shows instances where the most frequently suggested gold label holds a
higher CEFR level than the complex word it had intended to simplify. Even if the
gold labels with equal occurrences are held out of the calculation, there are two out
of ten complex words, i.e., compulsory and authorities, whose top-ranked gold labels
carry a higher CEFR level. Complex words not found in the CEFR database were not
considered in this comparison. However, it is worth noting that the substitute fanatics,
given its relatively high CEFR score, will, most likely, not have a CEFR level lower
than the complex word maniacs which it intended to make simpler.

The outcomes triggered a further analysis of this phenomenon. As the more expan-
sive scale of the test set might yield more statistically reliable patterns, I analyzed the
test set on CEFR levels after I had evaluated my models on this test set. I report my
findings in section 6.4.

4.4.4 Final Models Resulting from Substitute Ranking

With each of the above-mentioned two strategies, hypernym-hyponym relations and
CEFR levels, the substitutes were ranked on their relative simplicity. In the previous
sections, I identified the best model for each of both strategies, which I systematically
carried forward to evaluation on the test set. Both models are aggregated in table 4.17.
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SG SS SR Model Name Score
robertabase BERTScore (robertalarge) Hyper2-Hypo RB BSrl Hyper2-Hypo 5.5379
robertabase BERTScore (robertalarge) CEFR level RB BSrl CEFR-all 6.0322

Table 4.17: Accumulated scores (trial set) of best two models after SR step.

4.5 Summary

In this chapter, I described my approach to design a variety of models for the task of
Lexical Simplification. I embraced a modular approach to evaluate my models after
each individual step in the Lexical Simplification process. I adopted this method to
derive the unique contributions of each strategy used in my journey towards rendering
an effective simplification system. To account for the small size of the trial set that
I used during my experiments, I applied an accumulated score for my evaluations,
consisting of a combination of all ten metrics used in the Shared Task.

During the SG step, I crafted 12 models, half of them supplemented with the ad-
ditional context of the original sentence including the unmasked complex word. This
added property showed major improvements over only providing the model with the
sentence that had the complex word masked. I took the six models with the added con-
text forward into the SS step. As a first phase in this step, duplicates, inflected forms,
and antonyms of the complex word were removed, resulting in six new models. Of these
new models, I selected the two best-performing models to execute the second phase of
the SS step with. In this step, three similarity-based approaches were implemented:
shared synsets, shared hypernyms and BERTScore’s contextualized embeddings. In
total, 20 additional models were designed. For each of these three strategies, the best
model was systematically progressed to the SR step. In this SR step, two separate sim-
plicity ranking methods were applied: hypernym-hyponym relations and CEFR levels.
This process resulted in the design of 24 new models.

From the resulting total of 62 models, five were methodically advanced for final
evaluation on the test set based on predefined criteria. Two of these were progressed to
the test set based on their performance after implementation of the SR phase, whereas
the remaining three were selected based on their outcomes following SS step phase two
— refrained from specific simplicity ranking methods. I selected the latter three models
based on my observations that a significant portion of the most frequent gold labels in
the trial set did not necessarily indicate simpler words. Evaluation on the expansive test
set of the models that scored highest after execution of the SS step — where substitutes
are selected on their similarity to the complex word — could provide valuable insights
into the extent to which annotators used similar words, irrespective of their simplicity.
Table 4.18 displays the five models progressed to final test set evaluation.

SG SS SR Model name Accumulated Score
RB Syns shared n/a RB Syns-shared 5.3215
RB Hyper2 shared n/a RB Hyper2-shared 5.8015
RB BSrl n/a RB BSrl 5.2656
RB BSrl Hyper2 - Hypo RB BSrl Hyper2-Hypo 5.5379
RB BSrl CEFR level RB BSrl CEFR-all 6.0322

Table 4.18: Accumulated scores (trial set); models with best scores, all to be evaluated
on the test set (RB = robertabase, BSrl = BERTScore with robertalarge).
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All five models had used RoBERTA’s base model to conduct the SG step, supple-
mented with the additional context of the original sentence including the unmasked
complex word. In the SS step, three of the five models used the BERTScore strategy,
with RoBERTa’s large variant. The fourth had employed shared synonyms, whereas
the fifth had implemented shared two-level up hypernyms. The SR step was carried out
for two models: one used two-level up hypernym-hyponym relations for simplicity rank-
ing, and the other CEFR levels. The latter model (model name: RB BSrl CEFR-all)
outperformed the other four models on the trial set.

In the next chapter, I evaluate these five models on the official evaluation dataset
of the Shared Task, i.e., the test set.
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Chapter 5

Results

As outlined in section 1.2, this thesis addresses the following research question:

“How do different approaches for Substitute Generation, Selection and Ranking com-
pare in the context of building a Lexical Simplification system for the English lan-
guage?”

In the preceding chapter, I presented my method to investigate this research ques-
tion. I designed a total of 62 models based on various strategies for the separate SG, SS,
and SR steps, and evaluated these models on the trial set by using an all-encompassing
measure consisting of the accumulated scores of the ten individual metrics explained in
section 3.6. The models demonstrating superior performance across various strategies
in different phases of the Lexical Simplification process were systematically advanced
to the subsequent stage. This culminated in the progress of five models to evaluation
on the test set, which is the official evaluation dataset of the Shared Task.

The present chapter is dedicated to addressing my research question through an
evaluation of the performance metrics of the above-mentioned five models on the test
set. My analysis starts with a comparison of the accumulated scores of these models
on both the trial and test sets. Subsequent evaluations focus exclusively on the test
set outcomes. Initially, I compare the accumulated scores of my models to their scores
on the ACC@1 metric — the performance measure by which the models submitted for
this Shared Task had been sorted, discussed in section 3.9. Following this, I benchmark
the ACC@1 scores of my models against those of the models submitted for the Shared
Task in 2022. I proceed by deconstructing my highest-performing model into separate
modules, in coherence with the various steps I had performed to develop it. This showed
the individual contributions of these modules to the final ACC@1 score. Concluding this
chapter, I discuss post-evaluation experiments conducted with my highest-performing
model, aiming to contribute to a broader discussion on whether associated experiments
could enhance simplification results in future research.

5.1 Trial vs. Test Set Results

This section compares the accumulated scores on the trial and test sets of the five best
models that had progressed to test set evaluation. Table 5.1 presents these results.

Interestingly, the findings on the test set revealed a significant deviation from
the patterns observed in the trial set results. This deviation is particularly evident
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SG SS SR Model name Trial Test
RB BSrl n/a RB BSrl 5.2656 5.4804
RB BSrl Hyper2 - Hypo RB BSrl Hyper2-Hypo 5.5379 5.3851
RB Syns shared n/a RB Syns-shared 5.3215 5.2803
RB Hyper2 shared n/a RB Hyper2-shared 5.8015 4.8371
RB BSrl CEFR level RB BSrl CEFR-all 6.0322 4.7078

Table 5.1: Accumulated scores (trial vs. test set), ranked on test set scores. Topscore
per dataset is marked bold (RB = robertabase, BSrl = BERTScore with robertalarge).

when comparing the ranking inversion between two specific models. The model that
had secured the first position with an accumulated score of 6.0322 on the trial set
(i.e., the model based on simplicity ranking by CEFR levels, carrying model name
RB BSrl CEFR-all) descended to the fifth place in the test set evaluation, due to its
accumulated score of 4.7078 on this dataset. Conversely, the model that had occupied
the fifth place on the trial set with an accumulated score of 5.2656 (i.e., the model
based on BERTScore without additional simplicity ranking properties, with model
name RB BSrl), ascended to the first position in the test set rankings, securing an ac-
cumulated score of 5.4804. Both models were developed using RoBERTa’s base variant
during the SG step and BERTScore with RoBERTa’s large variant during the SS step.
The only distinction between the two models is whether or not the substitutes had ex-
plicitly been ranked on simplicity (in this case, by their respective CEFR levels). The
inclusion of the SR step employing the CEFR strategy heavily decreased the model’s
performance on this Shared Task. I will reflect on factors that potentially influenced
the performance of this model in section 6.4.

Since the most successful model on the test set did not use a separate simplicity
ranking method, outperforming two models that had included explicit simplicity rank-
ing methods, I devoted section 6.2 to a review of the absence of simplicity ranking
methods in relation to the Shared Task. My earlier observations in sections 3.2, 3.3,
and 4.4.3 also required a discussion of this phenomenon.

Lastly, it should be noted that the diverging results between the trial and test sets
may be related to the small size of the trial set. The trial set might not represent the
complexity and diversity of language as accurately as a larger set, thereby leading to
discrepancies in model performance. I will discuss this as one of the limitations inherent
to my research in section 6.1.3.

5.2 Accumulated Scores Compared to ACC@1 Scores

As shown in figure 3.2 in section 3.9, the results of the systems participating in the
Shared Task had been sorted on their respective ACC@1 scores. However, I had assessed
my models on their respective accumulated scores of all ten metrics described in section
3.6. To verify how my models would perform on the ACC@1 metric, I compared their
accumulated scores to their ACC@1 scores. Table 5.2 displays these results.

The outcomes show that the model rankings based on the accumulated scores on
all ten metrics were in close alignment with those based on the ACC@1 metric only.
This may potentially be related to the inherent correlations among these ten metrics
themselves. Several of the metrics evaluate performance aspects related to ACC@1, or
their criteria for success may even be directly satisfied due their results on this metric.
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SG SS SR Model name Test (Accum.) Test (ACC@1)
RB BSrl n/a RB BSrl 5.4804 0.6263
RB BSrl Hyper2 - Hypo RB BSrl Hyper2-Hypo 5.3851 0.6075
RB Syns shared n/a RB Syns-shared 5.2803 0.5752
RB Hyper2 shared n/a RB Hyper2-shared 4.8371 0.5268
RB BSrl CEFR level RB BSrl CEFR-all 4.7078 0.4327

Table 5.2: Accumulated vs. ACC@1 scores (test set), ranked on ACC@1 scores.
Highest-ranked model is marked bold (RB = robertabase, BSrl = BERTScore with
robertalarge).

An example of the latter is the Potential@K metric. If the criterion for a positive
score on ACC@1 (also called Potential@1 and MAP@1, as described in section 3.6)
is met, indicating that the top-ranked prediction matches one of the gold labels, the
criteria for Potential@3, Potential@5, and Potential@10 are inherently satisfied as well.
This is because the Potential metric measures the proportion of instances where a
minimum of one of the top-K ranked predictions appears in the list with gold labels.
If the minimum of one of the ‘top-1’ ranked condition is met by a successful score on
ACC@1, the minimum of one of the ‘top-3’, ‘top-5’, and ‘top-10’ ranked conditions are
automatically met as well.

Furthermore, the MAP@K metric, with K=3, 5, or 10, may be indirectly influenced
by the ACC@1 (= MAP@1 and Potential@1) metric, although this influence decreases
by ascending values of K. Whereas ACC@1 measures whether the top-ranked substitute
is present in the gold labels, MAP@3, for example, measures if the three top-ranked
substitutes are present in the gold labels. A successful score on ACC@1 means that, for
MAP@3 to count as a success, only the second and third ranked substitutes additionally
need to be present in the gold labels. The MAP@3, MAP@5, and MAP@10 metrics
are stricter than ACC@1, with their strictness increasing by an increased value of K,
by which its correlation with the ACC@1 metric decreases.

The ACC@Ktop1 metric may also indirectly be affected by a positive ACC@1 score.
As opposed to the Map@K and Potential@K metrics that look at whether a substitute
appears in the list with gold labels, this metric measures whether a minimum of one
of the top-K ranked predicted substitutes equals the most often suggested gold label.
The chance that this metric is affected by a positive score on ACC@1 is inversely
correlated with the number of unique elements in the list with gold labels: the more
unique annotations, the lesser the chance that the highest-ranked substitute present in
the gold labels also matches the most frequently suggested one.

I will discuss the applicability of these metrics for future Lexical Simplification tasks
in section 6.5.

5.3 Comparison of Test Set Results with TSAR-2022 Sub-
missions

To analyze how my five models would compare to the other models submitted for
the Shared Task, I integrated their test set results in the original table of 33 models,
previously shown in figure 3.2 in section 3.9. The addition of my five models resulted
in a ranking of 38 models. I present their relative rankings in table 5.3, limited to the
top half of the results, as all five of my models are situated within that segment.
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No. Model name
ACC ACC MAP Potential
@1 @1Top1 @2Top1 @3Top1 @3 @5 @10 @3 @5 @10

1 UniHD 0.8096 0.4289 0.6112 0.6863 0.5834 0.4491 0.2812 0.9624 0.9812 0.9946
2 UniHD 0.7721 0.4262 0.5335 0.5710 0.5090 0.3653 0.2092 0.8900 0.9302 0.9436
3 MANTIS 0.6568 0.3190 0.4504 0.5388 0.4730 0.3599 0.2193 0.8766 0.9463 0.9785
4 UoM&MMU 0.6353 0.2895 0.4530 0.5308 0.4244 0.3173 0.1951 0.8739 0.9115 0.9490
5 RB BSrl 0.6263 0.2715 0.4059 0.4784 0.4293 0.3264 0.2035 0.8467 0.9247 0.9677
6 RB BSrl Hyper2-Hypo 0.6075 0.2500 0.3736 0.4596 0.4205 0.3244 0.2023 0.8521 0.9274 0.9677
7 TSAR-LSBert 0.5978 0.3029 0.4450 0.5308 0.4079 0.2957 0.1755 0.8230 0.8766 0.9463
8 RB Syns-shared 0.5752 0.2607 0.4005 0.4784 0.3953 0.3024 0.1877 0.8172 0.9086 0.9543
9 RCML 0.5442 0.2359 0.3941 0.4664 0.3823 0.2961 0.1887 0.8310 0.8927 0.9436
10 RCML 0.5415 0.2466 0.3887 0.4691 0.3716 0.2850 0.1799 0.8016 0.8847 0.9115
11 RB Hyper2-Shared 0.5322 0.2311 0.3413 0.4112 0.3455 0.2640 0.1692 0.7795 0.8602 0.9327
12 GMU-WLV 0.5174 0.2493 0.3538 0.4477 0.3522 0.2626 0.1600 0.7533 0.8337 0.8981
13 CL Lab PICT 0.5067 0.2064 0.3297 0.4021 0.3278 0.2331 0.1369 0.7265 0.7828 0.8042
14 UoM&MMU 0.4959 0.2439 0.3458 0.4235 0.3273 0.2411 0.1461 0.7560 0.8310 0.9088
15 teamPN 0.4664 0.1823 0.3056 0.3378 0.2743 0.1950 0.0975 0.6729 0.7506 0.7506
16 MANTIS 0.4611 0.2117 0.3351 0.4235 0.3227 0.2553 0.1673 0.7747 0.8793 0.9436
17 teamPN 0.4504 0.1769 0.2841 0.3297 0.2676 0.1872 0.0936 0.6648 0.7399 0.7399
18 teamPN 0.4477 0.1769 0.2815 0.3297 0.2666 0.1874 0.0937 0.6621 0.7453 0.7453
19 RB BSrl CEFR-all 0.4327 0.1801 0.3064 0.3978 0.3101 0.2553 0.175 0.7768 0.9059 0.9677
20 PolyU-CBS 0.4316 0.2064 0.2788 0.3297 0.2683 0.1995 0.1178 0.6139 0.6997 0.7747

Table 5.3: TSAR-2022 scores (test set), top 20. Models marked bold were developed
in the context of this thesis.

This section exclusively focuses on the ACC@1 metric performance, consistent with
the examination of system outcomes presented for the Shared Task in section 3.9.
Moreover, the inherent discussion is confined to the evaluation of the top two of my
models in comparison with other well-performing models.

My two best-performing models, with rankings of 0.6263 and 0.6075, respectively,
outclassed the best baseline model TSAR-LSBert, which holds an ACC@1 score of
0.5978. TSAR-LSBert had originally ranked fifth, but the introduction of these two
models demoted it to the seventh position.

My best-performing (0.6263) model scored slightly lower than UoM&MMU’s best
submission (0.6353). As described in section 3.8, their approach had bypassed the SR
step through fine-tuning RoBERTa’s large MLM with a diverse range of simplification
corpora. Their slightly better score might imply a potential post-evaluation investiga-
tion regarding updating my models in the SG step to RoBERTa’s large variant. I will
revisit this option in section 5.5.

Furthermore, MANTIS’ best submission (0.6568), described in section 3.8, topped
my best model’s score. Similar to my model, they had used RoBERTa’s base variant
during the SG step, to which they had added the original sentence including the un-
masked complex word to the sentence in which the complex word was masked. During
the SS and SR step, which they had combined into one, they had reweighted LSBert’s
key attributes, among which lexical resources and simplification corpora. As a post-
processing step, they had removed candidates that had equivalence scores that were
lower than the mean equivalence scores of all candidates. Yet, as my best model had
merely used BERTScore for the SS step and no ranking measures for the SR step, it
had secured a score that was only 3% lower than MANTIS.

Concluding my discussion about the best-performing MLMs on this Shared Task,
a combination of the approaches of MANTIS, UoM&MMU, and my best model could
potentially enhance future efforts in the context of Lexical Simplification. For example,
this could be achieved through the following subsequent steps:
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1. Through the utilization of high-quality simplification resources, finetuning (UoM&MMU)
RoBERTa’s base variant (MANTIS and my best model);

2. Supplementing the model with the original sentence including the unmasked com-
plex word (MANTIS and my best model) to perform the SG step;

3. Calculating BERTScore computed with RoBERTa’s large variant (my best model)
to execute the SS step. BERTScore could either be used as a sole method to exe-
cute the SS step, or MANTIS’ reweighted distribution of LSBert’s key attributes
could be implemented, with BERTScore’s contextualized embeddings replacing
FastText’s uncontextualized embeddings as a key attribute. As explained in sec-
tion 2.5, uncontextualized embeddings in the SS step might be counterproductive
for polysemous substitutes, even if the SG step had generated substitutes in the
context of the sentence.

Nevertheless, as highlighted in section 3.9, the substantial difference between the
second-ranking GPT-based model, scoring 0.7721 with a basic prompting template, and
MANTIS’ third-ranking RoBERTa MLM, scoring 0.6568 after several modifications,
indicates that GPT-based models migt represent not only the most effective, but also
the most efficient direction for future endeavors in Lexical Simplification tasks.

5.4 Best Model Deconstructed

To understand the contributions from the various methods I had implemented in my
best-performing model, I evaluated the merits of each method on this model’s perfor-
mance. The model had executed the SG step with RoBERTa’s base variant including
the context of the original unmasked sentence, and the second phase of the SS step
with BERTScores computed with RoBERTa’s large variant (model name: RB BSrl). I
analyzed the performance of this model on the ACC@1 metric across the applied steps
in the Lexical Simplification process. Its results are shown in table 5.4.

Description Test (ACC@1)
SG with roberta-base, excl. original (unmasked) sentence 0.3602
SG with roberta-base, incl. original (unmasked) sentence 0.4865
SS phase 1: removal of duplicates, inflections, antonyms 0.5376
SS phase 2: BERTScore with roberta-large 0.6263

Table 5.4: ACC@1 scores (test set) based on best model (RB BSrl) deconstructed per
method used.

The results strongly support my decision to supplement RoBERTa’s base variant
with the unmasked original sentence. The addition of this sentence to the sentence
where the complex word was masked, seems to have effectively guided the system to
not only generate contextually appropriate substitutes, but also substitutes that had
taken the meaning of the complex word into account. As introduced in section 3.6, the
ACC@1 metric represents the proportion of instances where the top-ranked predicted
substitute is present in the gold labels. Therefore, the change of score from 0.3602 to
0.4865 in table 5.4 suggests that the addition of the original sentence with the complex
word in it resulted in an increased accuracy. For nearly 49% of the complex words, the
substitute that had been identified by the model as most similar was included in the
list of gold labels, as opposed to the initial 36%.
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Moreover, the removal of duplicates, inflected forms, and antonyms of the com-
plex word also enhanced the model’s performance, although slightly. Antonyms, for
example, given their tendency to appear in similar contexts, are often generated as
substitutes by MLMs. The relatively small trial set did not contain antonyms in the
substitute lists. Among the substitutes produced for the test set, I found a total of 19
antonyms. This figure is rather small when compared to the total number of substi-
tutes generated for the test set — approximately 4,000, corresponding to the average of
10.55 substitutes for each of the near 400 complex words discussed in section 3.4. This
minimal quantity of antonyms, pertaining to less than 0.5% of the substitutes, affirms
the system’s proficiency in excluding antonyms from the substitutes to be generated.
The strategy of providing the system with both the unmasked and the masked sentence
during the SG step may have contributed to this effectiveness. However, a causal rela-
tion should not be inferred, as the nature of the complex word itself plays a considerable
role as well. For example, if a complex word is rather abstract or philosophical, there
may just not be an antonym for it. Consider the word ‘infinity’1, for example: although
it appears in WordNet, it does not have an antonym associated with it. Furthermore,
there are numerous non-abstract words, like ‘poodle’ from my previous examples, for
which finding an antonym logically is not possible.

Finally, sorting the substitutes based on the BERTScore metric provided the model
with a concluding boost towards its final score of 0.6263. This may be attributed to
BERTScore’s unique design to assess the similarity — with contextualized embedding
scores — between, on the one hand, the sentence with the complex word in it, and on
the other, the sentence in which the complex word was replaced by the substitute.

5.5 Post-Evaluation Experiments

On the best-performing model consisting of SG with RoBERTa’s base variant and SS
with BERTScore computed with RoBERTa’s large variant, I performed post-evaluation
experiments, aiming to better understand model performance and to contribute to a
broader discussion on whether these experiments could foster enhanced simplification
results in future research.

I started this process by replacing RoBERTa’s base variant during the SG step
by RoBERTa’s large variant, motivated by UoM&MMU’s slightly higher score on the
ACC@1 metric with RoBERTa’s large variant, discussed in section 5.3. However, my
results on this experiment showed an inferior score on ACC@1, namely, 0.6021. The
marginally superior performance of UoM&MMU is likely attributable to their fine-
tuning process, using a varied assortment of simplification corpora, rather than stem-
ming from the SG step with RoBERTa’s large variant. Consequently, I did not use
RoBERTa’s large variant in the SG step in my further post-evaluation experiments.

With regard to the SS step, I purposefully did not post-evaluate my best-performing
model with different models to compute BERTScores. The evidence already pointed
to the significant effectiveness of RoBERTa’s large variant, as substantiated by both
my own research findings on the trial set (section 4.3.3) and the BERTScore evalua-
tions conducted by its authors (Zhang et al., 2020), highlighted in the same section.
Therefore, any additional exploration with different models for BERTScore computa-
tion seemed redundant and unlikely to yield substantial performance improvements.

1http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=

&o4=&s=infinity&i=0&h=0#c, last accessed on 2023-08-14.

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=infinity&i=0&h=0#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=infinity&i=0&h=0#c
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Inspired by WordNet’s fine-grained organization, possibly providing a rich resource
of potential substitutes at higher hypernym levels, I decided to turn to WordNet once
more for further experimentation within the SR step. I expanded my previous inves-
tigation of hypernym-hyponym relations to include hypernyms up to the fifth level. I
also investigated combinations of these various hypernym levels, aiming to generate a
broader collection of hypernyms to align with the substitutes.

This post-evaluation experiment led to the emergence of nine hypernym-hyponym
models. It is constituted of six newly designed models and three models previously
examined during the trial set experiments, detailed in table 4.13 in section 4.4.1. Out
of these nine, only the two-level up hypernyms model (RB BSrl Hyper2 - Hypo), had
previously been assessed on the test set before the post-evaluation phase. Consequently,
table 5.5 presents eight models assessed on the test set for the first time. Furthermore,
it lists two models already evaluated on the test set prior to post-evaluation. One is
the above-mentioned two-level up hypernyms model (RB BSrl Hyper2 - Hypo), and the
other is the best model before post-evaluation (RB BSrl) that had not incorporated a
simplicity ranking method. For clarifty purposes, these two models are italicized.

Model name Test (ACC@1)
RB BSrl Hyper1 - Hypo 0.6720
RB BSrl Hyper1or2 - Hypo 0.6666
RB BSrl Hyper1or2or3 - Hypo 0.6586
RB BSrl Hyper1or2or3or4 -Hypo 0.6505
RB BSrl Hyper1or2or3or4or5 -Hypo 0.6451
RB BSrl (best model evaluated before post-evaluation) 0.6263
RB BSrl Hyper3 - Hypo 0.6102
RB BSrl Hyper2 - Hypo (evaluated before post-evaluation) 0.6075
RB BSrl Hyper5 - Hypo 0.6048
RB BSrl Hyper4 - Hypo 0.5967

Table 5.5: Post-evaluation ACC@1 scores (test set) based on hypernym-hyponym re-
lations. Including best two models before post-evaluation (italicized). Scores higher
than the best model before post-evaluation are marked bold.

Interestingly, the use of this method resulted in remarkably improved outcomes,
underlining the potential significance of applying WordNet’s semantic hierarchy to the
Lexical Simplification process. Despite my initial hypothesis in this section that favored
higher hypernym levels, the highest-performing model post-evaluation simply employed
one-level up hypernyms. This model had not displayed contributions to the improve-
ment of its base model scores when applied to the trial set, as table 4.13 in section 4.4.1
demonstrated. According to my methodology, it had not been progressed to test set
evaluation. This underscores the possibility that the limited size of the trial set might
have inhibited the formulation of reliable conclusions, which I will address as one of
the limitations of my research in section 6.1.3.

The models that had applied a combination of hypernym levels outperformed those
that did not, except from the one-level up hypernym model. Yet, as the number of
combinations increased, the performance of the models decreased. This implies that
the superior performance of these combination-based models may be attributed to a
large extent to the one-level up hypernyms used in the highest-performing model.

The scores of my hypernym-based models influenced the rankings of the other mod-
els submitted in 2022 for the Shared Task to a large extent. These changes are illus-
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trated in table 5.6, showing the top 20 of the systems. Note that eight models, before
post-evaluation listed in the top 20 (table 5.3 in section 5.3), have now fallen out of the
top 20, including my model using CEFR levels for the SR step, RB BSrl CEFR-all.

No. Model name
ACC ACC MAP Potential
@1 @1Top1 @2Top1 @3Top1 @3 @5 @10 @3 @5 @10

1 UniHD 0.8096 0.4289 0.6112 0.6863 0.5834 0.4491 0.2812 0.9624 0.9812 0.9946
2 UniHD 0.7721 0.4262 0.5335 0.5710 0.5090 0.3653 0.2092 0.8900 0.9302 0.9436
3 RB BSrl Hyper1 - Hypo (P) 0.6720 0.2741 0.4166 0.4892 0.4551 0.3453 0.2112 0.8629 0.9274 0.9677
4 RB BSrl Hyper1or2 - Hypo (P) 0.6666 0.2661 0.4139 0.4865 0.4514 0.3463 0.2110 0.8575 0.9354 0.9677
5 RB BSrl Hyper1or2or3 - Hypo (P) 0.6586 0.2661 0.4059 0.4892 0.4495 0.3439 0.2103 0.8575 0.9354 0.9677
6 MANTIS 0.6568 0.3190 0.4504 0.5388 0.4730 0.3599 0.2193 0.8766 0.9463 0.9785
7 RB BSrl Hyper1or2or3or4 -Hypo (P) 0.6505 0.2607 0.3951 0.4865 0.4432 0.3411 0.2091 0.8575 0.9327 0.9677
8 RB BSrl Hyper1or2or3or4or5 -Hypo (P) 0.6451 0.2607 0.3951 0.4892 0.4413 0.3403 0.2086 0.8575 0.9301 0.9677
9 UoM&MMU 0.6353 0.2895 0.4530 0.5308 0.4244 0.3173 0.1951 0.8739 0.9115 0.9490
10 RB BSrl 0.6263 0.2715 0.4059 0.4784 0.4293 0.3264 0.2035 0.8467 0.9247 0.9677
11 RB BSrl Hyper3 - Hypo (P) 0.6102 0.2715 0.3844 0.4704 0.4215 0.3239 0.2018 0.8413 0.9247 0.9677
12 RB BSrl Hyper2-Hypo 0.6075 0.2500 0.3736 0.4596 0.4205 0.3244 0.2023 0.8521 0.9274 0.9677
13 RB BSrl Hyper5 - Hypo (P) 0.6048 0.2688 0.4086 0.4704 0.4233 0.3238 0.2023 0.8413 0.9220 0.9677
14 TSAR-LSBert 0.5978 0.3029 0.4450 0.5308 0.4079 0.2957 0.1755 0.8230 0.8766 0.9463
15 B BSrl Hyper4 - Hypo (P) 0.5967 0.2580 0.4059 0.4731 0.4184 0.3210 0.2010 0.8387 0.9220 0.9677
16 RB Syns-shared 0.5752 0.2607 0.4005 0.4784 0.3953 0.3024 0.1877 0.8172 0.9086 0.9543
17 RCML 0.5442 0.2359 0.3941 0.4664 0.3823 0.2961 0.1887 0.8310 0.8927 0.9436
18 RCML 0.5415 0.2466 0.3887 0.4691 0.3716 0.2850 0.1799 0.8016 0.8847 0.9115
19 RB Hyper2-Shared 0.5322 0.2311 0.3413 0.4112 0.3455 0.2640 0.1692 0.7795 0.8602 0.9327
20 GMU-WLV 0.5174 0.2493 0.3538 0.4477 0.3522 0.2626 0.1600 0.7533 0.8337 0.8981

Table 5.6: TSAR-2022 scores (test set), top 20. Models marked bold were developed in
the context of this thesis. Models obtained after post-evaluation with various hypernym
levels (and combinations of them) are additionally marked with the letter P.

My best model that had implemented one-level up hypernyms was catapulted to
the third position of the English track in the TSAR-2022 Shared Task, being surpassed
only by UniHD’s two GPT based models, which may be considered an excellent per-
formance. Two of my other hypernym-based models directly followed, securing the
fourth and fifth places. After MANTIS, which was consequently demoted from the
third to the sixth place, two additional hypernym-based models filled the seventh and
eighth ranks. UOM&MMU dropped to the ninth position, succeeded by my best model
before post-evaluation — without the use of hypernyms — that took the tenth place.
The remaining hypernym-based models occupied the 11th, 12th, 13th, and 15th places.
My two models that had applied shared synonyms and shared two-level up hypernyms
before post-evaluation now ranked 16th and 19th, respectively. Intriguingly, TSAR-
LSBert, originally ranked 5th, was degraded to a mere 14th position.

In conclusion, the improved outcomes resulting from leveraging WordNet’s semantic
hierarchy accentuate the effectiveness of combining unsupervised methodologies such
as MLMs and BERTScore with high-quality supervised linguistic resources such as
WordNet. I will present a more detailed discourse about the potential of WordNet’s
hierarchic structure for future Lexical Simplification endeavors in section 6.3.

Despite these encouraging outcomes, it is important to note that this re-ranking
is based on a post-evaluation experiment. Although this approach is helpful in under-
standing model performance, it may not generalize well to unseen data, as it does not
account for potential overfitting to the test set. Moreover, my methods — this applies
to all my models, including those before post-evaluation — have not been evaluated
across varied datasets. Consequently, strong conclusions should not be drawn.
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5.6 Summary

In this chapter, I provided the test set results of five Lexical Simplification models.
The evaluation of these models was based on thorough experimentation with a total
of 62 models on the trial set, discussed in chapter 4. The test set results displayed a
divergence from the patterns observed in the trial set results. The model employing
CEFR levels to perform ranking on simplicity obtained inferior results, whereas a model
that had not implemented any simplicity ranking properties outperformed the other
four models. In sections 6.2 and 6.4, I will further analyze this phenomenon in relation
to this particular Shared Task.

My findings indicate that RoBERTa’s base variant, supplemented with the original
sentence with the complex word unmasked, together with BERTscore calculated with
RoBERTa’s large variant, achieved competitive scores. This model outranked TSAR-
LSBert, the baseline model which had previously secured the fifth out of 33 places in
this Shared Task.

Additionally, superior scores were realized during a post-evaluation experiment con-
ducted with this best-performing model, resulting in eight models newly evaluated on
the test set. These models featured a Substitute Ranking method in which substitutes
were given priority in ranking if they served as a hypernym, up to the fifth level, of
the complex word. The three highest-performing models were only exceeded by two
GPT-based models. The potential contributions of hypernym-hyponym relations to
future Lexical Simplification tasks will be discussed in section 6.3.
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Chapter 6

Discussion

In the previous chapters, I presented the NLP task of Lexical Simplification, related
research conducted for this task, as well as the nature and results of my experiments
with various methods that can be applied during this process. I focused on steps two
through four of the Lexical Simplification task for the English language, applying these
to the TSAR-2022 Shared Task on Multilingual Lexical Simplification.

In this chapter, I reflect on my main findings and connect the various aspects of my
research by discussing their limitations and examining their potential contributions to
the broader domain of Lexical Simplification. Building upon these insights, I propose
potential directions for future research.

The concluding section of this chapter offers perspectives into how the discoveries
from my study could potentially contribute to the improvement of EDIA’s multilingual
readability analyzer Papyrus, introduced in section 1.2. Moreover, I suggest strategies
on how the top-performing model from my investigations can be generalized from En-
glish to Dutch. With this proposition, I seek to assist EDIA in their endeavors to aid
the Dutch government in supporting citizens with language deficiencies.

6.1 Limitations

In the pursuit of academic integrity and a comprehensive evaluation of my research, this
section is dedicated to addressing the constraints associated with this study. The follow-
ing sections outline the limitations that I am aware of, which may have influenced the
results of my studies and subsequent conclusions. These limitations encompass several
aspects: my existing knowledge about the TSAR-2022 Shared Task, the current MLM
framework’s deficiency to generate multi-word simplifications, as well as constraints
inherent to the conducted experiments along with their subsequent evaluations.

6.1.1 Prior Knowledge

As I had studied the evaluation of the Shared Task provided by Saggion et al. (2022)
before I conducted my research, I could have derived clues that were unavailable to the
other participating systems at the time of the Shared Task.

One of the reasons to choose RoBERTa as one of my models for the SG step was
supported by its impressive performances on the TSAR-2022 Shared Task for the En-
glish language. Furthermore, I may have been influenced to design my models by my
knowledge about GMU-WLV’s eighth ranking on the Shared Task. This team had
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achieved this rank primarily by leveraging LSBert’s contextual property, without the
use of further SS or SR steps. This property entailed feeding an MLM with both the
sentence containing the masked complex word and the original sentence in which the
complex word had not been masked. Moreover, regarding BERTScore’s contextualized
embeddings, it was RCML, initially ranked sixth and seventh on the Shared Task, who
had used this method, triggering my experiments with BERTScore during the SS step.

Nevertheless, although the initial design of my systems was inspired by informa-
tion about the results of the Shared Task, they are unique in their combined use of a
RoBERTa model, the additional context of the original sentence including the complex
word, and the BERTScore metric. Furthermore, to the best of my knowledge, imple-
menting shared hypernyms during the SS step, as well as hypernym-hyponym relations
in the SR step, has not been applied earlier.

Furthermore, I conducted additional experiments as a post-evaluation. As explained
in section 5.5, this process might result in a possible overfit on the test set, since
these experiments were based on (knowledge about) the top-performing model on that
dataset, risking that generalization to unseen data can be problematic. I was well-aware
of this drawback, as I was striving for a better understanding of model performance.
My subsequent objective was to contribute to a broader discourse on the potential of
these experiments to foster enhanced simplification results in future research.

6.1.2 Multi-Word Simplifications

Most MLMs, such as the RoBERTa model that I had used, are by their design not able
to generate simplifications of more than one word. However, annotators were allowed
to submit multi-word simplifications for this Shared Task. This is illustrated by the
example in the Annotation Guidelines of the complex word Iranian and the allowed
substitute from Iran, which section 3.2 highlighted. To understand the extent to which
multi-word annotations impacted this Shared Task, I calculated the number of annota-
tions in the test set that consist of more than one word. Of the approximately 10,000
annotations, roughly 300 of them concern more than one word, pertaining to 3% of
all annotations. Although this number may only marginally impact the results on this
particular Shared Task, if systems are capable of generating multi-word expressions as
alternatives for a complex word, it can enhance their real-world applicability, especially
when considering languages that use many words to express one concept. Newer mod-
els, like those based on the GPT architecture, are equipped to generate multi-word
expressions, as UniHD’s (Aumiller and Gertz, 2022) research shows. However, the
authors concluded that substitutes consisting of more than one word were sometimes
unnecessarily chosen over one-word alternatives.

6.1.3 Experimentation and Evaluation

In my endeavors to extensively explore a variety of methods to perform the generation,
selection, and ranking of substitutes, I have overlooked or underestimated certain as-
pects that could have had potential impacts on the outcomes of my experimentation.
These aspects range from unexplored potentials of utilized resources, to constraints in
the applied methodology, and the choice of assessment metrics.

After conducting my experiments, I discovered that WordNet includes both lemma-
tized words and their unlemmatized versions, in case they convey a different meaning.
My discussion regarding the example in table 4.5 in section 4.3.1 supports the notion
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that prioritizing words in the form in which they originally appear, if available in Word-
Net, can lead to more accurate semantic substitutes. My oversight in not fully utilizing
WordNet might have influenced the final results. I suggest investigating whether, if
a word in its original unlemmatized form is found in WordNet, its lemmatized form
should additionally be included to maximize synset coverage. Each synset represents a
unique sense, and not every sense might align well with the intended simplification.

Furthermore, I used the small trial set as a means of determining which models to
advance to final test set evaluation. Prior to performing my research, I had realized
that the size of the trial set could pose a possible obstacle, which had prompted me
to incorporate multiple metrics into one accumulated score, enabling a more holistic
model evaluation. Despite these adjustments, the differences in results between the
trial and test sets, as presented in section 5.1, suggest that I may have underestimated
the trial set’s representational capacity for test set outcomes. In addition to using
the trial set, alternatives exist for deciding which models to transition to the test
set. An alternate strategy could entail the random selection of a number of complex
words and their substitutes produced by my models — based on the test set file but
without the annotated gold labels — followed by human evaluation of the quality of
these substitutes. This approach, although inherently subjective, could at least unveil
proposed substitutes that would definitely not be applicable. These insights could lead
to a more comprehensive understanding in how to improve a model, before evaluating
it on the gold labels of the test set. In this context, however, it should be noted that
the systematic modular approach of my methodology resulted in a model architecture
that obtained a fifth place in the TSAR-2022 Shared Task on Multilingual Lexical
Simplification, illustrating the relative effectiveness and competitive standing of this
approach in relation to the submitted models of the other participants.

Lastly, my choice of evaluation metrics was based on the ACC@1 metric, which
measures whether the highest-ranked predicted substitute is present in the list with
gold labels. Although this was also the prime sorting method used by the organizers
of the Shared Task to which I conformed my evaluations on the test set, it is impor-
tant to realize that, in hindsight, this metric does not seem to effectively measure the
effectiveness of a Lexical Simplification model. I will discuss the significant constraints
associated with using ACC@1 as a primary evaluation metric in section 6.5.

6.2 Similarity vs. Simplicity

Throughout the course of this study, I found myself thinking about the precise im-
plications of ‘simpler’ within the context of the TSAR-2022 Shared Task on Lexical
Simplification. This was due to a combination of factors. First, the lack of an explicit
definition of ‘easier to understand’ and ’simpler’ in the Shared Task’s main papers (Sta-
jner et al., 2022; Saggion et al., 2022) and no mentions of the target audience, which
I discussed in the opening section of chapter 3. Second, comparable ambiguities in
the Shared Task’s Annotation Guidelines, elaborated in section 3.2. Third, my initial
observations of the annotated trial set, discussed in section 3.3, later supported by
my experiments on the trial set, covered in section 4.4.3. The latter section showed
that several substitutes were not simpler than the complex word they had intended to
simplify, based on their respective CEFR levels.

As these elements raised questions about the relationship between similarity and
simplicity in this particular Shared Task, I purposefully evaluated three models on
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the test set in which I had not incorporated distinct properties to rank substitutes on
their respective simplicity. As remarked in sections 5.1 and 5.2, the relevance of my
resasoning was affirmed by the fact that my best-performing model on the test set had
not used a separate simplicity ranking method. It even outperformed TSAR-LSBert
that was specifically designed for lexical simplification. Apparently, even in the absence
of explicit steps to prioritize ‘simpler’ substitutes, a model can still perform remarkably
well compared to other models on this Shared Task if it effectively captures semantic
similarity without specific measures to rank on simplicity. These results imply a need
for further research about what ‘simple’ means in the context of Lexical Simplification.

However, when considering the role of MLMs and BERTScore in the Lexical Simpli-
fication process, it should be noted that these models implicitly encapsulate simplicity
information. MLMs, for example, determine the order of substitutes based on their
contextualized likelihood of appearing in the masked position within the sentence. The
words with the highest likelihood of fitting the sentence context, as per the model’s
learned language patterns, are placed at the top. As more common words appear more
frequently, and frequency determines the perception of word complexity to a large
extent, discussed in section 2.1, the resulting lists often favor simpler words.

In addition to the above observations from a technical perspective, there are various
subjective aspects associated with simplicity. It is important to remember that sim-
plification requirements may vary based on the target audience, as highlighted in the
introductory section of the first chapter. Designing lexical simplification systems that
can effectively cater to the diverse requirements of various target audiences requires a
balance between semantic similarity and the subjective aspects of simplicity required
by these audiences. The significant role of annotated data should not be overlooked
in that process. Since annotations serve as the foundation for system evaluations, an-
notations of poor quality may lead to a misinterpretation of a system’s performance.
Therefore, it is essential to create clear and unambiguous annotation guidelines prior
to the annotation task. As remarked in section 3.2, these should define terms such as
‘simpler’ and ‘easier to read,’ as well as the specific target audience that should benefit
from the Lexical Simplification task. Participants constructing Lexical Simplification
systems will also benefit from having this information in advance, as it guides them to
design systems that effectively meet the task’s specific simplification requirements.

In the subsequent section, I will revisit the significance of understanding the target
audience and additionally propose potential subdivision measures.

6.3 Hypernym - Hyponym Relations

The promising results of my post-evaluation experiments, described in section 5.5,
revealed an interesting contribution to the Lexical Simplification domain. To the best
of my knowledge, the ranking of simplification substitutes based on whether they serve
as a WordNet hypernym of the (hyponymic) complex word has not been researched
before. As the use of these vertical semantic relationships resulted in the highest
performing MLM across all MLMs submitted for the Shared Task, I propose additional
studies into WordNet’s capabilities to enhance future Lexical Simplification models.

Hypernyms refer to broad categories, thereby covering a wide semantic space. Due
to their broader and more universal reach, they may be perceived as simpler, while
still preserving the essence of the original complex word. However, the concept of
attaining simplicity by using hypernyms is not uniformly applicable across all levels of
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the hierarchy. Hypernyms at the highest levels tend to be abstract or represent general
concepts. Despite their broad reach, they may be perceived as too vague to clearly
convey the intended meaning. It is crucial to carefully balance the use of hypernyms in
the Lexical Simplification process, between generalization on the one hand, and keeping
enough specificity to accurately convey the meaning of a word on the other.

As highlighted in the opening chapter, human perception of simplicity can be influ-
enced by several factors. Recall that these may include a person’s language proficiency,
native language, and any cognitive or reading impairments that they have. Additional
factors, such as educational level, age, cultural influences and domain-specific knowl-
edge should also be considered. Depending on these factors, a term might be simplified
differently. For example, a person with specific background knowledge may find a spe-
cialized term (a hyponym) simple, whereas another person lacking that knowledge may
find a more general term (a hypernym) simpler. To illustrate this, a technical term in
the medical domain like arrhythmia, i.e., “an abnormal rate of muscle contractions in
the heart”1, could be simplified into the more general term heart disease — a direct
hypernym — for a general audience, regardless of their English language proficiency
level. However, an audience with medical knowledge might perceive the technical term
arrhythmia as simple enough, yet even crucial for its specific meaning, since this term
would be more effective in accurately conveying information about the specific type of
heart disease. Consequently, choosing the appropriate level of generality when simplify-
ing text heavily relies on the audience’s knowledge and background. Deciding whether
to replace a term with a more general hypernym depends on how familiar and under-
standable that hypernym is expected to be for the specific audience. This requires
understanding the intended audience before starting a Lexical Simplification task.

Fine-tuning MLMs on WordNet’s semantic structure including hypernym-hyponym
relations could enhance a model’s deeper understanding of language semantics, poten-
tially leading to improved substitute generation, also in case of new or rare words. A
fine-tuning task could also be performed on the simplification needs of specific audi-
ences as discussed above. However, the process of fine-tuning for specific audiences can
be quite complex due to the varied levels of knowledge and understanding among indi-
viduals. It would require dedicated datasets that reflect the specific simplification needs
of these audiences to appropriately classify them. This goal may be extremely difficult
to accomplish, if not unachievable, since individuals typically don’t conform to just one
category. More research in this area is recommended to address these challenges.

Extending the discussion of target audience segmentation to other categorization
types, I propose an exploration of how categorization based on Basic Level Categories
(Rosch et al., 1976), introduced in section 4.4.1, can contribute to Lexical Simplification.
Mills et al. (2018), for instance, developed a system aimed at recognizing Basic Level
Categories within WordNet. This work demonstrates that identifying these categories
in WordNet is feasible. By integrating this categorization into Lexical Simplification
frameworks, models could generate substitutes that not only align with word semantics
but also reflect the cognitive categorization processes that people employ in their use
of language. This might make the generated substitutes more intuitive and easier
to understand. Such research could potentially be aligned with a categorization on
target audience, examining, for example, how Basic Level Categories in WordNet might
influence the perception of simplicity among varied audience subgroups.

1http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=

&o4=&s=arrhythmia&i=2&h=1000#c, last accessed on 2023-08-14.

 http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=arrhythmia&i=2&h=1000#c
 http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=arrhythmia&i=2&h=1000#c
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6.4 CEFR Model Performance

The model that had implemented CEFR levels to rank substitutes on simplicity, with
model name RB BSrl CEFR-all, had obtained inferior results on the test set, as sections
5.1 and 5.2 indicated. This model had used the collective CEFR database in which all
used CEFR datasets had been integrated, discussed in section 4.4.2.

To some extent, the insufficient effectiveness of this model might be attributed to
my observation in section 6.2 that semantic similarity seemed to have played a more
significant role for the gold labels provided with this Shared Task than their notions of
simplicity. Further elements that could have contributed to the inferior performance
of this model are discussed in the subsequent sections. Note that the CEFR levels
referenced in the following sections are sourced from the collective CEFR database in
which all used CEFR datasets had been integrated, introduced in section 4.4.2.

6.4.1 Measures of Variation

To obtain insights about how simplicity in terms of CEFR levels would vary within and
across complex words, gold labels, and predicted substitutes2, I performed a number
of statistical analyses regarding the variation in CEFR levels within and across these
distributions. After assigning CEFR levels to the lemmatized words3 in these distri-
butions, I determined the mean (average), median, and standard deviation for each of
these three distributions. The median — the middle value when sorted — can coun-
teract the effect of outliers, as this measure is not affected by extremely high or low
values. The standard deviation reveals how close datapoints cluster around the mean.
In a normal distribution4, approximately 68% of the data lies within one standard de-
viation on either side of the mean, 95% is situated within two standard deviations, and
99.7% is contained within three standard deviations. In addition, I measured kurtosis,
or ‘tailedness’, which signifies the extent of outliers. I specifically assessed the excess
kurtosis, where positive values indicate more extreme values, and negative values mean
less of these values than in a normal distribution. Therefore, a ‘perfect’ normal distri-
bution has an excess kurtosis of 0, also called mesokurtic. Values below -1 and above
1 typically indicate a significant deviation from a normal distribution. The results of
my analyses are shown in table 6.1.

Mean Median Standard Deviation Excess Kurtosis
Complex Word 4.32 4.0 0.72 0.42
Gold Label 3.57 3.63 0.91 -0.12
Prediction 3.66 3.73 0.86 0.20

Table 6.1: measures of variation (test set), for complex words, gold labels, and predic-
tions from model RB BSrl CEFR-all; numeric values mapped to CEFR levels (1: A1,
2: A2, 3: B1, 4: B2, 5: C1, 6: C2).

The means of these three distributions show that the average complexity of words
is higher for complex words than for the gold and predicted labels. For a Lexical
Simplification task, this is an expected result, although the CEFR value differences

2for the model using CEFR levels in the SR step, named RB BSrl CEFR-all.
3for those words to which a CEFR level could be attributed, which will be reviewed in section 6.4.3.
4a well-known concept in statistics, visualized by a bell-shaped curve, below which datapoints are

situated.
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between the Complex Word distribution on the one hand, and the Gold Label and
Prediction distributions on the other, are considerably small. When mapped to CEFR
levels, the Complex Word distribution average would correspond to a B2-C1 level,
although closer to B2, whereas the Gold Label and Prediction distribution averages
would each align with a B1-B2 level. The medians are quite close to their respective
means, suggesting that each average represents the middle value of its distribution,
especially for the gold and predicted labels. Regarding the spread of the CEFR levels
around the mean, about 95% of the values in the Complex Word distribution falls
within the interval of 2.88 to 5.76, relating to a range from nearly B1 to nearly C2.
For the Gold Label distribution, the comparable range is from 1.75 (nearly A2) to 5.39
(between C1 and C2). This is quite similar to the range for the Prediction data, that
ranges from 1.94 (nearly A2) to 5.46 (between C1 and C2).

These insights show that the differences in CEFR levels between the complex words
on the one hand, and the gold labels and predicted substitutes on the other, are con-
siderably small for a task designed for providing simpler words. For the complex word
and prediction datasets, the excess kurtosis is somewhat above 0, suggesting that the
distributions have marginally heavier tails than a normal distribution. This means
that extreme values are a little more frequent. The gold label dataset shows an excess
kurtosis slightly below 0, with extreme values a little less frequent. However, all these
values comfortably lie within the discussed range of -1 to 1, and should thus not be
considered significant deviations from a normal distribution.

In conclusion, the results suggest that the distributions are nearly normal, and that
both the gold labels and the predicted substitutes are, overall, indeed simpler — as far
as CEFR levels — than the complex word, although to a relatively small extent.

6.4.2 Gold Label Ranking

The measures of variation discussed in the preceding section provided information that
the Gold Label and Prediction distributions were quite similar in terms of CEFR levels,
and both distributions showed substitutes that generally had lower CEFR levels than
the Complex Word distribution. Therefore, this statistical analysis had not given any
indication for the insufficient effectiveness of the RB BSrl CEFR-all model.

Although this particular analysis was required as a first step, to confirm that the
gold and the predicted labels had consistent CEFR level distributions across both
datasets, it does not provide information about the rankings of the individual labels
for each instance in the dataset. Since the performance metrics for the Shared Task,
explained in section 3.6, use rankings to determine the effectiveness of a model, I delved
into the ranking process.

Whereas the gold labels were ranked on frequencies, the predicted substitutes were
ranked on CEFR levels. Therefore, I examined how the gold label sequences based on
their frequencies would align with their CEFR levels. This investigation could provide
valuable insights into the degree of correspondence between the ranking of gold labels on
(descending) frequency and their ranking on (ascending) CEFR levels. To enable such
comparison, my inspection considered instances for which a minimum of two unique
gold labels were represented within the CEFR database, resulting in a reduction of the
initial 373 instances to 223.

Table 6.2 provides a comparison between the first and the last gold label that had
been assigned CEFR levels. The distribution reveals a nearly balanced presence of
instances for which the first CEFR-labeled gold label had either a higher (48,0 %) or a
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Instances % (of 223 instances)
first gold label has lower CEFR than the last 110 49,3%
first gold label has higher CEFR than the last 107 48,0%
first gold label has equal CEFR level to the last 6 2,7%
Totals 223 100,0%

Table 6.2: Gold labels (test set), assessed on CEFR levels, for instances that have least
two unique gold labels with a CEFR level assigned.

lower (49,3%) CEFR level than the last CEFR-labeled gold label. The data seems to
indicate that there is no systematic link between the CEFR levels of the most and least
frequently suggested gold labels. Given that the ACC@1 metric evaluates the prediction
accuracy of the most frequently suggested gold label, this lack of relationship seems
to be directly responsible for the inferior performance of the model that consistently
places substitutes with the lowest CEFR levels at the top of its ranking lists. It is
important to note, however, that not all gold labels could be assigned a CEFR level,
given their absence from the database, discussed earlier in this section. On the contrary,
the ACC@1 metric considers the most frequently suggested gold labels regardless of
whether they have a CEFR level assigned. Consequently, while there appears to be an
impact on the model’s performance on the ACC@1 metric due to the above-mentioned
lack of relationship, a causal association should not be inferred: the most frequently
suggested gold label is not necessarily the first CEFR-labeled gold label.

Table 6.3 provides information about a more detailed ordering of the gold labels on
CEFR levels.

Instances % (of 223 instances)
first gold label has lowest CEFR level of all 43 19,3%
all gold labels have ascending CEFR levels 11 2,9%

Table 6.3: Gold labels (test set), assessed on CEFR levels, for instances that have least
two unique gold labels with a CEFR level assigned.

A mere 19.3% of the instances show their top-ranked CEFR-labeled gold label as
the lowest among all its CEFR-labeled gold labels, implying that the vast majority
of instances do not adhere to an ordering framework based on ascending CEFR levels.
Furthermore, in only 2.9% of the instances do all CEFR-labeled gold labels align with a
sequential order of ascending5 CEFR levels. This observation, in line with the findings
from table 6.2, suggests a lack of systematic relationship between the frequency-based
(descending) ordering of gold labels and an order on (ascending) CEFR levels. Nonethe-
less, this interpretation shares the same constraints as mentioned when discussing the
data from table 6.2, i.e., the issues related to CEFR level coverage.

In the following section, I reflect on the extent of these constraints and propose
ways to overcome them.

6.4.3 CEFR Level Coverage

One aspect that might have imposed additional constraints on the effectiveness of the
RB BSrl CEFR-all model may be the fact that the majority of the provided substi-
tutes — i.e., six out of ten, on average — did not find representation within the CEFR

5or equivalent, for those subsequent gold labels with equal CEFR values.
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database. As substitutes labeled with CEFR levels were prioritized in the ranking pro-
cess, the remaining substitutes were positioned in the lower ranks. This methodology
may particularly distort simplification rankings for a complex word for which only one
(or very few) simplifications are represented within the CEFR database. The model will
invariably place this substitute at the highest rank. If this substitute would accidentally
carry a relatively high CEFR level, it might either exhibit a higher complexity level
than a valid substitute not found in the CEFR database, or even exceed the complexity
of the original complex word.

These issues could be mitigated by extending the CEFR-labeled words in the
database. For example, CEFR levels for words may be derived from high-quality,
CEFR-graded language resources such as EFCAMDAT (Davies, 2009; Shatz, 2020).
The weighted averages of word frequencies distributed across the CEFR-graded texts
could be computed, comparable to how I executed this for the EFLLEX database
discussed in section 4.4.2. Furthermore, fine-tuning an MLM on these resources —
considering the words in their individual contexts — may yield the advantages similar
to those discussed for WordNet’s semantic structure in section 6.3. The enhanced lin-
guistic comprehension of the fine-tuned model might improve the generation of valid
substitutes, without requiring additional reference to a CEFR-labeled dataset. This
capability could be beneficial for assigning CEFR levels to new or rare words.

Regarding the risk where the complexity level of the complex word would be ex-
ceeded by a substitute, this situation could be resolved by exclusively considering sub-
stitutes that hold CEFR levels lower than that of the complex word. Crucially, this
requires the presence of the complex word in the CEFR database. For this purpose,
I extracted the number of (lemmatized) complex words in the test set that were not
listed in the CEFR database. Out of the 373 complex words, 253 of them were not
listed, corresponding to a total of 68% of the complex words. I inspected these complex
words, which seemed highly infrequent words with a high level of complexity, such as
‘detonating’, ‘adamantly’, ‘insurgents’, ‘enactment’, ‘impugned’, and numerous others.
This observation illustrates why such complex words may often not be listed in CEFR-
labeled vocabularies. The purpose of these language resources is to provide learners
with the most useful words to learn at different proficiency levels, often being high-
frequency words that can be used in different contexts. Consequently, I advocate for
assigning complex words not listed in CEFR-labeled resources a default high CEFR
level. This would enable considering simplifications beneath that level, in alignment
with my proposition presented at the start of this paragraph.

6.5 Beyond ACC@1

As elaborated in section 3.9, the Shared Task results were ranked according to the
ACC@1 metric, evaluating whether the highest-ranked predicted substitute was found
within the gold label list. Consequently, I had also evaluated my experiments on this
measure. In hindsight however, I identified substantial limitations inherent to using
ACC@1 as the primary metric for ranking system outcomes.

I had pointed out in section 3.1 that the gold labels were composed of 25 anno-
tations per complex word. This factually means that if a single annotator among the
25 had proposed a unique simplification, not shared by any other of the 25 annota-
tors, a system predicting the same simplification as its best candidate would still be
deemed successful due to the design of the ACC@1 metric. Individual variability in
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annotator judgments might thus highly influence ACC@1 metric results, potentially
rewarding system outputs that align with outlier annotations rather than with simpli-
fications achieved by consensus among annotators. Therefore, this scenario challenges
the credibility of ACC@1 as an unbiased performance metric. Regarding this particular
Shared Task, as pinpointed in sections 3.2 and 3.3, the execution of the annotation task
encompassed several elements that might have intensified these personal biases. This
additionally strengthens the unsuitability of a metric influenced by individual annota-
tion variations as the primary evaluation measure in this particular Shared Task.

Furthermore, there is an additional risk involved. The ACC@1 metric only focuses
on the top-ranked prediction, overlooking potentially valuable simplifications that are
not ranked highest. This observation may have hindered a true assessment of each
system’s capability to generate a range of valid substitutes. The different perceptions
people have of the meaning of the word ‘simple’, introduced in the opening section of the
first chapter, underscore the importance of evaluating Lexical Simplification Systems
on their ability to provide several simplification alternatives.

These observations put UNiHD’s exceptional ACC@1 score (0.8096) into a new
perspective. In approximately 81% of the instances, its top-ranked substitutes cor-
responded with at least one of the annotations in the list of 25, which could as well
be just a single one. When considering the ACC@1top1 metric, a stricter measure
which assesses whether the top-ranked substitute equals the most frequently suggested
annotation, UniHD’s system performance dropped to 0.4289. This indicates that in
about 57% of the cases, it failed to align its top-ranked substitute with the major-
ity vote of the annotators. Since UniHD’s inferior score on the ACC@1top@1 metric
was still the highest of all 33 submitted systems, it is clear that the goal of aligning
the top-ranked substitute with the most frequently suggested annotation presented a
substantial challenge in this particular Shared Task.

In light of the new perspectives my research provides regarding the Shared Task’s
contributions to Lexical Simplification, I advocate for more carefulness in determining
appropriate metrics for future tasks. A more rigorous metric than ACC@1 should be
the prime metric, to challenge systems to strive for alignment with the majority of
annotations, while also generating a variety of suitable simplifications to accommodate
the fact that there can be several ‘best’ simplifications for a comple word.

Consequently, I suggest a greater emphasis on the above-mentioned ACC@1@top1
metric, which can serve as a general measure of a system’s capability to align its
top-ranked prediction with the majority vote of the annotators, thereby minimizing
the influence of individual biases. However, since the ACC@1@top1 metric assesses
substitutes only against the most frequent annotation, it does not evaluate a system’s
ability to generate a range of valid substitutes. Therefore, I suggest complementing
this metric with a novel measure that assesses a system’s ability to predict multiple
valid simplifications, but that minimizes the influence of individual annotator bias.
The proposed metric, MAP@X@topY, matches its top X predictions against the top Y
most commonly proposed annotations. Only instances where all top X predictions are
present in the top Y most frequent annotations will be evaluated as successful in this
measure. The values of X and Y should be derived from the precise objective of the
Lexical Simplification task. This objective should be grounded on the requirements of
the intended target audience for whom the task is designed. These requirements should
be reflected in clear Annotation Guidelines and subsequently in an adequate number
of annotations per complex word.
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Given the preceding discourse, I propose a discontinuation of the use of not only
ACC@1 (=Potential@1 and MAP@1, discussed in section 3.6), but also Potential@3,
Potential@5, and Potential@10 in upcoming Lexical Simplification tasks. These Poten-
tial metrics, being less strict than the — already not strict — ACC@1 metric, rely on
the proportion of instances where a minimum of one of the top-K ranked predictions
appears in the list with gold labels. With K =5, for example, the Potential metric
(Potential@5) calculates the proportion of instances that have minimally one of the
five highest-ranked predictions appearing in the gold label list. Just like ACC@1, the
Potential metrics are influenced by individual annotation variations. Even more than
for ACC@1, these metrics offer very limited insights into a system’s effectiveness to sim-
plify words. In addition, I suggest discontinuing the MAP@3, MAP@5, and MAP@10
metrics. Although these metrics are more strict for predicted substitutes — as the
MAP@K metric evaluates the proportion of instances for which all top-K ranked pre-
dictions are listed as annotations — these measures are still influenced by individual
annotation variations.

Summarizing, I propose using only two primary evaluation metrics for future Lexical
Simplification tasks: ACC@1@top1, measuring a system’s capability to align its top-
ranked prediction with the most frequently suggested annotation, and MAP@X@topY,
a newly suggested metric evaluating a system’s capability to predict multiple valid
substitutes with a minimized influence of individual annotator bias.

Finally, I would advise organizers of future Lexical Simplification tasks to communi-
cate the primary metric(s) intended for the ranking of results prior to the development
of the simplification systems. Concurrently, a clear definition of the target audience and
its perception of ‘simpler’ should be provided, as advocated in section 6.2. Providing
early insights into a task’s main objectives helps participants to design their systems
accordingly.

6.6 EDIA’s Readability Analyzer Papyrus

In the opening chapter, I highlighted the primary aim of my thesis project, i.e., to
contribute to the ongoing quest for enhancing text comprehension. In the present
section, I seek to translate this objective into practical solutions by discussing how the
discoveries from my study may advance the capabilities of EDIA’s readability analyzer
Papyrus, introduced in section 1.2. Next to proposing methodologies for the English
language, I suggest how these may be generalized towards the Dutch language. The
latter proposition is intended to strengthen EDIA’s current initiative to assist the Dutch
government in helping citizens with language deficiencies.

6.6.1 System Design Recommendations for English

As elaborated in section 1.2, EDIA’s readability analyzer Papyrus could potentially be
improved on the way it identifies semantically similar alternatives for complex words.
Based on my findings, I propose strategies which could potentially enhance Papyrus’
capabilities in this domain.

Considering the architecture of Papyrus, grounded on BERT base (cased) variant6,
one significant enhancement for the Substitute Generation (SG) step may involve sup-
plementing this model with the context of the original sentence including the complex

6https://huggingface.co/bert-base-cased, last accessed on 2023-08-14.

https://huggingface.co/bert-base-cased
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word, in conjunction with the sentence in which the complex word is masked. My
experiments showed that providing my models with this additional contextual clue re-
sulted in improved scores on the Shared Task, as highlighted in table 4.2 in section
4.1 for the trial set and in table 5.4 in section 5.4 for the test set. The advantage of
this approach is further visualized in the example provided in table 4.1 in section 4.1.
In the absence of the complex word situated within its context, the model yields a
range of alternatives that align with the context of the sentence, however unaware of
the complex word’s meaning. Conversely, upon introducing the model to the complex
word in its specific context, the model is informed to specifically generate words that
could accurately reflect the meaning of the complex word within that context.

Furthermore, considering the superior performance of RoBERTa’s base variant
in my experiments, EDIA could consider replacing their BERT base variant with
RoBERTa’s base variant. However, this modification may not prove as substantial
as the above-mentioned contextual enhancement.

Concerning the SS step, Papyrus uses word embeddings sourced from SpaCy7, a
Python library equipped with a variety of features for NLP tasks. The word embed-
dings generated by SpaCy are not contextualized, signifying that each word is mapped
to one single numerical vector that represents the meaning of that word across all
contexts. As explained in section 2.2, this approach encounters considerable limita-
tions when dealing with words that have multiple meanings — polysemous words —
which are inherently context-dependent. Consequently, I advise replacing Papyrus’
non-contextualized embeddings by contextualized embeddings. Contextualized embed-
dings, unlike their non-contextualized counterparts, can take the surroundings of words
into account, allowing to capture polysemous words in their context. As outlined in sec-
tion 4.3.3, BERTScore employs contextualized embeddings. The implementation of the
BERTScore mechanism in my top-performing model prior to post-evaluation resulted
in notably higher scores on the Shared Task, visualized by the model deconstruction
table 5.4 in section 5.4.

Papyrus performs the SR step by assigning CEFR levels to words, although it does
not rank the words based on these levels. In Papyrus, a target CEFR level can be set,
and the model returns all substitutes that fall below that target level. As a result, this
process primarily functions as a filtration mechanism rather than as a ranking method.
Additionally, substitutes that are not present in EDIA’s CEFR database are included
in the model’s output. To alleviate the issue of coverage, EDIA could consider my sug-
gestion in section 6.4.3 that advocates increasing the number of CEFR-labeled words.
To realize this objective, additional databases could be leveraged. For instance, CEFR
levels for words could be inferred from CEFR graded linguistic resources. Fine-tuning
the BERT model on which Papyrus is based on such resources that encompass words
within their specific contexts may improve the generation of substitutes without the
necessity of directly referencing the CEFR dataset. This strategy could be instrumental
in assigning CEFR levels to new or infrequently used words. However, some of these
graded resources, including the EFCAMDAT database mentioned in section 6.4.3, may
not be used for commercial purposes. This restriction also applies to the majority of
the CEFR-labeled databases that I incorporated in my models. These resources are
exclusively intended for academic use and will not be shared with EDIA.

7https://spacy.io/, last accessed on 2023-08-14.

https://spacy.io/
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6.6.2 Generalization to Dutch

To strengthen EDIA’s current initiative to assist the Dutch government in helping
citizens with language deficiencies, I propose a set of methodologies that may enable
generalization of my model design from English to Dutch. I conclude this section by
discussing challenges with regard to the implementation in this language.

System Design Recommendations

For the Dutch language, Papyrus uses a multilingual BERT8 model for the execution
of the SG step. EDIA could consider comparing the performing of this model with
monolingual MLMs adapted to the Dutch language such as BERTje. This model out-
performed its multilingual counterpart on a variety of Dutch NLP tasks (de Vries et al.,
2019). Subsequently, BERT’s successor RobBERT — a RoBERTa-based pre-trained
Dutch MLM —outperformed BERTje, especially when fine-tuned on small datasets
(Delobelle et al., 2020). Similar to the methodology recommended for English, I advise
complementing the chosen model with the context of the original unmasked sentence.

For the SS step, BERTScore’s contextualized embeddings could be a valid choice,
as suggested for English. Its technical compatibility extends to a range of languages9

including Dutch. As a potential alternative or as a complementary tool to BERTscore,
EDIA could consider exploring Open Dutch WordNet10 (Postma et al., 2016), a Dutch
lexical semantic database modelled on the WordNet structure. An investigation into
the usecase of shared synonyms and hypernyms for the Dutch language, similar to my
explorations in section 4.3.1 and 4.3.2 for English, might yield benefits for selecting
semantically similar substitutes during the SS step.

Regarding the SR step, Papyrus does not specifically rank its Dutch substitutes on
CEFR level, equal to its English version. It may be worthwile to address existing CEFR
level coverage issues by investigating the existence of CEFR-graded language resources
in the Dutch language that contain words in their specific contexts, and fine-tuning the
model on such resources, as discussed for English.

Implementation Challenges

Implementing Dutch Lexical Simplification systems presents distinct challenges that
appear in most, if not all, NLP tasks that pertain to this language.

One potential limitation involves the reduced effectiveness of Dutch MLMs when
contrasted with their English equivalents. This can largely be ascribed to the scarce
availability of training data in Dutch. With fewer datasets to learn from, Dutch NLP
models may fail in matching the proficiency of their English counterparts. If there is
less data available, the model has less opportunities to learn the language structure,
vocabulary, and its nuances. This impacts its usefulness in the real world. Moreover,
the lack of Dutch datasets may also negatively influence the progression of Dutch NLP
tasks that rely on these datasets for training and evaluation.

The language differences between Dutch and English also form an issue. A consid-
erable challenge is the morphological divergence between English and Dutch. English
is generally considered an analytic language, as it uses many separate words and rel-
atively few inflections. Dutch is more synthetic, applying more inflections to indicate

8https://huggingface.co/bert-base-multilingual-cased, last accessed on 2023-08-14.
9https://huggingface.co/spaces/evaluate-metric/bertscore, last accessed on 2023-08-14.

10https://github.com/cltl/OpenDutchWordnet, last accessed on 2023-08-14.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/spaces/evaluate-metric/bertscore
https://github.com/cltl/OpenDutchWordnet
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grammatical relations or meaning differences between words. In the paragraphs below,
I discuss a selection of these morphological differences.

The first morphological divergence also influences syntactic structures. The Dutch
language uses a broad range of separable verbs, composed of a base form and a prefix.
This prefix can be disassociated from the base form and relocated within the sentence,
depending on its grammatical structure and occasional nuances in meaning. An illus-
trative example is the Dutch verb ‘aankomen’, corresponding to ‘arrive’ in English, with
‘komen’ as the base form and ‘aan’ as the prefix. In Dutch, if the complex word would
be ‘arriveert’ (equivalent to ‘arrives’ in English), a highly similar and simpler substi-
tute would be ‘komt aan’. However, in Dutch syntax, adverbials may be positioned
between these two verb forms. The English sentence “He [arrives] in Amsterdam” can
be translated into Dutch as either “Hij [komt] in Amsterdam [aan]” or “Hij [komt]
[aan] in Amsterdam”. The two sentences offer subtle semantic distinctions. Where
the first puts more emphasis on the location (‘in Amsterdam’), the second leans more
towards emphasizing the action of arriving (‘komt aan’). The potential variability in
the placement of the prefix may present challenges for correctly identifying the combi-
nation of the base form and the detached prefix together as one valid substitute. Only
performing lexical simplification of verbs without knowledge of the Dutch grammatical
structure will, most likely, generate inferior results.

Another characteristic of the Dutch morphology is the tendency to form compound
words. For example, Dutch compound words can be assembled from verbs, such as
‘leesbril’ (reading glasses), from ‘lees’ (read) and ‘bril’ (glasses). Furthermore, subse-
quent nouns are by default consolidated into a single word, with adjectives appended.
An example is ‘kortetermijngeheugen’, translating to ‘short term memory’ in English,
formed by combining ‘korte’ (short), ‘termijn’ (term), and ‘geheugen’ (memory). While
the majority of Dutch compound words typically comprise two or three constituents,
the syntax governing their composition permits the formation of atypical words con-
structed from numerous parts. These seemingly infinite constructions could pose a
difficulty when training a computational model, especially considering that Dutch - as
previously mentioned - is relatively resource-poor compared to English.

A different issue is the distinction in the Dutch language between the gender of
nouns associated with definite articles, a characteristic absent in English. The Dutch
definite articles ‘de’ and ‘het’ both translate to the definite article ‘the’ in English.
While ‘de’ is used for masculine and feminine nouns, ‘het’ is assigned to neutral nouns.
Within the scope of Dutch Lexical Simplification, valid substitutes may not necessarily
have the same gender as the complex word. Therefore, Dutch Lexical Simplification
systems should be capable of changing the definite article associated with the complex
word into the definite article of the substitute. This criterion should also apply to the
annotations upon which the evaluations of these systems are based. An example is
the Dutch word ‘discrepantie’, derived from the Latin word ‘discrepantia’, also used
in English (discrepancy). Simplifying this female noun into the neutral noun ‘verschil’
(in English: ‘difference’, its direct hypernym11 in English WordNet) should involve the
possibility to change a definite article from ‘de’ to ‘het’ along with ‘verschil’.

As denoted earlier in this section, the above Dutch language characteristics are
limited to a selection. Research on the Dutch morphology in relation to Lexical Sim-
plification may benefit the Dutch version of EDIA’s readability analyzer Papyrus.

11http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=

&o4=&s=difference&i=1&h=1000000000#c, last accessed on 2023-08-14.

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=difference&i=1&h=1000000000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=difference&i=1&h=1000000000#c


Chapter 7

Conclusions

This work explored various methodologies regarding English Lexical Simplification,
adhering to the requirements for the TSAR-2022 Shared Task on Multilingual Lexi-
cal Simplification. It focused on the consecutive stages of generating, selecting, and
ranking substitutes for given complex words. Throughout the course of these stages,
62 models based on the Masked Language Model (MLM) technology were initially de-
veloped. Five were evaluated on the test set, based on predefined criteria. They used
both the context of the original and the masked sentence, thereby generating more
semantically accurate substitutes. Two models outperformed TSAR-LSBert, a recent
benchmark. This was achieved with RoBERTa’s base variant for Substitute Generation
and BERTScore computations with RoBERTa’s large variant for Substitute Selection.
The model had no additional simplicity ranking method implemented, implying a need
for further studies about the meaning of ‘simplicity’ in this context.

Understanding how different reading audiences perceive simplicity is essential for
annotators and system designers in Lexical Simplification tasks. Carefully tailoring
their respective task instructions to audience needs is recommended. The instructions
for system designers should include the principal evaluation metric(s). For this purpose,
a new evaluation metric is suggested, evaluating systems on their capability to predict
multiple valid substitutes while minimizing individual annotator bias.

The inferior performance of a model using CEFR levels to rank its substitutes
might be caused by the lack of a systematic relationship between frequency-based and
CEFR-level-based gold label rankings. Future research is required to confirm this.

Post-evaluation experiments resulted in a notable performance boost with eight
newly tested models, three of which surpassed in their rankings only by two GPT-
based models. The models leveraged WordNet’s semantic structure to assess whether
substitutes served as hypernyms for the complex word, an innovative approach in Lex-
ical Simplification. The promising results underscore the potential of hybrid methods
that combine MLMs with supervised high-quality linguistic resources. Future work
could further harness WordNet, possibly in combination with Basic Level Categories.

This study’s findings were applied to potentially augment EDIA’s readability an-
alyzer Papyrus for English and Dutch, although the Dutch version may encounter
obstacles due to resource scarcity and the characteristics of the Dutch morphology.

As this thesis comes to a close, I revisit my principal objective: to aid the ongoing
pursuit of improving text comprehension. As every advancement in this field relies on
shared efforts, this study on Lexical Simplification will bring us closer to alignment with
the United Nations’ goal of enabling everyone to access and understand information.
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Appendix A

Annotation Guidelines

Figure A.1: Annotation Guidelines for English track of TSAR-2022 Shared Task on
Multilingual Lexical Simplification, taken from Stajner et al. (2022)
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