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Abstract

This thesis project, executed during an internship at the language data company TAUS,
focuses on evaluating the usefulness of synthetic data for domain adaptation in Neu-
ral Machine Translation. Synthetic data is generated using translation-based methods,
namely forward and back-translation, from the source and target sides of natural paral-
lel corpora that are approximating monolingual source and target-side data. Different
experiments are run based on English→Dutch parallel corpora in financial, pharma-
ceutical and e-commerce domains, using two models and two adaptation methods:
proprietary Amazon Translate and Active Custom Translation, and the open-source
OPUS-MT model (Tiedemann and Thottingal, 2020) and fine-tuning. The quality of
synthetic data is evaluated extrinsically, by evaluating the performance of NMT sys-
tems adapted using synthetic parallel corpora. In addition to the more traditional,
string-based automatic machine translation metrics BLEU and chrF, all experiments
are additionally evaluated using the pretrained, neural COMET metric (Rei et al.,
2020), which has shown higher correlation with human judgment in recent research
(Kocmi et al., 2021). Experiments indicate that including synthetic data obtained by
back-translation into TAUS Data-Enhanced Machine Translation pipeline should re-
sult in translation models that are better adapted to the domains of interest. Synthetic
data generation shows the most promise if used as a data augmentation technique in
lower-resource scenarios.

Keywords: Domain Adaptation for Neural Machine Translation, Synthetic Data Gen-
eration, Back-translation, COMET score, OPUS-MT
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Chapter 1

Introduction

Since their introduction in 2014, deep neural network-based machine translation models
have taken over both the academia and the industry. Occasionally, a company or
a research team even claims their system has obtained human parity (for an early
example, see Hassan et al. (2018), scrutinized by Toral et al. (2018)).

Even though these Neural Machine Translation (NMT) models trained on huge
amounts of data do perform exceedingly well when translating texts that are sufficiently
similar to the data they have been trained on, their performance can deteriorate quickly
when translating texts from domains that do not match their training data well (Koehn
and Knowles, 2017). In order to address this challenge, different domain adaptation
methods have been developed over the years (Chu and Wang, 2018; Saunders, 2021).
Still, a bottleneck for many approaches is the fact that, in many of the world’s language
pairs and domains, enough high-quality parallel data that could serve as training data
when adapting models to different domains of interest simply does not exist.

As one of the approaches to this low-resource problem, different ways of incor-
porating synthetic data have been proposed (Chu and Wang, 2018; Saunders, 2021).
Synthetic data generation methods allow for obtaining additional training examples,
without explicitly collecting and/or labelling new instances. In the field of Machine
Translation (MT), using synthetic data, and more specifically, synthetic data produced
by machine translation models, has a long tradition, and, as we shall see, has become
a de facto standard for training models in certain contexts. As synthetic data gener-
ation approaches gained popularity in recent years, powered in part by the successes
of Transformer-based language generation models, there is also renewed interest in re-
searching how synthetic data can be used in various other Natural Language Processing
(NLP) tasks, thus further fuelling the interest of researchers and companies in using
synthetic data in their NLP pipelines.

1.1 Motivation

The motivation for this project comes from the language data company TAUS1. Re-
cently, TAUS has introduced a new service called DEMT2, which stands for Data-
Enhanced Machine Translation (Aslan, 2022). The idea behind DEMT is to provide
customers with the best possible machine translations in predefined language pairs
and domains of interest. For example, if a client is interested in translating English

1https://www.taus.net/
2https://datamarketplace.taus.net/enhance-mt
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2 CHAPTER 1. INTRODUCTION

texts from the financial domain into Dutch, DEMT translations will be generated using
Amazon’s Active Custom Translation (ACT) service3, with customization performed
using a financial-domain English→Dutch corpus curated by TAUS. At the moment,
the service only uses ACT, but in the future, there are plans to explore adapting MT
models provided by Google4 and Microsoft5, and possibly other vendors, with the goal
of providing translations generated using the best-performing domain-adapted model
in a certain language pair and domain, and thus really providing the customers with
the best possible translations.

As a language data company, TAUS has at their disposal numerous high-quality
parallel datasets in different domains. Still, there are always new language pairs and
new domains, where customers will be interested in obtaining high-quality, domain-
adapted translations. Collecting and curating new parallel corpora is always time-
intensive and costly, and sometimes even borderline impossible6, and thus TAUS was
interested in exploring if synthetic data generation methods could be used to obtain
parallel corpora in different language pairs and domains of interest.

Two translation scenarios that are especially relevant for TAUS are the “defined-
domain scenario” and the “custom-translate scenario”. In the first case, we are talking
about the scenario currently covered by the DEMT service. Here, customers are in-
terested in translations adapted to a specific, predefined domain (for example, the
anti-money laundering domain). The “custom-translate scenario”, on the other hand,
would be at play when clients approach TAUS with textual examples of “domains” of
interest. They might provide a number of websites, and ask for a translation engine
adapted to those example sources. Although the DEMT service does not cover this
scenario yet, it might be expanded in the future. From the data standpoint, again, two
scenarios were singled out as relevant. In the first, there might be no parallel data in
the language pair and domain of interest, thus TAUS would be interested in generating
and using a fully synthetic parallel corpus for domain adaptation. In the other, some
parallel data would be available, but TAUS would be interested in augmenting it with
additional synthetic data in order to be able to obtain even better translations after
adapting MT models. These two translation scenarios, and the data augmentation and
the fully synthetic parallel corpus generation scenario, will inform the synthetic data
generation methods explored and the experimental setup devised in the scope of this
thesis. But first, we will narrow down the goal and the research questions that will
guide us along the way, which is the topic of the next section.

1.2 Goal and Research Questions

Motivated by considerations described in the last section, the goal of this thesis was
narrowed down to evaluating if synthetic data can be useful for customizing the neu-
ral machine translation models such as those presently offered through TAUS DEMT
service (Amazon Translate7), and those considered for future use (the likes of Google

3https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.

html
4Using Google’s AutoML Translation, https://cloud.google.com/translate/automl/docs/.
5Using Microsoft’s Custom Translator, https://docs.microsoft.com/en-us/azure/

cognitive-services/translator/custom-translator/overview.
6In some low-resource scenarios, it can be very hard to find human translators who could provide

the needed translation services, or to obtain original texts from specific domains.
7https://aws.amazon.com/translate/

https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.html
https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.html
https://cloud.google.com/translate/automl/docs/
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/custom-translator/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/custom-translator/overview
https://aws.amazon.com/translate/


1.3. OUTLINE 3

Translate8 and Microsoft Translator9). The research will be guided by the following
research questions:

Q1. Can synthetic data be useful for domain adaptation in the context of TAUS
DEMT?

Q2. Which method of generating synthetic data is the most useful?

To answer these questions, in this thesis we will look more closely at using synthetic
data in the context of domain adaptation in neural machine translation, and narrow
down the methods that seem the most promising for the TAUS context. Next, we
will use them to generate synthetic parallel corpora, and evaluate their usefulness for
domain adaptation.

1.3 Outline

In the following chapter, I provide an overview of relevant work in the fields of Neural
Machine Translation, domain adaptation for NMT, and synthetic data generation in
the context of NLP and NMT. Next, in Chapter 3, the methods that will be used in
the scope of this thesis will be discussed, including neural machine translation models
and evaluation methods. Afterwards, in Chapter 4, I will describe the experimental
setup. First, we will explore the datasets provided by TAUS, and this will be followed
by the evaluation of the baseline NMT models and the description of different domain
adaptation experiments. Then, the performance of translation models adapted using
synthetic data will be evaluated, followed by a brief qualitative analysis. Lastly, in
Chapter 5, I will answer the research questions. The thesis will be rounded up with a
discussion, conclusion, and recommendations for future work.

8https://cloud.google.com/translate/
9https://www.microsoft.com/en-us/translator/

https://cloud.google.com/translate/
https://www.microsoft.com/en-us/translator/
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Chapter 2

Background and Related Work

This chapter will provide an introduction to the field of NMT and discuss domain
adaptation methods that can be used to obtain higher-quality translations of sentences
from specific domains. Additionally, approaches to data augmentation using synthetic
data in the wider context of Natural Language Processing will briefly be presented.
Lastly, methods of synthetic parallel corpora generation that can be used in the context
of domain adaptation for NMT will be discussed.

2.1 Successes and Challenges of Neural MT

“Efforts to build machine translation systems started almost as soon as electronic com-
puters came into existence” (Koehn, 2020, p. 33). Warren Weaver was the first to
propose using computers to aid translation (Weaver, 1952). The first functioning ma-
chine translation systems, developed in the post–World War II period, were rule-based.
They depended on meticulous work by linguists who hand-crafted dictionaries and in-
structions on how to translate from the source to the target language. Rule-based
systems continued to dominate the field of Machine Translation throughout the 20th
century, with data-driven approaches being developed alongside them since the 1980s
(Koehn, 2020).

One of those early data-driven methods was proposed by Nagao (1984), who en-
visioned an example-based system that would be built by providing many example
sentences and their translations, reflecting the way humans learn a (foreign) language.
Parallel corpora, i.e. (usually very many) sentence pairs each containing a sentence in
the source language and its translation in the target language, are a cornerstone of all
data-driven approaches, with the idea of enabling machines to extract the translation
rules themselves. The first data-driven approach to gain prominence was Statistical
Machine Translation (SMT), that benefited from the accelerating development of the
internet in the early 21st century, bringing with it access to large scale parallel corpora,
as well as the increasing speed of computation. A plethora of systems were developed,
both in the academia and the industry (Koehn, 2009).

SMT systems were consistently obtaining state-of-the-art (SOTA) results until 2014,
when Bahdanau et al. (2015) developed the first competitive Neural Machine Transla-
tion system, an encoder-decoder model with attention that could obtain results com-
parable to that of the best SMT models. This achievement is even more striking when
we consider that the first NMT models with encoder-decoder architecture have only
been proposed earlier that same year (Sutskever et al., 2014; Cho et al., 2014). Even

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

though neural methods for MT have been researched as early as the 1980s and 1990s
(Bastings, 2020), computational complexity as well as data scarcity made them unfea-
sible until much later. But, once those obstacles were lifted, NMT took over the field
of MT in just a few years. NMT models are today ubiquitous in research, and widely
used commercial models such as Google Translate, Amazon Translate and Microsoft
Translator all utilize NMT architectures.

The idea behind NMT is to build a single large neural network that will, in an end-
to-end fashion, take as input a sentence in the source language and output the correct
translation in the target language. The whole network is trained jointly with the goal
of maximizing the probability of correct translations. It consists of a source-language
encoder that encodes the input sentences, and a target-language decoder that reads the
encoded input and outputs the translation. Early models encoded the source sentences
into fixed-length vectors (Cho et al., 2014). As a consequence, they performed poorly
on long sentences, which could not be encoded appropriately. Since the introduction
of the attention mechanism by Bahdanau et al. (2015), which addresses this issue, all
state-of-the-art models integrate it into their architectures. Bahdanau et al. (2015)
use recurrent neural networks for the encoder and the decoder, and later, convolutional
neural network approaches are also developed (Gehring et al., 2017). The current SOTA
NMT models are Transformer models with self-attention, first proposed by Vaswani
et al. (2017). The Transformer model is based only on the attention mechanism, and
requires significantly less training time than convolution or recurrence-based systems,
while obtaining better results (Vaswani et al., 2017).

NMT also entails specific challenges. In particular, NMT models perform poorly
in low-resource settings and on data that is significantly different from the data they
have been trained on, and they are sensitive to noise in the training data (Koehn and
Knowles, 2017; Zhang and Zong, 2020; Koehn, 2020). Even though, with ample training
data, NMT systems perform better than SMT models, their performance deteriorates
quicker when scaling down the size of the corpus (Koehn and Knowles, 2017). Not
only are parallel corpora small or non-existent in most of the world language pairs,
even for high-resource languages, there are many domains where little or no parallel
data is available. NMT models are also less robust than SMT systems, meaning that
higher quality data is needed to obtain satisfactory results (Koehn and Knowles, 2017).
The challenges listed all come into play when we want to translate data from a specific
domain, which is different from the data employed in training the model, and a usual
requirement in the “real-world” scenario. The challenges of performance of MT models
on data from specific domains are addressed using domain adaptation, which is the
topic of the next section.

2.2 Domain Adaptation in Machine Translation

In machine translation, a domain is usually “defined by a corpus from a specific source,
and may differ from other domains in topic, genre, style, level of formality, etc.”(Koehn
and Knowles, 2017, p. 29). van der Wees (2017) provides a more detailed analysis of the
way the term domain is used in the Machine Translation field. They distinguish between
provenance, topic and genre. Provenance tells us about the origin of a document and
cannot be gleaned from the data itself. An example would be Europarl Corpus1. Topic
stands for the subject of the corpus, and can be broad (e.g. politics) or narrow (e.g.

1https://www.statmt.org/europarl/

https://www.statmt.org/europarl/


2.2. DOMAIN ADAPTATION IN MACHINE TRANSLATION 7

fishery regulation). Genre refers to non-topical text properties, such as formality or
other stylistic properties (e.g. parliamentary language). Still, they emphasize that the
way the term domain is used by many domain adaptation researchers is ambiguous,
and that domain very frequently just means a “different data set” (van der Wees, 2017,
p. 33).

The usage of terms in-domain and out-of-domain can also be ambiguous. For
example, Koehn and Knowles (2017) mention the out-of-domain performance of NMT
systems, meaning the performance of a system trained on one domain, and tested on
another. But, more often, out-of-domain refers to data that is not relevant to the
domain of interest, which we are trying to adapt our model to. This usage will be
retained in this work. The term in-domain will be used to refer to the domain of the
document we are interested in translating, and the domain we want to adapt our model
to. The models we will be adapting are usually trained on huge amounts of data from
various domains and are meant to perform well on a number of translation tasks. We
will refer to this as general domain.

The problem encountered the most often when translating texts from different do-
mains is that words have different meanings and frequency of use, and that stylistic
features, such as sentence length or politeness level, can vary significantly. NMT mod-
els trained on general-domain data do not retain the same level of performance on
domain-specific translation tasks. A model trained on news corpora or data scraped
from the web might perform abysmally if we task it with translating medical texts. But
even if a part of the data the model has been trained on did include medical texts, the
general-domain model will usually not perform as well as it could if it was build with
a more specific goal of translating medical texts in mind.

The role of domain adaptation for NMT is to address those challenges. Generally,
domain adaptation approaches can be classified as either model-based or data-based
(Chu and Wang, 2018; Saunders, 2021). Model-based methods focus on changing the
architecture of the model in some way, to facilitate learning to perform the translation
task on data from a specific domain. Data-based methods, on the other hand, focus on
the data that will be used for domain adaptation.

There is no one-fits-all approach for domain adaptation (Koehn, 2020). As a rule
of thumb, as with domain adaptation in NLP more generally, the method that can be
employed will depend on the specific scenario and the resources that we have at our
disposal.

For the context of this thesis, the relevant approaches to domain adaptation are
data-centric. TAUS uses proprietary models and associated, proprietary methods of
domain adaptation, which entails that the datasets used for domain adaptation are the
only elements that can be influenced or changed.

As was already mentioned, having relevant in-domain parallel data of sufficient
quantity and quality is not something we can expect in many cases. Even for high-
resource language pairs, there are many domains that lack such parallel corpora. When
it comes to low-resource languages, we usually cannot even obtain sufficient general-
domain parallel datasets, let alone parallel corpora in a specific domain. This is where
the data-centric method of generating synthetic parallel in-domain corpora (Chu and
Wang, 2018; Saunders, 2021), the focus of this work, comes into play. In the next
section, we will give a brief introduction to synthetic data generation in the context of
NLP, after which we concentrate on approaches in the field of NMT.
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2.3 Data Augmentation and Synthetic Data for NLP

High-quality data in sufficient quantity is a prerequisite for training a well-performing
machine learning system. However, obtaining these data is always costly and sometimes
outright impossible2. Data augmentation (DA) and synthetic data generation (SDG)
are methods that aim to produce more data without actually collecting and labelling
more natural data. The line between those two methods is not clear-cut (Nikolenko,
2021), so I will first take a moment to try and delineate them, before briefly discussing
their place in NLP.

Nikolenko (2021) defines data augmentation as the “first step to synthetic data”
(Nikolenko, 2021, p. 88). Data augmentation techniques increase the quantity of
available data by changing natural instances in ways that result in predictable changes
of associated labels. The field of computer vision pioneered these techniques and uses
them extensively, which is understandable. Shifting, cropping, rotating, changing the
colour of or blurring an image can result in many new training examples, with the
image still depicting the same entity (for example, a cat). Synthetic data, on the other
hand, would be data produced completely artificially, such as using generative models
to produce images of cats based only on the label cat (Nikolenko, 2021).

DA and SDG are gaining popularity in recent years, primarily because of the advent
of data-hungry deep learning. Additionally, as machine learning is gaining popularity,
many new tasks and domains are being explored, where there is often not enough
natural data available. Another important use-case for synthetic data besides limited
data availability is privacy, since there are domains where enough data is available,
but those data can not be shared because of privacy concerns, such as the medical
domain.3 All of those driving forces also hold for NLP, but our field poses specific
challenges to utilizing them because of the discrete nature of language data. While it
is easy to slightly change an image and have it still depict the same entity, removing
a word from a sentence or changing word order might result in generating completely
ungrammatical instances.

Recently, Feng et al. (2021) published the first survey paper on data augmenta-
tion approaches for NLP. It showcased increased interest in the approach in recent
years, with many new methods and techniques being explored and applied to different
tasks. Techniques range from rule-based data augmentation, for example Easy Data
Augmentation (EDA, Wei and Zou (2019)), where data perturbations, such as syn-
onym replacement, are performed on the token level, to model-based techniques, where
purely synthetic data can be produced, for example using translation or generative
language models. As for the tasks, the most techniques have been developed for text
classification, with machine translation figuring as the second task for which the most
papers have been published. In the next subsection, we dive deeper into how data
augmentation and synthetic data are used in the NMT field.

2Here, one can think of data that could be used to counteract specific “real-world” biases, for
example the fact that some professions are mostly “male” or “female”. If we would like to train a
model that would not reflect this “real-world” bias, we can imagine producing additional synthetic
data the model will be trained on, which cannot be obtained naturally.

3There is an interesting application for NLP in this regard, creating synthetic clinical notes that
can be published while ensuring complete anonymity for the patients. See, for example, Melamud and
Shivade (2019).
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2.4 Synthetic Data for Neural Machine Translation

In the last section, we mentioned that Machine Translation is one of the fields where
synthetic data is often used for data augmentation. That this is so, is not completely
surprising, if we consider that, by translating a sentence by a machine translation
system, we already obtain a synthetic sentence.4

Different data augmentation techniques and synthetic data have already been used
in the SMT framework (for example, Bertoldi and Federico (2009)), but here we will
concentrate on NMT. The two most frequently encountered use-cases for synthetic data
both have to do with the low-resource setting, either in the context of domain adapta-
tion, where not enough parallel in-domain data is available, or low-resource languages.
Other possible use cases are in training more robust models (synthetizing additional
noisy data) and mitigating biases (for example, gender bias, which is very prominent
in MT, can be addressed by generating additional synthetic instances that include un-
derrepresented genders). This work is focused on the domain adaptation problem, but
we note that many methods are similar or shared between domain adaptation and
low-resource language translation.5

The most widely used methods are translation-based. Those methods allow us to
leverage monolingual data that is usually a lot easier to come by than parallel data.
Since training NMT models always entails having a parallel corpus, translation-based
methods can be seen as fundamental, and are needed by virtually all approaches. This
is why we will concentrate on them in this thesis.

2.4.1 Back-translation

One of the most widely used methods for synthetic parallel corpora generation is back-
translation. The idea behind this method is simple. If there is no or not enough
parallel data available, but we have ample monolingual target side data, we can use a
target→source NMT system to (back-)translate target monolingual sentences into the
source language. The synthetic parallel corpus obtained as a result can then be used
to train the source→target model.

This method was first explored for NMT by Sennrich et al. (2016). It is primar-
ily used for training translation models, and is today a de-facto standard in training
high-performing NMT systems, where huge amounts of monolingual target side data
are translated to source and added to natural parallel corpora (Edunov et al., 2020).
Sennrich et al. (2016) also evaluated the potential of back-translation for domain adap-
tation. They have shown that fine-tuning a general domain source→target model using
synthetic parallel in-domain data obtained by back-translating a monolingual target
in-domain corpus, although not as successful as using natural in-domain parallel data
for adaptation, is still effective. In their research, models adapted using synthetic data
obtained an improvement over their non-adapted counterparts.

The data obtained by back-translation seems to works by strengthening the model
decoder (Burlot and Yvon, 2018). Note that the data on the target side is actually
natural, either a human-produced utterance or a human-produced translation. This
also means that the noise obtained on the source side of the synthetic corpus, by

4I first completely realized this fact when my supervisor, Sophie Arnoult, mentioned it in a discus-
sion. March 2022, personal communication.

5And low-resource language translation can also be posed as a domain adaptation problem (Saun-
ders, 2021).
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translating targets using imperfect MT models, should not influence the model adapted
with synthetic data too much, since it should not be tasked with translating similar
faulty examples.

After Sennrich et al. (2016) seminal work on back-translation for NMT, numerous
other studies have been published, testing and refining their approach, among others
Edunov et al. (2018), Poncelas et al. (2018) and Burlot and Yvon (2018). We will
explore those works shortly, but before that, we will mention the other possibilities
when using translation to generate synthetic data: forward translation or self-learning
and a combination of forward and back-translation.

2.4.2 Forward translation

If we translate the source and the target side of parallel corpora into machine learning
terminology of instances and labels, back-translation can be classified as bona fide
synthetic data generation, since in the case of back-translation, we generate instances
from labels. The direction of translation can also be the other way around. If we
have a source→target model and source side monolingual data, we can use the model
to translate the source data into target, and then use the synthetic parallel corpus
obtained by pairing natural sources and synthetic targets to further train or fine-tune
the same model we used for translation. This method was first explored for NMT by
Zhang and Zong (2016), and is also referred to as self-learning or self-training.

While back-translation is useful because it strengthens the decoder (natural data
is on the target side), forward translation should work by strengthening the encoder
(natural data is on the source side, while the target side is synthetic data produced by
the MT engine). While we would expect that noise in the form of incorrect transla-
tions will have a greater influence than when using back-translation, and although it
seems at first sight that this method is not as useful (Bogoychev and Sennrich, 2019),
Bogoychev and Sennrich (2019) have shown that the effectiveness of the translation
direction (forward or back) can also depend on whether the sentences being translated
were originally in the source or in the target language. Although forward translation
can obtain superior results in terms of automatic evaluation in some cases when source
sentences have originally been in the source language, their research has also shown
that human evaluators always prefer results obtained using back-translation.

Specifically for domain adaptation, Burlot and Yvon (2018) conducted a detailed
study where they compared the usefulness of forward and back-translation, and their
results indicate that back-translation should be the most useful method for domain
adaptation. On the other hand, Chinea-Ŕıos et al. (2017) have used a combination of
data selection and forward-translation to generate synthetic parallel corpora for domain
adaptation. Their method is attractive because it allows them to select monolingual
source side data that is similar to the test set, before translating it to target.

2.4.3 Combining back-translation and forward translation

To generate a synthetic parallel corpus, a mix of forward and back-translation can also
be used (Bogoychev and Sennrich, 2019). Park et al. (2017) proposed mixing equal
parts of forward- and back-translated data to build a parallel corpus, and obtained
slight improvements over both forward and back-translation when training their models.
Burlot and Yvon (2018) evaluate the same approach for domain adaptation, but with
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different results. In their research, back-translated data proved to be more useful than
a mixed corpus.

2.4.4 Refining back-translation

Based on research mentioned in the preceding subsections, we expect that back-translation
will be the most useful translation-based method for domain adaptation. In principle,
there are three considerations that could influence the quality of synthetic data obtained
by back-translation, or how useful they are for adapting an NMT system: the quality
of translations on the source side, the quantity of synthetic data, and the relevance of
synthetic data for a particular domain. In the rest of this subsection, we explore each
of those three considerations in turn.

Translation quality

Regarding the quality of translations, from the first exploration by Sennrich et al.
(2016), it seems that, as long as a “good-enough” model is used for back-translation,
the quality does not seem to matter much (see also Fadaee and Monz (2018)). Burlot
and Yvon (2018) explored the difference between using a poor-quality and a high-
quality model for back-translation, and found that better data does result in better
domain-adapted models in this context.

Edunov et al. (2018) analysed the impact of different ways of generating synthetic
source sentences. They found that, even though most other researchers used back-
translated data generated by beam (Sennrich et al., 2016) or greedy (Lample et al.,
2018) search, using data obtained by sampling is more effective. They also found that
using synthetic data can sometimes match the performance of using real data when
training the models.

Data selection or cleaning can be employed to obtain better-quality synthetic data.
For example, Xu et al. (2019) calculated a semantic similarity score between the source
(synthetic) and target sentences using bilingual word embeddings, and then used a
cosine similarity between the two sentence vectors as a measure of translation quality.

Quantity of synthetic data

As was already mentioned, the quality of translations (as long as they are produced
with a reasonably well-performing system), does not seem to influence the performance
of back-translated data too much. The quantity of this data, however, as well as the
ratio of natural to synthetic data, seem to have a much greater impact (Fadaee and
Monz, 2018; Poncelas et al., 2018). In Poncelas et al. (2018) investigation, the best
performance was obtained when using a ratio of two times as much synthetic, back-
translated data, as natural parallel data. In the study by Fadaee and Monz (2018),
they experimented with ratios as high as 1 part natural data to 10 parts synthetic data.
For them, a ratio of 1 to 4 turned out to be the best performing. They also noticed
how the quality of systems adapted with synthetic data does not increase linearly with
the increase in the quantity of synthetic data. Systems trained using a 1 to 4 ratio
performed only slightly better than systems trained with 1 part natural to 1 part
synthetic data. This is in contrast to using natural parallel data for adaptation, where
system performance usually scales linearly with the quantity of natural parallel corpora
used for adaptation.
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Fadaee and Monz (2018) also observed that there seems to be a limit to learning
from synthetic data. If we continue using bigger and bigger quantities of synthetic data,
at some point, the model will unlearn its parameters and performance will deteriorate.
A model adapted with too large quantity of synthetic data might perform worse than an
unadapted model. A similar conclusion was obtained by Burlot and Yvon (2018), who
observed that using synthetic data obtained by back-translation encourages overfitting.

Relevance of synthetic data

Lastly, the relevance of synthetic data to the domain or test set of interest can also
influence the performance of models adapted with this data. The idea is to obtain
better performance by picking the most useful sentences, according to some criteria
(Fadaee and Monz, 2018). Data selection techniques are widely used in data-based
domain adaptation, and the idea is to select sentences that are more relevant to the
domain adaptation problem at hand (Saunders, 2021). Poncelas et al. (2019) explored
whether data selection could successfully be applied to synthetic sentences generated
by back-translation, and concluded that, even though the source side sentences can be
noisy, data selection seems to be useful for synthetic data. More concretely, for the
domain adaptation scenario, Poncelas and Way (2019) have used the test dataset as a
seed to retrieve synthetic sentences that will be used for adaptation. They have shown
that, in certain scenarios, synthetic sentences can even be more useful than natural
sentences.

2.5 Summary

In this chapter, we briefly introduced the field of Natural Machine Translation and
discussed the challenges of translating texts from specific domains using NMT sys-
tems that haven’t been explicitly built with the goal of excellent performance on data
from those domains. Then, we discussed approaches to addressing this in-domain per-
formance of NMT systems using domain adaptation. Since the goal of this thesis is
evaluating the usefulness of synthetic data generation for domain adaptation, we briefly
discussed its place in the field of Natural Language Processing, before diving deeper
into specific techniques relevant for the field of Machine Translation. The most space
was given to the translation-based methods of creating synthetic data, and chiefly the
back-translation method, for which we expect to be the most useful when it comes to
the specific context of this thesis.

Translation based methods—back-translation, forward translation, as well as their
combination—and the refinements of the back-translation method, including obtaining
translations of higher quality, experimenting with the quantity of synthetic data, and
data selection applied to synthetic data, will guide the work presented in the rest of
this thesis. First, in the next chapter, we will discuss the methodology, including NMT
models and evaluation methods, before presenting experimental results in Chapter 4.



Chapter 3

Methodology

In this chapter, I will describe the NMT models that will be used in the experiments,
how the quality of synthetic data will be evaluated, and how sentence embeddings will
be used for cleaning the data and selecting data that is more relevant for a particular
domain.

The experiments, that will be introduced in the next chapter, will employ two NMT
models, one proprietary (Amazon Translate), and one open-source (OPUS-MT). Off-
the-shelf models will be used to produce synthetic data, and adapted using natural and
synthetic data. Experiments will be evaluated using two string-based metrics (BLEU
and chrF score), and one neural, pretrained metric (COMET). LASER multilingual
embeddings will be used for cleaning and data selection.

3.1 Models

The primary goal of this research, from the viewpoint of TAUS, was to evaluate the
usefulness of synthetic data for domain adaptation in the context of models they have
implemented in their production workflow.

As we mentioned in the Introduction, at the moment of starting to write this thesis,
TAUS DEMT service was live using Amazon’s Active Custom Translation framework,
with a plan to extend the service to Google’s Auto ML and Microsoft’s Custom Transla-
tor. All three providers use a neural machine translation architecture for their baseline
models, while the adaptation method differs between Amazon’s ACT on the one side,
and Google and Microsoft on the other. Since all the models are proprietary, the ex-
act details about the architectures are, of course, unknown. But, from the descriptions
available, as well as the training times, it can be concluded that customization of Google
and Microsoft is a sort of fine-tuning the underlying model for a few more epochs, while
Amazon deploys an “on-the-fly” customization method, described in more detail in the
next section. Since the goal of this research is to evaluate the usefulness of synthetic
data for data-based domain adaptation, the fact that the inner workings of a customiza-
tion method are unknown should not be viewed as a deterrent from using the method.
Additionally, since the thesis is executed in partnership with a company, evaluating the
model the company uses is important.

On the other hand, relying on proprietary models is also problematic. For one,
models can change overnight, making the research done to evaluate the model obsolete.
Additionally, the fact that we cannot know the exact mechanism by which they work
limits our understanding of which methods might be useful. In a way, we are destined

13
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to throwing different corpora at the model, and seeing what sticks. Thirdly, using those
models is costly, thus also from the standpoint of the company, it would make sense to
also evaluate an open-source method, especially when it comes to how synthetic data
will be generated.

Because of those reasons, instead of using the Google’s and/or Microsoft’s NMT
model, I chose to evaluate the open-source OPUS-MT model (Tiedemann and Thot-
tingal, 2020), both as a candidate for generating synthetic data by translation, and as
a model that can be customized to better perform on data from a particular domain.

Off-the-shelf models in the source→target direction will be used as unadapted base-
lines, while target→source models will be used for back-translation. Adapted models
will be used to evaluate adaptation using natural and synthetic data.

3.1.1 Amazon Translate and Active Custom Translation

“Amazon Translate is a neural machine translation service that delivers fast, high-
quality, affordable, and customizable language translation”1. Off-the-shelf machine
translation models offered through Amazon Translate (AT) are general-domain models
that offer translation between 75 languages and 5550 source→target combinations.2

Amazon Translate offers two kinds of customization. The first allows the users to
customize translations using Custom Terminology, influencing the translation of words
and phrases.3 The other, one we will use in this thesis, is called Active Custom Transla-
tion (ACT). Using ACT is “similar to using a custom translation model”4 trained with
users’ example translations. Unlike training a custom model, parallel data in the form
source example→target translation is used at runtime to adapt translations to “reflect
the style, tone, and word choices” that are found in the parallel data submitted by the
user.5 ACT is marketed as an alternative to training custom models, with Amazon
claiming that in this way, costs in terms of time and money needed to train custom
models are avoided.

The exact mechanism of working for ACT is not clear. It does not seem that it
simply takes phrases from the source sentences and their translations to the target
language, since this is the mechanism of working for Custom Terminology. “When a
custom terminology is used as part of the translation request, the engine scans the
terminology file before returning the final result. When the engine identifies an exact
match between a terminology entry and a string in the source text, it locates the
appropriate string in the proposed translation and replaces it with the terminology
entry”6. Translations that use custom terminology are priced the same as using off-
the-shelf models, while translations using ACT are four times more expensive. Also,
translation jobs using ACT take substantially more time than using AT, but still a lot
less time than it takes to train Google’s or Microsoft’s customized models.7

1https://aws.amazon.com/translate/, accessed 05-06-2022.
2https://aws.amazon.com/translate/details/, accessed 05-06-2022.
3https://docs.aws.amazon.com/translate/latest/dg/how-custom-terminology.html, accessed

05-06-2022.
4https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.

html, accessed 05-06-2022.
5https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.

html, accessed 05-06-2022.
6https://docs.aws.amazon.com/translate/latest/dg/how-custom-terminology.html, accessed

05-06-2022.
7ACT jobs take around 30 minutes, independent of the size of parallel corpora used for adaptation,

https://aws.amazon.com/translate/
https://aws.amazon.com/translate/details/
https://docs.aws.amazon.com/translate/latest/dg/how-custom-terminology.html
https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.html
https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.html
https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.html
https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data.html
https://docs.aws.amazon.com/translate/latest/dg/how-custom-terminology.html
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3.1.2 OPUS-MT

In contrast to the AT models described in the previous section, when it comes to the
open-source OPUS-MT models (Tiedemann and Thottingal, 2020), we know both the
data they were trained on and their architecture. They are named after the corpus they
have been trained on: the OPUS8 or Open Parallel corpUS (Tiedemann, 2012). Models
are based on state-of-the-art transformer architecture, with 6 self-attention layers in
the encoder and the decoder, each layer consisting of 8 attention heads (Tiedemann
and Thottingal, 2020).9

In this work, we use the Hugging Face10 implementation of OPUS-MT models, more
concretely an English→Dutch11 and Dutch→English12 model. The latter model will
be used for back-translation, while the former will be used for forward translation and
fine-tuned with natural and synthetic data. The models are pretrained and can be used
off-the-shelf, and Hugging Face also provides instructions for adapting the models by
fine-tuning them on in-domain data. The fine-tuning procedure is described in the next
subsection.

Fine-tuning procedure

Fine-tuning, also known as continued training, first proposed for Neural Machine Trans-
lation by Luong and Manning (2015) and further analysed by Freitag and Al-Onaizan
(2016), entails extending the training of a model for a few more epochs, during which
the model is trained exclusively on in-domain data, with the goal of adapting the model
to a specific domain. Fine-tuning is usually fast and performs well, even though some
problems may arise, such as overfitting to a dataset that is too small or too noisy
(Saunders, 2021). Another potential problem of fine-tuning is catastrophic forgetting,
where the model overfits to in-domain data and has worse performance on data from
the general domain, data that it previously translated well (Freitag and Al-Onaizan,
2016; Saunders, 2021). As such, catastrophic forgetting should not be a problem for
this project, since models are only intended to be used to translate in-domain data.

In order to fine-tune the off-the-shelf OPUS-MT en→nl model, we follow the proce-
dure described by Hugging Face.13 The model is tuned for 3 epochs, with learning rate
set to 0.00002, and using the AdamW optimizer. The batch size is set to 8. Fine-tuned
model parameters are saved separately after every epoch, which allows evaluating mod-
els trained for a shorter time, since it will be shown that, in some cases, training for 2
epochs is better since after 3 epochs, the model overfits to training data.

Fine-tuning is performed using one GPU provided through Google Colaboratory
Pro subscription14. It takes from around 15 minutes to more than 2 hours, depending
on the size of parallel data used for adapting the model.

while training a Google or Microsoft custom model takes a few hours, and this duration does depend
on the size of the parallel training dataset used.

8https://opus.nlpl.eu/
9https://github.com/Helsinki-NLP/Opus-MT-train

10https://huggingface.co/
11https://huggingface.co/Helsinki-NLP/opus-mt-en-nl
12https://huggingface.co/Helsinki-NLP/opus-mt-nl-en
13The code is adapted from https://huggingface.co/course/chapter7/4?fw=pt.
14https://colab.research.google.com/

https://opus.nlpl.eu/
https://github.com/Helsinki-NLP/Opus-MT-train
https://huggingface.co/
https://huggingface.co/Helsinki-NLP/opus-mt-en-nl
https://huggingface.co/Helsinki-NLP/opus-mt-nl-en
https://huggingface.co/course/chapter7/4?fw=pt
https://colab.research.google.com/
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Decoding method

In the context of this thesis, both the AT and OPUS-MT models will be used to
generate the synthetic data. While, for the AT model, it is not possible to set any
parameters, and we always obtain just one translation, with the OPUS-MT model we
have the freedom of choosing different decoding methods, and also the possibility to
generate more than one translation for each input sentence.

By default, the OPUS-MT models as implemented by Hugging Face use greedy
search as the decoding algorithm. Greedy decoding is faster than the other most
commonly used decoding algorithm, beam search (Stahlberg, 2020), since greedy search
selects only one hypothesis - the most probable one - for every possible next word in the
output, looking at the probability of this word being the correct translation given all
the previous words. However, we will also experiment with another decoding method,
namely sampling. This is described in more detail in the next chapter.

3.2 Evaluation

The goal of this thesis is to evaluate if synthetic data can successfully be used for do-
main adaptation. This entails that the synthetic data will be evaluated extrinsically,
looking at how well the models adapted using this data perform. This brings us to the
territory of machine translation evaluation. Usually, this process consists of compar-
ing each translation obtained as an output of an MT system to one or more reference
translations, produced by professional human translators. Metrics that take into ac-
count a reference translation are called reference-based metrics. There are also ways
to evaluate the output without needing a reference translation, using a referenceless
metric and comparing the translation to the source test sentence.

In this thesis, I will use reference-based metrics, that will compare machine gen-
erated outputs to reference translations. Two string-based metrics, BLEU and chrF
score, will be used, as well as a pretrained COMET metric. Both the metrics them-
selves, and the reasons for using each of them, are described in more detail in the
following subsections.

Important considerations that were taken into account when deciding which metrics
will be used were the fact that we will be evaluating outputs of high-performing systems,
and that our systems will be trained using synthetic data. Mathur et al. (2020) showed
that automatic metrics can perform differently when used to evaluate high-performing
systems, as compared to models that perform less well. Edunov et al. (2020), on the
other hand, studied how well automatic metrics evaluate systems trained with back-
translated data, and concluded that there are important differences that need to be
taken into account when evaluating systems trained using synthetic data, as compared
to models trained exclusively with natural parallel data.

3.2.1 BLEU score

The most widely used metric for automatically evaluating machine translation out-
puts, first proposed 20 years ago, is BLEU score (Papineni et al., 2002), which stands
for Bilingual Language Evaluation Understudy. BLEU score is a string-based metric
(Kocmi et al., 2021) that considers n-gram overlaps between the machine generated
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output and one or more reference translations15. BLEU score looks only at precision,
and thus needs to employ a brevity penalty that penalizes translations that are too
short16. The score is between 0 and 1 or 0 and 100, with the higher result better (1
or 100 would entail that the reference and translation are identical, while a score of 0
means that there are no overlaps between them).

Even though BLEU has been criticized from the start, it remains a de facto standard
both for reporting experimental results, and in development, to compare the perfor-
mance of different models. That this is so, probably comes down to the ease and speed
with which this metric can be calculated, as well as a long history of using it in the
context of automatic MT evaluation.

To offer an example of why BLEU is so problematic: since it measures n-gram
overlaps between a machine-translated sentence and a reference, it will assign the same
penalty for using a synonym or an antonym. Additionally, changing word order entails
a substantial penalty for a translation that, for all intents and purposes, might be
considered equivalent to the reference. In recent years, BLEU has predominately been
criticized because it does not seem to correlate well with human judgment, especially
when it comes to evaluating high performing systems (Mathur et al., 2020). Edunov
et al. (2020) have additionally shown that BLEU scores cannot sufficiently discriminate
between systems trained with natural and with synthetic data. Mathur et al. (2020)
also point out that BLEU preforms badly when it comes to judging which of the two
or more models performs better, as compared to human judgement. In their study,
another string based metric, chrF (Popović, 2015), performs better than BLEU, and
this is why we will use it as an additional metric, as described in the next subsection.

Still, because results in terms of BLEU scores are reported in virtually all research
papers, we keep using BLEU as an evaluation metric in this thesis. Concretely, we use
the SacreBLEU implementation (Post, 2018), that standardizes the metric parameters
and makes it possible to compare results across different research papers17.

3.2.2 chrF score

ChrF, or character n-gram F-score, was first proposed by Popović (2015). Basically,
chrF takes into consideration the percentage of character n-gram overlaps between
the machine-translated sentence and the reference. In contrast to BLEU score, chrF
takes into account both precision and recall. Precision looks at how many n-grams in
the hypothesis are also present in the reference, while recall calculates the number of
n-grams present in the reference that can also be found in the hypothesis. As with
BLEU, scores can be between 0 and 1 or 0 and 100, with a higher score implying a
translation that better agrees with the reference. To calculate the chrF score, we again
use SacreBLEU18.

Recent studies by Mathur et al. (2020) and Kocmi et al. (2021), which recommend
discontinuing the use of the BLEU score, both find that chrF is the string-based metric
that correlates the best with human judgment. It should work especially well for

15Ideally, BLEU would always be used with more than one reference translation, but in practice this
almost never happens.

16Otherwise, a one-word translation that contains one of the words in a ten-word reference would
obtain a perfect score

17https://pypi.org/project/sacrebleu/, signature:
BLEU nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0.
18Signature: chrF2 nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.0.0.

https://pypi.org/project/sacrebleu/
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morphologically more complex languages (Mathur et al., 2020). Mathur et al. (2020)
recommend using it instead of BLEU, while Kocmi et al. (2021) go one step further,
and recommend that a pretrained metric, COMET score, should be the metric of first
choice, with chrF being used to evaluate translation into languages not covered by the
COMET score. We describe this metric in the next subsection.

3.2.3 COMET score

The extensive study by Kocmi et al. (2021) was conducted with the goal of finding an
automatic metric that is most suitable to be used when developing MT systems, in order
to decide which of the two candidate models performs better. They recommend using
a pretrained metric, specifically COMET (Rei et al., 2020). COMET (Crosslingual
Optimized Metric for Evaluation of Translation) is actually not a single metric, but
rather a framework for training deep neural network-based evaluation models that can
be used as metrics. Evaluation models are built on pretrained, multilingual language
models such as XLM-RoBERTA (Conneau et al., 2020), and take into consideration
not just the reference and the machine-translated output, but also the source sentence.
The objective of the evaluation models it to learn to model human judgment, assigning
higher scores to translations that are deemed better by human evaluators.

We use the Unbabel implementation19 and the default, reference-based wmt20-
comet-da model, to calculate the COMET scores. COMET models are trained with
z-scores, and thus the score can be lower than 0 or higher than 1.20. For a state-of-the-
art system, the score obtained when using wmt20-comet-da model is expected to be
between 0.6 and 1.21 The downside of using COMET is that it is quite computationally
expensive, requiring the use of a GPU and taking much more time to calculate than
lightning-fast BLEU and chrF scores.22

3.2.4 Statistical significance

To ascertain the statistical significance of results, we use the bootstrap method (Koehn,
2004). For two or more systems whose results we want to compare, a paired bootstrap
resampling test is run, as implemented by SacreBLEU and COMET libraries. This test
allows us to estimate how probable it is that a difference in the mean results obtained
by a pair of systems is a result of chance. For example, if we were to test both systems
100 times, how many times would one system perform better than the other? If system
A outperforms system B 95 times, we can say that, with a p-value of 0.05, we reject the
null-hypothesis, saying that the difference between the two systems is insignificant, and
conclude that the difference in performance of the two systems is indeed statistically
significant. This does not allow us to be absolutely certain that system A is really
better than system B, but it does imply that it is quite improbable that the observed
difference in performance is accidental.

19https://github.com/Unbabel/COMET
20https://unbabel.github.io/COMET/html/faqs.html, accessed 23-06-2022.
21https://github.com/Unbabel/COMET/issues/14
22The good news is that Unbabel team is already working on creating faster and less computationally

expensive versions of COMET. See Rei et al. (2022), which received the Best paper award at EAMT
2022.

https://github.com/Unbabel/COMET
https://unbabel.github.io/COMET/html/faqs.html
https://github.com/Unbabel/COMET/issues/14
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3.3 Cleaning and Matching Data with LASER Embed-
dings

Since the seminal work by Mikolov et al. (2013), embeddings have been successfully
used as a measure of word and sentence similarity. The idea behind word and sentence
embeddings is to encode a word or a sentence into a fixed length vector. Vectors of
different words or sentences can then be positioned into a shared space, and the distance
between them can be used as a measure of their semantic similarity.

While first approaches to word embeddings worked with monolingual data, soon
multilingual and cross-lingual embeddings gained prominence (Ruder et al., 2019). The
idea behind them is to project embeddings in two or more languages into a joint vector
space, where similarity can again be modelled.

One of the widely used pretrained multilingual sentence embeddings is LASER or
Language-Agnostic SEntence Representations (Artetxe and Schwenk, 2019). The idea
behind LASER embeddings is to generate embeddings that will be language and task
independent. A single encoder processes sentences in many languages, and as a result,
embedded sentences in different languages that are semantically similar should end up
being close in the vector space. Relevant for this work, this means that, by employing a
distance measure, such as cosine similarity, we can obtain a similarity score between a
pair of sentences. Then, we can use this score to filter our noisy sentences or sentences
that are closer to a particular domain or test set.

LASER embeddings have been selected since they are already widely used in TAUS.
For example, one of the preprocessing steps when compiling parallel datasets provided
by TAUS for this research, as will be described in the next chapter, was calculating
cosine similarity of LASER embeddings between pairs of sentences. Then, the obtained
score was used to filter out lower-quality translations.

In this work, LASER embedding will be used for three different tasks:

• data cleaning, in order to obtain higher-quality translations;

• data selection, finding sentences that are more similar to the test set;

• exploratory data analysis, to obtain sentences that are the most relevant for the
domain of each dataset.

Using sentence embeddings and cosine similarity to clean and filter parallel sentences
is well-supported by research. For example, Schwenk (2018) proposed using cosine
similarity to filter noisy sentences and to mine for possible translations. They also
mentioned that the same approach could be used to filter back-translated data.

Cosine similarity can also be used to find data that is more similar to an entire
dataset. For example, we can use the test set as a seed, and, calculating cosine similarity
with sentences from the training set, find those sentences that are more similar to the
test set.

Calculating cosine similarity matrices can also be used in order to rank sentences
according to their similarity to all the other sentences in a certain corpus. This allows
one to rank sentences so that the most relevant sentences rank the highest. This will
be used in the next chapter, when exploring the datasets we will be working with.
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3.4 Summary

In this chapter, we described the NMT models that will be used in the experiments
and the adaptation methods that will be employed to obtain domain-customized trans-
lations. We dedicated the bulk of the chapter to describing the evaluation metrics we
will use to ascertain which synthetic data generation method produces corpora that are
the most useful for domain adaptation. Lastly, we briefly described LASER embed-
dings, that will be used for three specific purposes in the reminder of the thesis: data
cleaning, data selection, and exploratory data analysis. In the next chapter, we start
by describing the datasets that we are going to use, and then dive into describing the
experimental setup and analysing experimental results.



Chapter 4

Experiments

For the experiments, a similar setup was devised as presented by Burlot and Yvon
(2018), who investigated back-translation, forward translation and a mix of the two
methods for domain adaptation. As in their work, as a baseline, general-domain, off-
the-shelf unadapted models will be used, and as an upper bound, the result we do
not expect to beat, we will use adaptation with natural data. Then, in each of the
experiments, different portions of target or source natural datasets will be translated
to construct synthetic parallel corpora.

Before diving into the experiments, though, parallel datasets we will be working
with will first be presented. Next, we will evaluate the baseline and upper bound sys-
tems. Lastly, the setup of each experiment will be described, followed by reporting and
discussing experimental results. We will round up the chapter with a brief qualitative
analysis.

4.1 Datasets

For this research, TAUS provided English→Dutch parallel corpora in three domains:
Financial Services (Fin), Pharmaceuticals & Biotechnology (Pharma) and Retail &
Wholesale Distribution / E-Commerce (E-Comm). These are the same corpora that are
used in their DEMT pipeline, to provide customized translations in the English→Dutch
translation direction in those domains1.

I was provided with 3 parallel datasets (used as customization data by DEMT), and
3 test datasets of 2000 instances each, which were selected at random from the initial
corpora curated from a large repository of translations by applying different selection
methods, and used to evaluate DEMT performance. As I mentioned in the last chapter,
cosine similarity was used as a cleaning method when curating the datasets, and only
segments with LASER embeddings cosine similarity between 0.9 and 0.99 were selected,
as this was taken to mean they are good translations. Most instances should contain
a natural English sentence (source), and a human translation to Dutch (target), but
this is not guaranteed nor is there a way, in the scope of this project, to check whether
certain sentences comprise a direct or a reverse portion (direct meaning they are source
natural sentences translated into target, and reverse referring to the reverse scenario).

The datasets did not contain any duplicate source→target pairs, but they did con-
tain some duplicate source sentences, and some duplicate targets. That this is so, is

1https://datamarketplace.taus.net/enhance-mt; also available on AWS marketplace: https:

//aws.amazon.com/marketplace/seller-profile?id=5e008837-9f31-46ca-9797-74ceea721e4d.
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not surprising or problematic per se, since the same source sentences can have different
translations, and different source sentences can have the same translation. Still, in the
context of this project, I wanted to clean all the duplicate sources and all the duplicate
targets. Duplicate sources were cleaned because Active Custom Translation does not
use them anyway. If the user provides a dataset that contains duplicate sources, ACT
will only make use of the last source, or the source with the most recent date2, with
other duplicate sources filtered out from the parallel corpus. Google’s AutoML does
not use duplicate sources either3, and thus this seems to be the default in the industry.
Cleaning the data ourselves, instead of letting providers clean the data for us, should
ensure reproducibility of the experiments. Duplicate targets were cleaned with an eye
out for the method we will use most frequently to obtain synthetic parallel corpora,
namely back-translation. Even though having multiple (non-duplicate) sources for the
same target might actually be beneficial when using synthetic corpora generated by
back-translation, as reported by Imamura et al. (2018), if we went ahead and trans-
lated duplicate targets using the off-the-shelf AT or OPUS-MT model, we would each
time obtain the same source sentence, which we would again have to remove before
using this synthetic parallel corpus.

domain en-nl sentence pairs

Financial Services 174025
Pharmaceuticals & Biotechnology 84862
Retail & Wholesale Distribution / E-Commerce 37986

Table 4.1: Number of sentence pairs per domain before cleaning.

As a first step in preparing the data, I combined the original training and test
datasets that were provided in each of the domains. Statistics about those combined
corpora are given in Table 4.1. Next, I used a cleaner provided by TAUS4 to clean
the data. The cleaner both fixes the text according to prespecified rules (for example,
it fixes the quotation marks and content extracted between HTML tags), and flags
problematic instances, such as duplicate sources and targets and instances where one
of the sentence pairs is much shorter than the other, indicating a likely wrong trans-
lation or a misaligned sentence. pair. It also flags the sentences that are very long
(longer than 100 tokens). After removing all the data that was flagged by the cleaner,
including all duplicate sources and duplicate targets, from each of the datasets, I ran-
domly selected 2000 sentence pairs to serve as a test set, and 2000 sentence pairs that
will be used as a development set when fine-tuning the OPUS-MT model. TAUS data-
language-cleaner library also provides the token counts per sentence (not counting the
punctuation tokens). Basic statistics about the datasets in the three domains after
cleaning are provided in Table 4.2.

In Table 4.3, I present sentences from the test set that are very relevant for each
of the domains. Those sentences were obtained by using LASER embeddings and
calculating a cosine similarity matrix across each of the test datasets.5

2https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data-input-files.

html
3https://cloud.google.com/translate/automl/docs/
4https://github.com/TAUSBV/data-language-cleaner, presently only available for internal use.
5For this, I used another library developed by TAUS, called CosineSimilarityMatrix: https://

github.com/TAUSBV/CosineSimilarityMatrix. Presently only available for internal use.

https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data-input-files.html
https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-parallel-data-input-files.html
https://cloud.google.com/translate/automl/docs/
https://github.com/TAUSBV/data-language-cleaner
https://github.com/TAUSBV/CosineSimilarityMatrix
https://github.com/TAUSBV/CosineSimilarityMatrix
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domain # train # dev # test # avg tok source # avg tok target

Fin 160395 23 23
Pharma 79029 2000 2000 22 23
E-Comm 32467 25 25

Table 4.2: Statistics for cleaned datasets.

Financial Services

Contracting authorities should introduce appropriate contractual safe-
guards into their supply agreements to the effect that the amount and
delivery schedule of ordered euro banknotes may be changed within the
limits established by the ECB.
Aanbestedende diensten dienen passende contractuele waarborgen in hun
leveringsovereenkomsten op te nemen inhoudende dat bedrag en leveringss-
chema van bestelde eurobankbiljetten binnen de door de ECB vastgestelde
grenzen kunnen worden gewijzigd.

Pharmaceuticals & Biotechnology

In a study in subjects with varying degrees of renal impairment, mild to
moderate renal disease had no influence on plasma concentration of rosu-
vastatin or the N-desmethyl metabolite.
In een onderzoek bij patiënten met verschillende gradaties van nierinsuf-
ficiëntie had milde tot matige nierinsufficiëntie geen invloed op de plasma-
concentratie van rosuvastatine of de N- desmethylmetaboliet.

Retail & Wholesale Distribution / E-Commerce

Standard features include a locked-down internal USB port, chassis intru-
sion switch, locking bezels and a built-in Trusted Platform Module (TPM)
which enables system authentication, assists with encryption and helps pre-
vent tampering.
Tot de standaardvoorzieningen behoren een vergrendelde interne USB-poort,
een schakelaar die het openen van het chassis detecteert, vergrendelbare ran-
den en een ingebouwde Trusted Platform Module (TPM) die systeemverifi-
catie mogelijk maakt, assisteert bij versleuteling en sabotagepogingen helpt
voorkomen.

Table 4.3: Examples of relevant sentences from the test sets for each of the domains.

4.2 Baseline: Performance of Unadapted Models

As a baseline for all the other experiments, Amazon Translate and OPUS-MT English to
Dutch (en→nl) off-the-shelf models were used to translate the source (English) portion
of the test set into Dutch. The performance in terms of BLEU, chrF2 and COMET
scores is reported in Table 4.4. In this table and all the following tables, best results are
marked in bold, and * implies that the difference is statistically significant at p=0.05 or
less. For baseline and upper bound systems, we compare the two models, while when
reporting experimental results, we always compare the systems to the baseline.

As we can see from the table, BLEU and chrF2 scores indicate that off-the-shelf
models perform the best when translating data from the financial domain. The per-
formance is worst for the e-commerce domain, while results for the pharmaceutical
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domain & model BLEU chrF2 COMET

Fin

AT 49.95 72.80 0.8092
OPUS 51.85* 74.00* 0.8223*

Pharma

AT 45.72 71.37 0.8152
OPUS 48.61* 72.90* 0.8298*

E-Comm

AT 41.11* 68.28* 0.7464*
OPUS 39.49 66.72 0.7105

Table 4.4: Evaluation of unadapted en→nl models.

domain are positioned in the middle. COMET scores differ in that they assign the best
performance when translating sentences from the pharmaceutical domain, followed by
those from the financial and e-commerce domains. All evaluation metrics agree that
OPUS-MT models perform better on data from the financial and pharma domains,
while Amazon Translate model performs better when it comes to e-commerce. An
important fact to notice when looking at the baseline results is that they are already
pretty high, especially if we compare them to the results then-state-of-the-art NMT
systems were obtaining just a few years ago, as in the papers we referenced when de-
scribing related work on translation-based synthetic data generation such as Burlot and
Yvon (2018), Poncelas et al. (2018) and Edunov et al. (2018). Because of this, it will
be very interesting to see if we obtain comparable results, since we will be working with
systems that perform much better before domain adaptation.

We also evaluate the other translation directions, nl→en, by taking the target side
portion of the test set (Dutch) and translating it into English. This will be the direction
for producing synthetic back-translated data. The results in terms of BLEU, chrF2 and
COMET scores are reported in Table 4.5.

domain & model BLEU chrF2 COMET

Fin

AT 54.13 74.10 0.765
OPUS 55.12 75.63* 0.7962*

Pharma

AT 52.06 74.07 0.8274
OPUS 56.62* 76.78* 0.8544*

E-Comm

AT 45.85 69.66 0.7564
OPUS 45.66 69.71 0.7643*

Table 4.5: Evaluation of nl→en models that will be used for back-translation.

As we can see, when translating in the nl→en direction, all metrics agree that best
translations are produced in the pharmaceutical domain, with the financial domain a
close second. The e-commerce domain lags behind, although different metrics disagree
about the scale of difference in performance. The fact that we obtain better translation
in this translation direction, is probably, at least in part, attributable to the fact that,
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when translating Dutch to English, we are translating sentences that are themselves
translations of the source (English) original sentences. As shown by numerous studies,
discussed by Edunov et al. (2020), sentences that are themselves a translation (trans-
lationese sentences) are easier to translate than sentences that are original text (source
original sentences).

4.3 Upper Bound: Adaptation with Natural Data

Following Burlot and Yvon (2018), we use adaptation with natural data to define a
topline system or an “upper bound of translation performance” (Burlot and Yvon,
2018, p. 145). In this scenario, natural parallel training datasets, as described at
the start of this chapter, were used to adapt the models. In the case of ACT, they
were added as parallel data to AWS, and used to customize translations of the source
portion of the test data (English) into Dutch. OPUS-MT off-the-shelf model, on the
other hand, was fine-tuned with this natural parallel corpora, using the fine-tuning
procedure described in the last chapter, to obtain the fine-tuned OPUS-FT models.
Results are reported in Table 4.6.

domain & model BLEU chrF2 COMET

Fin

ACT 55.05 75.61* 0.8245
OPUS-FT 54.36 75.13 0.8216

Pharma

ACT 51.55* 74.33* 0.8342
OPUS-FT 50.33 73.81 0.8340

E-Comm

ACT 46.34* 71.05* 0.7701*
OPUS-FT 44.28 69.83 0.7531

Table 4.6: Evaluation of adaptation using natural parallel data.

The metrics again disagree, with BLEU and chrF2 painting a picture of adapted
models that perform significantly better than the baselines, with an average increase
in performance of more than 5 BLEU points or almost 3 chrF2 points for ACT, and
3 BLEU points or almost 2 chrF2 points for the OPUS-FT models. As for COMET
evaluation, it shows significant improvements of almost 0.02 points on average for ACT.
OPUS-FT models adapted with data from the financial and pharmaceutical domains,
on the other hand, do not perform significantly different from the baseline models in
terms of COMET scores. The model adapted with e-commerce data, though, shows
the highest improvement over the baseline of any model in terms of COMET score.
Granted, the baseline OPUS-MT model, when translating data from the e-commerce
domain, is also the lowest performing of all baselines.

In the reminder of this chapter, when reporting experimental results, we will always
show both the baseline results, as presented in the last section, as well as the upper
bound results. Note that the performance of models adapted with synthetic data
will always be compared to the performance of the baseline models, while upper bound
results will be shown for the convenience of the reader, so that it would not be necessary
to look them up in the tables presented in this section.
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4.4 Experimenting with Synthetic Data

After introducing our datasets, evaluating the baseline models, and defining upper
bound performance obtained when adapting models with natural data, in this section
we will present five experiments that were executed in the course of this research. The
experiments roughly follow the organization of the section on Synthetic Data for Neural
Machine Translation in Chapter 2. The first two experiments evaluate the performance
of using different translation directions to obtain synthetic parallel corpora: back-
translation, forward translation, and the combination of the two methods. After that,
we conduct three experiments that seek to examine back-translation in more detail.
The first is meant to evaluate the influence translation quality has on back-translated
parallel corpora. Next, we look at using different ratios of synthetic to natural data.
Lastly, we experiment with data selection in order to filter out the data more similar
to the test sets.

4.4.1 Simple back-translation

To conduct the first experiment, AT and OPUS-MT off-the-shelf nl→en models, eval-
uated in the Baseline section, were used to back-translate the target portion of the
natural parallel dataset (Dutch data) into English. Synthetic parallel corpora that
were obtained by combining the translated source side and the target side of the orig-
inal datasets were then used as parallel data for ACT, and to adapt the OPUS-MT
model.

After generating synthetic parallel corpora and before using them for adaptation,
the same cleaning method that was used for cleaning natural parallel datasets was
employed since, after generating the source side data, we obtained some new duplicate
sources that needed to be removed.6 The same will be repeated in all the following
experiments if there is a need to clean duplicate source sentences.

Table 4.7 presents results of adapting the AT model. The only disagreement between
the metrics is that COMET again, as for the baseline and upper bound models, assigns
a higher score for the models adapted to the pharmaceutical domain, as compared
to the financial domain. All adapted models obtain higher scores than the baselines,
with the difference being statistically significant. Models adapted with synthetic data
obtained by back-translation using OPUS-MT off-the-shelf nl→en model perform bet-
ter than those translated with the AT model in all cases, although the difference is
not statistically significant in most of them. As we have seen, OPUS-MT model did
also obtain better results in almost all cases in the nl→en translation direction, so
this is not surprising. More interesting is the fact that the worst performing baseline,
e-commerce, gained the smallest improvements in terms of all the scores. While for
the financial and pharmaceutical domain, performance of models adapted with purely
synthetic data obtained by back-translation is somewhere in the middle between the
performance of the unadapted model and the upper bound models adapted with nat-
ural data, for the e-commerce domain, the performance is much closer to that of the
baseline model. Note that this is also the domain where the smallest quantity of data
is available, less than half of data available for the pharmaceutical or quarter of data
available for the financial domain. I am not sure if I should speculate that this disparity
in data quantity could be the reason for the different performance, though. Note also

6This implies that a number of sentences in the original dataset were very similar, thus when
translating the target side Dutch sentences we obtained duplicate English sources.
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domain & model BLEU chrF2 COMET

Fin

AT baseline 49.95 72.80 0.8092
ACT ATbt 52.05* 74.03* 0.8123
ACT OPUSbt 52.27* 74.11* 0.8133*

ACT upper bound 55.05 75.61 0.8245

Pharma

AT baseline 45.72 71.37 0.8152
ACT ATbt 47.68* 72.35* 0.8204*
ACT OPUSbt 48.41* 72.79* 0.8229*

ACT upper bound 51.55 74.33 0.8342

E-Comm

AT baseline 41.11 68.28 0.7464
ACT ATbt 42.62* 69.05* 0.7538*
ACT OPUSbt 42.80* 69.16* 0.7542*

ACT upper bound 46.34 71.05 0.7701

Table 4.7: Performance of ACT using fully synthetic parallel corpora obtained by back-
translation.

that this disparity did not seem to influence the performance of upper bound models,
where all systems have shown comparable increases in performance (with the lowest
performing e-commerce model actually showing comparatively the biggest increase in
performance when compared to the baseline in terms of the COMET score).

domain & model BLEU chrF2 COMET

Fin

OPUS baseline 51.85 74.00 0.8223
OPUS-FT ATbt 51.91 74.22 0.8059*
OPUS-FT OPUSbt 50.98 73.87 0.8006*

OPUS-FT upper bound 54.36 75.13 0.8216

Pharma

OPUS baseline 48.61 72.90 0.8298
OPUS-FT ATbt 48.03* 72.58* 0.8113*
OPUS-FT OPUSbt 48.55 72.95 0.8134*

OPUS-FT upper bound 50.33 73.81 0.8340

E-Comm

OPUS baseline 39.49 66.72 0.7105
OPUS-FT ATbt 42.17* 68.81* 0.7346*
OPUS-FT OPUSbt 40.68* 68.01* 0.7207*

OPUS-FT upper bound 44.28 69.83 0.7531

Table 4.8: Performance of OPUS-FT models fine-tuned with fully synthetic parallel
corpora obtained by back-translation.

Table 4.8 presents results of fine-tuning the OPUS-MT model with fully synthetic
data obtained by back-translation. We can immediately notice that the results of adapt-
ing this model are very different to what we observed when evaluating ACT. The worst
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performing baseline, e-commerce, is the only one to obtain significantly better results
after fine-tuning the model with synthetic data. All metric further agree that adapt-
ing the model using back-translated e-commerce data produced by AT is significantly
better than using data produced by the OPUS-MT baseline model. A possible expla-
nation for this is the fact that, as will be discusses further at a later point, OPUS-MT
model produces noisier translations, to which an NMT model should be more suscep-
tible. As for the other two domains, when looking at BLEU and chrF2 evaluation, we
can notice that the adapted models perform similarly to the baseline, and in one case,
even significantly worse than the baseline, as is the case when using back-translations
obtained using AT model to translate data from the pharmaceutical domain. The AT
model did obtain much worse results when translating the pharmaceutical data test
set in the nl→en direction as compared to the OPUS-MT model, which might explain
this difference. Remember also that in the case of BLEU and chrF2, models adapted
using natural data obtained significantly better results in those two domains as com-
pared to the baseline, while COMET scores showed no or insignificant improvements.
After adaptation with purely synthetic data, on the other hand, COMET scores show
significantly worse results. Here, the fact that NMT models have a tendency to overfit
to noisy synthetic data, as shown by Burlot and Yvon (2018) and Fadaee and Monz
(2018), might be at play.

4.4.2 Forward translation

In this experiment, the usefulness of forward translation and mixing equal parts of
forward and back-translated data to obtain the synthetic corpora was evaluated. To
obtain forward translated corpora, all source side data in English was translated to
Dutch using the off-the-shelf en→nl AT model. For the combination of forward and
back-translation, half of the source original corpora was randomly sampled and then
translated into target, while the other half of target natural corpora was back-translated
into source, a procedure also used by Burlot and Yvon (2018) and Park et al. (2017).

Since I did not expect to obtain such good results as with back-translation, I only
executed this experiment in one domain, e-commerce, and only using AT as the trans-
lation engine to obtain the translations used when building parallel corpora. I chose
the e-commerce domain since the baseline performance obtained when translating data
from this domain was the lowest, thus I expected that any increases would be the eas-
iest to obtain in this domain. Also, since this domain has the least quantity of parallel
data available, those experiments, from which I didn’t expect to gain much, were the
quickest and least expensive to run. The results are reported in Table 4.9 for ACT,
and in Table 4.10 for OPUS-FT models.

domain & model BLEU chrF2 COMET

E-Comm

AT baseline 41.11 68.28 0.7464
ACT ATft 40.91* 68.14* 0.7454
ACT ATbt&ft 41.79* 68.57* 0.7484
ACT ATbt 42.62* 69.05* 0.7538*

ACT upper bound 46.34 71.05 0.7701

Table 4.9: Performance of ACT using synthetic parallel corpora obtained by FT and
combining FT and BT.
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Performance of ACT using synthetic corpora obtained by forward translation (FT)
and mixing forward and back-translated (BT) data seems to confirm the expectations.
When adapting translations using forward translated data, the performance is actually
(in terms of BLEU and chrF2, significantly) worse than that of the baseline model.
I expect this is because of the noise introduced by the erroneous translations of the
baseline model. Combining forward and back-translated data results in (again, in
terms of BLEU and chrF2, significantly) better results than when using the baseline
model, but the results are still not as good as when using just back-translated data.

domain & model BLEU chrF2 COMET

E-Comm

OPUS baseline 39.49 66.72 0.7105
OPUS-FT ATft 40.14* 67.63* 0.7349*
OPUS-FT ATbt&ft 41.44* 68.39* 0.7397*
OPUS-FT ATbt 42.17* 68.81* 0.7346*

OPUS-FT upper bound 44.28 69.83 0.7531

Table 4.10: Performance of OPUS-FT models fine-tuned with synthetic parallel corpora
obtained by FT and combining FT and BT.

Performance of OPUS-FT models in terms of BLEU and chrF2 scores actually is
even more in tune with what we would expect. Here, fine-tuning the model using for-
ward translated data also results in significant gains, although less pronounced than
when adding back-translated data, which is exactly what we would expect based on
what is reported in the literature. COMET scores, on the other hand, paint an unex-
pected picture and imply that models adapted with forward translated data perform
at least as good as when using back-translation (the results are actually higher for
both forward translation and the best performing model adapted with a combination
of forward and back-translated data, although the differences are not significant).

4.4.3 Choosing the best translations

This experiment was designed in order to check if cleaning the synthetic data differ-
ently or using a different decoding method to obtain translations could result in better
performance of models adapted with those synthetic parallel corpora.

Inspired by Xu et al. (2019), who used bilingual word embeddings and cosine similar-
ity between sentence vectors as a measure of translation quality, LASER embeddings
were used to encode each source sentence (obtained by back-translation) and target
sentence (natural) in turn, and then the cosine similarity between the vectors was cal-
culated. Then, all sentence pairs where cosine similarity is lower than 0.9 were filtered
out. This cut-off was selected because it was also used when selecting sentences that
comprise the natural parallel corpora provided for the experiment. Thus, it should en-
sure that synthetic data obtained is of very similar translations quality as the natural
data. Only back-translated sentences produced by OPUS-MT were used in this ex-
periment because, considering that those translations are more noisy than translations
obtained using AT, I expected higher gains could be obtained from cleaning the data.

As for exploring the utility of using a different decoding method, following Edunov
et al. (2018), sampling was used instead of greedy decoding when generating back-
translations using the baseline OPUS-MT model.
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Results are shown in Table 4.11 for ACT, and Table 4.12 for OPUS-MT model
fine-tuned with synthetic parallel data. The tables also feature results of adaptation
with synthetic data obtained using greedy decoding, that was evaluated in the first
experiment.

BLEU chrF2 COMET

Fin

AT baseline 49.95 72.80 0.8092
ACT OPUSbt greedy 52.27* 74.11* 0.8133*
ACT OPUSbt greedy LASER 52.24* 74.08* 0.8162*
ACT OPUSbt sampling 51.94* 73.89* 0.8119

ACT upper bound 55.05 75.61 0.8245

Pharma

AT baseline 45.72 71.37 0.8152
ACT OPUSbt greedy 48.41* 72.79* 0.8229*
ACT OPUSbt greedy LASER 48.22* 72.63* 0.8214*
ACT OPUSbt sampling 48.43* 72.79* 0.8227*

ACT upper bound 51.55 74.33 0.8342

E-Comm

AT baseline 41.11 68.28 0.7464
ACT OPUSbt greedy 42.80* 69.16* 0.7542*
ACT OPUSbt greedy LASER 42.67* 69.12* 0.7547*
ACT OPUSbt sampling 42.81* 69.15* 0.7551*

ACT upper bound 46.34 71.05 0.7701

Table 4.11: Performance of ACT using fully synthetic parallel corpora obtained by
back-translation using the OPUS-MT model.

As we can see in the tables, there is hardly any difference obtained when cleaning
the data with LASER embeddings or generating translations via sampling, as opposed
to using greedy decoding and the default cleaning method. Different metrics also do not
point into the same direction when it comes to which method could be considered better
than the others. When it comes to ACT, all of them lead to significant improvements
over the baselines. OPUS-MT models, on the other hand, only improve over the worst-
performing e-commerce baseline. In the other two domains, results are on par with
those obtained using the off-the-shelf, baseline model, or even significantly worse (when
it comes to COMET evaluation).

Based on related work, I did not expect that the quality of translation will influence
the performance of the models to a considerable extent, since it has been shown that
using a reasonably good model for translation is usually enough (Fadaee and Monz,
2018). Still, I did expect some improvements would be obtained by filtering out trans-
lation of lesser quality when constructing synthetic parallel corpora, or using a different
decoding method to generate translations. Still, experimental results seem to indicate
that those procedures do not result in better performance when compared to using
greedy decoding and the default cleaning method.
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BLEU chrF2 COMET

Fin

OPUS baseline 51.85 74.00 0.8223
OPUS-FT OPUSbt greedy 50.98 73.87 0.8006*
OPUS-FT OPUSbt greedy LASER 51.19 74.01 0.8018*
OPUS-FT OPUSbt sampling 51.10 73.96 0.8067*

OPUS-FT upper bound 54.36 75.13 0.8216

Pharma

OPUS baseline 48.61 72.90 0.8298
OPUS-FT OPUSbt greedy 48.55 72.95 0.8134*
OPUS-FT OPUSbt greedy LASER 48.47 72.75 0.8109*
OPUS-FT OPUSbt sampling 48.53 72.81 0.8114*

OPUS-FT upper bound 50.33 73.81 0.8340

E-Comm

OPUS baseline 39.49 66.72 0.7105
OPUS-FT OPUSbt greedy 40.68* 68.01* 0.7207*
OPUS-FT OPUSbt greedy LASER 40.67* 67.93* 0.7210*
OPUS-FT OPUSbt sampling 40.91* 67.88* 0.7188

OPUS-FT upper bound 44.28 69.83 0.7531

Table 4.12: Performance of OPUS-FT models fine-tuned with fully synthetic parallel
corpora obtained by back-translation using the OPUS-MT model.

4.4.4 Experimenting with the quantity of synthetic data

The last experiment seems to imply that, when it comes to synthetic data of sufficient
quality, further tweaks meant to ensure translation are a bit better do not bring im-
provements in the overall performance of adapted models. What is expected to have a
bigger impact, though, is the quantity of synthetic data used, and even more crucially,
the ratio of synthetic to natural data (as shown by Fadaee and Monz (2018), Poncelas
et al. (2019) and Burlot and Yvon (2018)).

In the previous three experiments, the models were adapted using completely syn-
thetic data, either produced by back-translation (experiments 1 and 3) or by forward
translation and combining forward and back-translation (experiment 2). This models a
scenario in which there is no natural parallel data available in the domains of interest.
A scenario one might expect to encounter more frequently in a “real-world” setting,
though, is the one where some natural parallel data is available, and this natural data
is augmented using synthetic parallel data. The remaining experiments model this
scenario.

The present experiment is set up as follows. A certain percentage of the original
natural parallel dataset is selected at random (1/2, 1/5 or 1/11, depending on the
experiment and the domain). Then, the remaining target natural sentences are back-
translated to source using the off-the-shelf AT nl→en model.

Tables 4.13 and 4.14 show results for adapting AT and OPUS-MT models to each of
the three domains, each time taking a random half of original datasets as natural data,
and adding the second half as back-translated parallel data. Since different datasets
are of different sizes, each table in this subsection includes information on how many
natural sentences were randomly selected for the natural data portion of the parallel
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corpora.

Since for the e-commerce domain, the least amount of parallel data was available,
only this first experiment was run in that domain. For the other two domains, how-
ever, there was more data, and thus more room to experiment with different ratios
of synthetic to parallel data in a meaningful way. For the pharmaceutical domain, I
also randomly selected 1/5 of the natural data as the natural portion, and tried adding
synthetic data in ratios of 1:1 and 1:4 to this data. For the financial domain, where the
most data is available, I additionally experimented with selecting just 1/11 of natural
data, and adding ratios as high as 1 part natural to 10 parts synthetic data. Results for
ACT in those two domains are given in tables 4.15 and 4.16, while result for fine-tuned
OPUS-FT model are given in tables 4.17 and 4.18.

Selecting just a part of the natural parallel corpora as natural data in this way
had an additional benefit: each time the least amount of natural data was selected in a
certain domain (1/2 for e-commerce, 1/5 for pharmaceutical, and 1/11 for financial), the
resulting natural parallel corpus was of roughly the same size (around 15000 sentences).
This also allows for evaluating the effect different sizes of natural corpora have on
adapting models to the three domains.

domain & model BLEU chrF2 COMET

E-Comm 16175 natural sentences

AT baseline 41.11 68.28 0.7464
ACT natural 44.12* 69.84* 0.7595*
ACT 1 natural : 1 synthetic 44.99* 70.31* 0.7615*

ACT upper bound 46.34 71.05 0.7701

Pharma 39362 natural sentences

AT baseline 45.72 71.37 0.8152
ACT natural 49.15* 73.16* 0.8253*
ACT 1 natural : 1 synthetic 50.15* 73.59* 0.8303*

ACT upper bound 51.55 74.33 0.8342

Fin 79653 natural sentences

AT baseline 49.95 72.80 0.8092
ACT natural 52.74* 74.34* 0.8149*
ACT 1 natural : 1 synthetic 53.53* 74.81* 0.8192*

ACT upper bound 55.05 75.61 0.8245

Table 4.13: Performance of ACT adapted with 1 part synthetic to 1 part natural data.

As with the previous experiments, the biggest difference is in the performance of
the two models, so we will look at each of them in turn.

When it comes to ACT, every time a translation is adapted as part of this exper-
iment we obtain a statistically significant improvement over the unadapted baseline,
except a few evaluations with COMET scores (the translations adapted to pharma-
ceutical domain using just 1/5 of the original natural data and a number of models
from the financial domain adapted with 1/11 and 1/5 of original natural data and with
synthetic data added to those portions of the original data). The best performance is
obtained when using a half of the original dataset as the natural portion, and adding
equal quantity of synthetic parallel data (Table 4.13). This is not surprising, since this
is the scenario where we are using the biggest quantity of natural data, which results
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domain & model BLEU chrF2 COMET

E-Comm 16175 natural sentences

OPUS baseline 39.49 66.72 0.7105
OPUS-FT natural 43.18* 69.07* 0.7474*
OPUS-FT 1 natural : 1 synthetic 43.85* 69.67* 0.7491*

OPUS-FT upper bound 44.28 69.83 0.7531

Pharma 39362 natural sentences

OPUS baseline 48.61 72.90 0.8298
OPUS-FT natural 49.35* 73.29* 0.8343
OPUS-FT 1 natural : 1 synthetic 49.94* 73.64* 0.8327

OPUS-FT upper bound 50.33 73.81 0.8340

Fin 79653 natural sentences

OPUS baseline 51.85 74.00 0.8223
OPUS-FT natural 53.46* 74.86* 0.8184
OPUS-FT 1 natural : 1 synthetic 54.24* 75.20* 0.8259

OPUS-FT upper bound 54.36 75.13 0.8216

Table 4.14: Performance of OPUS-FT models fine-tuned with 1 part synthetic to 1
part natural data.

in the highest performance of the adapted models.

When experimenting with adding different ratios of synthetic to natural data in the
pharmaceutical (Table 4.15) and the financial (Table 4.16) domain, we observe that,
each time we add additional synthetic data, we obtain additional improvement. The
best performing models in those two domains also come quite close to the results of
using natural data for adaptation (the difference in performance even becomes statis-
tically insignificant when looking at the COMET score of the best performing model
in the pharmaceutical domain). As far as it concerns ACT, it seems that adding more
synthetic data is always helpful.

model BLEU chrF2 COMET

AT baseline 45.72 71.37 0.8152

ACT natural, 15745 sentences 47.48* 72.27* 0.8199
1 natural : 1 synthetic 47.83* 72.43* 0.8215*
1 natural : 4 synthetic 48.59* 72.85* 0.8220*

ACT natural, 39362 sentences 49.15* 73.16* 0.8253*
1 natural : 1 synthetic 50.15* 73.59* 0.8303*

ACT upper bound 51.55 74.33 0.8342

Table 4.15: Performance of ACT in the pharmaceutical domain, adapted with different
ratios of synthetic to natural data.

When it comes to the OPUS-MT model, though, a slightly different picture emerges.
As for the best performing models—and these are again models adapted with a half of
the original natural parallel corpus, while the other half is synthetic corpus obtained
by back-translation, see Table 4.14—they perform almost as good as the models fine-
tuned with natural data, and in some cases even better (although this difference is
not statistically significant). Only the models in pharmaceutical and the ecommerce
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model BLEU chrF2 COMET

AT baseline 49.95 72.80 0.8092

ACT natural, 14482 sentences 50.64* 73.14* 0.8077
1 natural : 1 synthetic 50.94* 73.32* 0.8088
1 natural : 4 synthetic 51.65* 73.78* 0.8127
1 natural : 10 synthetic 52.23* 74.11* 0.8132

ACT natural, 31861 sentences 51.34* 73.58* 0.8095
1 natural : 1 synthetic 51.80* 73.86* 0.8124
1 natural : 4 synthetic 52.71* 74.34* 0.8162*

ACT natural, 79653 sentences 52.74* 74.34* 0.8149*
1 natural : 1 synthetic 53.53* 74.81* 0.8192*

ACT upper bound 55.05 75.61 0.8245

Table 4.16: Performance of ACT in the financial domain, adapted with different ratios
of synthetic to natural data.

domain, and only when evaluated with BLEU score, perform significantly worse than
models adapted with natural data.

More synthetic data, on the other hand, does not equal better performance as it did
in the case of ACT. This is best illustrated by the performance of the model adapted to
the financial domain (Table 4.18), where ratios as high as 1:10 natural to synthetic data
were used. When 10 times as much synthetic data as natural data is used, the model
seems to unlearn its parameters, and performs worse than the baseline. The model
seems to overfit to noisy training data, with noise stemming from synthetic data. I
experimented and found out that this phenomenon can be partially ameliorated by fine-
tuning the model for one epoch less (thus for 2 instead of 3 epochs). Results that are
lower than they would be after fine-tuning for 2 epochs are market with an exclamation
mark in tables 4.17 and 4.18. Nevertheless, those models would still perform worse than
models fine-tuned with less synthetic data. When fine-tuning OPUS-MT models, thus,
there definitely seems to be a limit to learning from synthetic data, as postulated by
Fadaee and Monz (2018).

model BLEU chrF2 COMET

OPUS baseline 48.61 72.90 0.8298

OPUS-FT natural, 15745 sentences 48.49 72.88 0.8286
1 natural : 1 synthetic 48.64 72.95 0.8233*
1 natural : 4 synthetic 48.67! 73.16 0.8216!*

OPUS-FT natural, 39362 sentences 49.35* 73.29* 0.8343
1 natural : 1 synthetic 49.94* 73.64* 0.8327

OPUS-FT upper bound 50.33 73.81 0.8340

Table 4.17: Performance of OPUS models, pharmaceutical domain, adapted with dif-
ferent ratios of synthetic to natural data.

In the scope of this experiment, natural and synthetic data that was used for each
experiment was selected at random. In the following, last experiment, LASER embed-
dings will be used to select data that is more similar to the test set and thus more
representative of the domain of interest.
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model BLEU chrF2 COMET

OPUS baseline 51.85 74.00 0.8223

OPUS-FT natural, 14482 sentences 52.48 74.23 0.8164
1 natural : 1 synthetic 52.74* 74.50* 0.8156
1 natural : 4 synthetic 52.69* 74.54* 0.8113*
1 natural : 10 synthetic 45.46! 74.09! 0.8097!*

OPUS-FT natural, 31861 sentences 52.38 74.31 0.8174
1 natural : 1 synthetic 53.10* 74.67* 0.8136
1 natural : 4 synthetic 53.47* 74.90* 0.8189

OPUS-FT natural, 79653 sentences 53.46* 74.86* 0.8184
1 natural : 1 synthetic 54.24* 75.20* 0.8259

OPUS-FT upper bound 54.36 75.13 0.8216

Table 4.18: Performance of OPUS models, financial domain, adapted with different
ratios of synthetic to natural data.

4.4.5 Selecting data more representative of the domain

The goal of this last experiment was to evaluate whether selecting adaptation data
that is more representative of the domain would be beneficial when adapting models
with synthetic data. Data selection has a long tradition among data-based methods
for domain adaptation for machine translation, and some works propose that the same
method be used when selecting synthetic data (see, for example, Poncelas and Way
(2019), as mentioned in Chapter 2). To obtain data that is more representative of
the domain, the source portion of the test set (English data) was used as the seed to
retrieve relevant sentences that are more similar to the test set. Similarity was again
calculated using LASER embeddings and cosine similarity as the similarity measure,
this time comparing a candidate sentence from the training corpus to all the sentences
from the test set.

The setup of this experiment builds on one of the experimental setups from the last
subsection, where 1/5 of the natural data in the pharmaceutical and financial domains
was selected, and the same quantity of synthetic data was added to the natural dataset.
To compare the data selection method to those experiments, in this one, natural data
was also selected based on similarity to the test set, with the goal of evaluating whether
the method works when it comes to selecting natural data. Next, the same random
portion of natural data was used as in the previous experiment, but synthetic data was
selected based on similarity to the test set. This time, similarity was calculated between
the synthetic, back-translated source portion of synthetic data, and the natural test set.
Results are reported on in Table 4.19 for ACT, and 4.20 for OPUS-MT models.

When it comes to ACT, the experiments in the pharmaceutical domain seem to
corroborate the hypothesis that data selection (DS) should help both when choosing
natural and when selecting synthetic data, even though the differences between the
performance of different models are slight. When adapting the model to the financial
domain, though, natural data selection shows more significant increases in performance
over selecting data at random, while selecting synthetic data more similar to the test set
seems to work less well than random selection, which is a bit surprising (the differences
are really minimal, though). We must note that these experiments are really not
extensive enough to warrant any strong conclusions.
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domain & model BLEU chrF2 COMET

Pharma 15745 natural sentences

AT baseline 45.72 71.37 0.8152

ACT natural, random 47.48* 72.27* 0.8199
ACT natural, DS 47.72* 72.39* 0.8200*
ACT 1 natural, random : 1 synthetic, random 47.83* 72.43* 0.8215*
ACT 1 natural, random : 1 synthetic, DS 48.00* 72.56* 0.8219*

ACT upper bound 51.55 74.33 0.8342

Fin 31861 natural sentences

AT baseline 49.95 72.80 0.8092

ACT natural, random 51.34* 73.58* 0.8095
ACT natural, DS 52.25* 74.02* 0.8137*
ACT 1 natural, random : 1 synthetic, random 51.80* 73.86* 0.8124
ACT 1 natural, random : 1 synthetic, DS 51.72* 73.78* 0.8117

ACT upper bound 55.05 75.61 0.8245

Table 4.19: Performance of ACT adapted with 1 part synthetic to 1 part natural data,
where some data was selected at random, and some using LASER embeddings.

domain & model BLEU chrF2 COMET

Pharma 39362 natural sentences

OPUS baseline 48.61 72.90 0.8298

OPUS-FT natural, random 48.49 72.88 0.8286
OPUS-FT natural, DS 48.00* 72.38* 0.8191*
OPUS-FT 1 natural, random : 1 synthetic, random 48.64 72.95 0.8233*
OPUS-FT 1 natural, random : 1 synthetic, DS 48.84 72.98 0.8223*

OPUS-FT upper bound 50.33 73.81 0.8340

Fin 79653 natural sentences

OPUS baseline 51.85 74.00 0.8223

OPUS-FT natural, random 52.38 74.31 0.8174
OPUS-FT natural, DS 52.38 74.25 0.8094*
OPUS-FT 1 natural, random : 1 synthetic, random 53.10* 74.67* 0.8136
OPUS-FT 1 natural, random : 1 synthetic, DS 53.07* 74.74* 0.8153

OPUS-FT upper bound 54.36 75.13 0.8216

Table 4.20: Performance of OPUS-FT models fine-tuned with 1 part synthetic to 1
part natural data, where some data was selected at random, and some using LASER
embeddings.

Fine-tuning OPUS-MT models with data selected based on similarity to the test
set, on the other hand, seems to hurt models’ performance, even when it comes to
natural data selection (again, results are pretty close, not warranting any strong con-
clusions). We hypothesize that OPUS-MT models were not as good suited to evaluate
this experiment because of the differences in the adaptation method. When it comes
to these models, namely, as will be further discussed later, adaptation data is shuffled
at the start of each epoch, and quite different results can be obtained by changing the
random seed that is used in the process. Thus, results obtained in this experiment,
that are very close, can not really tell us much.
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4.4.6 Summary

In this section, the five experiments design to evaluate the usefulness of translation-
based methods for generating synthetic data for domain adaptation were presented.
The first three experiments modelled the scenario where no in-domain parallel data
is available in the language pair and domain of interest, thus a fully synthetic parallel
corpus was used. Fully synthetic corpora generated by back-translating target side data
proved to be the most useful, and it seemed that data obtained by the default method
of translation generation and cleaned with the default cleaning method could not be
improved by using a different decoding algorithm or a different cleaning approach. The
last two experiments modelled a scenario where synthetic data is used to augment
natural parallel corpora. The experimental results indicated that when using a ratio
of 1 part natural to 1 part synthetic data to construct a parallel corpus, similar results
could be obtained as when using a natural corpus for adaptation. This was also the
best performing method of using synthetic data for adaptation.

Furthermore, it was shown that the performance of the two models (ACT and
OPUS-FT) differs significantly when it comes to the quantity of synthetic data used.
While when it came to ACT, there seemed to be no limit to learning from synthetic
data, and each experiment obtained improvements over the baseline, OPUS-FT models
were quicker to overfit to noisy synthetic data, using which turned out to be harmful to
model performance in more than one scenario. Additionally, the choice of an automatic
metric used for evaluation turned out to be crucial, since the string-based metrics BLUE
and chrF2 did not agree with the COMET score in many instances.

In the next, final chapter, we will discuss those issues in more detail, but first, in
the remainder of this one, a brief qualitative analysis will be presented, with the goal
of allowing us to go past evaluation using automatic metrics.

4.5 Qualitative Analysis

Recent research on automatic evaluation was mentioned when corroborating the choice
of using the COMET metric for evaluation (Kocmi et al., 2021; Mathur et al., 2020).
But, all that research also suggested that using human evaluation should be the best
way to evaluate machine translation results. Still, in a project like this one, where so
many systems are build and need to be evaluated, it is pretty hard to actually design
a framework that makes sense. Since I do feel that looking at the actual data is very
important, and not just relying on automatic metrics, I wanted to at least attempt
something resembling qualitative analysis. After consideration, I decided to select a
number of sentences from the test set, and show what kinds of outputs were produced by
different systems evaluated in the scope of this research. Inspired in part by the work of
Koot (2022), who calculated segment BLEU score differences in order to analyse which
sentences gained the most from domain adaptation, I decided to select my sentences
based on COMET score differences between sentences translated by off-the-shelf AT
model, and ACT customized with natural data from the e-commerce domain. I chose
this domain since all the experiments, including the ones using forward translation, have
been conducted with e-commerce data. When presenting the datasets in Chapter 3, I
mentioned using LASER embeddings to sort test sentences in order to obtain the ones
most relevant for the domain. Now, I went through them one by one, and looked at the
difference in COMET scores obtained by AT and ACT translations. I selected the ones
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where translations adapted with natural data were at least 0.2 COMET scores better
than the baseline. Those were selected because, since there was a substantial difference
in performance between the unadapted and adapted models, I expected there to be
enough “room for improvement” with regard to adaptation. Hopefully, when looking
at those sentences, we will be able to observe meaningful differences between the various
models.

All sentences selected for the analysis, as well as the outputs of the different sys-
tems, are presented in the Appendix. I selected just five sentences in order to make
the analysis manageable. After selecting the source sentences, it was just a matter of
retrieving translations produced by each of the systems selected for analysis. In addi-
tion to the outputs of the baseline and upper-bound models, I retrieved translations
produced by 10 different systems using synthetic data for adaptation: models adapted
with completely synthetic data obtained by back-translation, using both the AT and the
off-the-shelf OPUS-MT model to obtain synthetic sentences, then the models adapted
using forward translated data and a mix of forward and back-translation, and lastly
the models adapted using 1 part natural to 1 part synthetic data. In addition to pre-
senting the translations, I also calculated the COMET score for each segment, taking
into account both the source sentence and the target reference. This was done in the
hopes of getting a bit of a feeling for what different COMET scores mean in terms of
different translations obtained by various systems.

In the case of the first sentence (A.1), the biggest difference in translation is in the
use of the more formal dienen te worden gebruikt instead of moeten worden gebruikt
as a translation of are to be used and zoals beschreven instead of zoals aanbevolen for
as recommended. Both systems adapted with natural data reflect this wording, that
is also present in the reference, and so do the models adapted with 1 part natural
to 1 part synthetic data, thus the best performing models in our experiments. Some
models adapted with purely synthetic back-translated data, such as ACT ATbt and
ACT OPUSbt, use dienen te worden gebruikt and zoals aanbevolen, thus showing a
performance that can be thought of as the middle ground between the best and the
worst performing models. Additionally, the baseline AT models and some systems
adapted with forward translated data use untranslated cartridges instead of patronen.
(For this example and the following ones, all the pertinent differences that we mention
here are marked in bold in the Appendix.)

When looking at the second example (A.2), models adapted with natural data
use the term verdovend for incapacitating, and chemische stoffen for chemical agents.
Unadapted models, on the other hand, use a more literal translation of chemische
agentia for chemical agents, while imprecise terms like niet-bekwaam (uncompetent),
schadelijk (harmful) or ontplofbaar (explosive) are used instead of the very precise
verdovend. As for the systems adapted using synthetic data, about half of them use
chemische stoffen, while only one (OPUS-FT 1 natural : 1 synthetic) uses the adjective
verdovend for incapacitating.

As for our third example (A.3), the best translation in terms of the COMET score
is actually obtained by the unadapted OPUS-MT model that uses gerecycled materiaal
as a translation for post-consumer recycled materials, which is closest to the reference
translation (gerecyclede materialen). Other systems use incorrect terms such as gerecy-
clede materialen uit de consumentenkringloop and literal translation such as gerecyclede
materialen na de consument. A more correct term would be gerecyclede materialen na
consumptie, which is used by the OPUS model fine-tuned with natural data and with 1
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part natural and 1 part synthetic data. Other systems fine-tuned with synthetic data
do not obtain meaningful improvements over the baselines.

The fourth sentence selected for analysis (A.4), features Cyan, Magenta and Yellow
cartridges, which are not translated at all, or the difference is only minimal (using
Cyaan instead of Cyan), in case of the unadapted models. The reference features
cyaan, magenta en gele cartridges, which is echoed by models adapted using natural
data, and also some models adapted with synthetic data, most notably again, both
models adapted with a mix of natural and synthetic data, which in this case produced
translations of the same quality as models adapted with natural data.

When it comes to our last, fifth example (A.5), all the systems obtain results that
are very close to the reference, except for systems adapted using forward translated
data or a combination of forward and back-translation. The best performing systems
use the term patroon instead of untranslated cartridge, and a more precise klontjes
instead of klonten as a translation of clumps.

In conclusion, this limited qualitative analysis seems to confirm the conclusions we
got from automatic evaluation metrics, that the best performance can be expected by
models adapted with natural data, followed closely by models adapted using a ratio
of 1 part natural to 1 part synthetic data obtained by back-translation. Models using
forward translation and a mix of forward and back-translation seem to perform the
worst.
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Chapter 5

Discussion and Conclusion

5.1 Answering the Research Questions

At the start of this thesis, I posed the following research questions:

Q1. Can synthetic data be useful for domain adaptation in the context of TAUS
DEMT?

Q2. Which method of generating synthetic data is the most useful?

To answer the first question, I will first have to rephrase it slightly. As has been
shown in the last chapter, the results obtained in the experiments primarily differed in
respect to two criteria: the model that was adapted, and the metric that was used to
evaluate the results. As at the start of writing this thesis, TAUS used Amazon’s Active
Custom Translation for their Data-Enhanced Machine Translation service, and BLEU
scores to evaluate its performance, the answer to the first research question, if posed
for ACT and BLUE as a method of evaluation, would have to be overwhelmingly posi-
tive. Of all the experiments, the only scenario in which we did not obtain BLEU score
improvements when using synthetic data to customize the off-the-shelf AT model was
using only forward translated data for adaptation. Moreover, the experiment that eval-
uated how different quantities of synthetic data influence the performance of adapted
models seemed to imply that adding more synthetic data was always helpful. Even
using 10 times more synthetic than natural data resulted in gains in ACT translation
performance, which is something that was not expected based on related work.

Another question that can quickly be pondered, even though it was not posed as a
research question, is: should synthetic data be used for domain adaptation? Well, as we
have seen, using synthetic data never performed as good as using natural data. Thus,
a recommendation would be to always prioritize collecting natural data for adaptation,
if at all feasible. Still, it is important to note that, in the experiments executed in
this thesis, a high-resource scenario was evaluated, namely adapting English to Dutch
(both high-resource languages) models in three pretty general domains. The baseline
models already obtained very high results, and we were still able to obtain significant
improvements by using only back-translated synthetic parallel corpora for adaptation
(modelling a low-resource scenario, where no parallel in-domain data is available), and
even better improvements when synthetic data was used to augment natural data. In
a truly low-resource scenario, where the baseline models would not perform as well, I
would expect even better results might be obtained by using synthetic data.
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As for the second research question, it can be answered for both models and sub-
stantiated by results obtained by all three automatic metrics: the best results were
obtained by using synthetic parallel corpora generated by back-translation as aug-
mentation to natural parallel corpora. In some cases of fine-tuning the open-source
OPUS-MT model, the results obtained were even better than adaptation with natural
data (although the difference was not statistically significant). As for the quantities of
natural and synthetic data that should be used, this should probably be evaluated sep-
arately for each model, and possibly also for each domain of interest, since experimental
results varied quite considerably, especially when it came to evaluating OPUS-FT mod-
els and contrasting BLEU and chrF22 scores on the one hand, and COMET evaluation
on the other.

To turn to those score differences: the experiments have demonstrated that it is
critically important to select an appropriate automatic metric for evaluation. Luckily,
the evaluation of the performance of different automatic metrics, especially when it
comes to model development and comparing performance of different NMT models,
has been at the forefront of many excellent recent research papers, and it does seem
that the field will be able to move past evaluation using the BLEU score, which has
dominated it since its inception 20 years ago. Even though in the scope of this the-
sis, the string-based chrF22 has been used as a second metric, following research that
recommended its use instead of the BLUE score, most experimental results where the
metrics did not agree have shown similar BLEU and chrF2 score differences between
different systems, with the pretrained neutral COMET metric painting a dissimilar
picture. This was especially noticeable when it came to OPUS-FT models. Not only
did COMET scores indicate that using forward translated data and a combination of
forward and back-translations could be much more useful than I expected, they also
implied that, with baseline models of sufficiently high performance, using synthetic
data for domain adaptation was possibly harmful and definitely not useful. In financial
and pharmaceutical domains, COMET scores obtained using the baseline OPUS-MT
model were already very similar to those obtained using ACT customized with natural
parallel data, thus the upper bound for AT. Those scores did not improve when models
were adapted with natural data, and, perhaps not surprisingly, seeing that using nat-
ural data for adaptation did not increase the performance of fine-tuned models, using
synthetic data harmed those already high-performing baselines. On the other hand,
when fine-tuned to the e-commerce domain, the OPUS-MT model, which when used
off-the-shelf resulted in the lowest baseline, obtained the biggest improvement, with
adaptation with synthetic data helpful not only when it came to back-translation, but
also forward translation. This seems to indicate that there might be a certain thresh-
old of model performance, where the models already perform very well on data from
a certain domain, and cannot be adapted any further. In the financial and pharma-
ceutical domains, those COMET scores were above 0.8, which should indicate a very
well performing SOTA model. On the other hand, results obtained in the e-commerce
domain substantiate the expectation that in a truly low-resource scenario, synthetic
data should be even more useful for domain adaptation.

5.2 Discussion and Limitations

The first and biggest limitation of my research that I would like to address in this
section is the fact that, when using back-translation to generate synthetic corpora, a
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method used in all experiments, the target side Dutch sentences that were translated to
source (English) were actually themselves translations. This is not a setup we expect
to encounter in a “real-world” scenario, which is ultimately the scenario that we care
about. The reason experiments were set up in this way was because it was deemed im-
portant not only to compare adaptation with synthetic data to an unadapted baseline,
but also to an upper bound system obtained by adapting a model using natural paral-
lel corpora, to get a sense of where on a scale from no adaptation to adaptation with
natural data, adaptation using synthetic data would lie. The impacts of this decision
are two-fold. First, were we to use real target side monolingual data to obtain a syn-
thetic parallel corpus by back-translation, we expect that (back-)translations obtained
using the off-the-shelf model would be of lesser quality than those we obtained in our
experiments. This is because, as we already mentioned, translationese sentences are
easier to translate than original data (Edunov et al., 2020). Secondly, we expect that
using real monolingual target side data would impact our automatic evaluation to a
greater extent than using translationese data did, as discussed by Edunov et al. (2020).
Thus, we effectively evaluated a scenario that we will not encounter in practice, which
is definitely a limiting factor. I could add to that something that I already discussed
briefly in the last chapter, and that is the fact that we evaluated the method in a
high-resource scenario, while we will probably use it in lower-resource scenarios where
sufficient quantity of natural parallel data for adaptation is unattainable. Still, this is
not such a limiting factor, since we just expect results at least as good as we obtained
in the high-resource scenario. The performance of models used for back-translation in
lower-resource scenarios, though, might prove problematic, since we won’t be able to
obtain synthetic data of equal quality.

An additional limitation can be found when we look at the test sets that were used.
Usually in the machine translation field, the standard is to use translations produced
by human translators as references. Ideally, not even a single reference, but multiple
references would be used when calculating metrics such as BLEU score, even though
this is seldom encountered in practice. Our test sets, however, were picked at random
from parallel training datasets that were provided by TAUS. These datasets have been
cleaned and filtered using automatic metrics such as LASER embeddings similarities,
and we do expect they were of sufficient quality, but the additional layer of human
evaluation was still missing. Evaluating the quality of test sets was unfortunately out
of scope in this research, but in future work, it would be recommended to use test sets
that went through the additional step of vetting by human translators.

The last limitation I would like to discuss is the fact that the research presented
in this thesis is not expected to be replicable. Of course, the corpora used cannot be
shared publicly, because they are a property of TAUS, but the problem of replicability
actually runs much deeper. For one, the first model that was used and evaluated, AT, is
a proprietary model. For all I know, this model and/or the customization method used
by ATC could have changed already, and even using the same data, the results obtained
today might be very different from what was reported in this thesis. Even though the
other model I used, OPUS-MT, is open-source, and was picked as such precisely because
of reproducibility considerations, obtaining the same results might still be challenging.
This stems from the inherent non-determinism of some of the processes that were
run in the course of fine-tuning this model. Even though all precautions were taken,
such as using different types of seeds to control non-deterministic behaviour, complete
replicability still cannot be guaranteed across different platforms and even different
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GPUs.1 Note that, even though this research is probably not replicable, meaning
that even if one used the same proprietary data, results obtained today might differ
from what was reported in this thesis, I do expect that the conclusions drawn after
reproducing the experiments would be very similar. Additionally, since we mentioned
random seeds that were used to try and ensure reproducibility, I can briefly discuss
another challenge that I encountered, and that influenced results obtained by OPUS-
MT models. Namely, since training data was shuffled differently before feeding it to
the model at the start of every fine-tuning epoch, when experimenting with different
seeds, I sometimes obtained results that were quite different. Definitely the results that
implicate that a certain OPUS-MT fine-tuned model is better than another, certainly
if differences are not statistically significant, need to be taken with some reservation,
since were I to use a different seed, those results could probably suggest a different
ordering of the systems.

5.3 Conclusion and Future Work

This thesis presented an evaluation of the utility of using synthetic parallel corpora
produced by translation for domain adaptation in Neural Machine Translation. In the
first part of the thesis, I situated the topic by discussing successes and challenges of
deep learning approaches to machine translation, as well as presented related work
from the areas of domain adaptation for NMT and synthetic data generation for NLP.
Then, the question this thesis tries to answer—could TAUS, the company that the
research was performed at, successfully use synthetic data in their domain adaptation
pipeline—was narrowed down to a method that was deemed as probably the most
useful: back-translation. A series of experiments was designed, testing adaptation with
synthetic data using two models: Amazon Translate, a model currently used by TAUS
in their DEMT pipeline, as well as an open-source model, OPUS-MT. A big theme
of this thesis was also automatic evaluation for machine translation, since I needed a
reliable evaluation method in order to conclude which of the models performs the best.
Luckily, the field of MT has seen a lot of high quality research into automatic metrics in
recent years that I was able to benefit from. Following the recommendations by Kocmi
et al. (2021), I added the neural, pretrained metric COMET to the more traditionally
used string-based BLEU and chrF2 metrics. Even though it was at times confusing
to try and analyse what the results in terms of different metrics could mean, as there
were many experiments where BLEU and chrF2 results told one story, and COMET
another, incorporating COMET into the evaluation arsenal was an important decision,
since research has repeatedly shown that it correlates better with human judgment and
especially when it comes to high-performing systems, which the systems evaluated in
the scope of this thesis were.

As for the experimental results, they have unquestionably shown that there is po-
tential for using synthetic data in domain adaptation in the scope of TAUS’s DEMT,
even in the context of high-performing baseline models. Since results were compared
not only to the unadapted baselines, but also to the upper bound of adaptation with
natural data, the experimental results also urge us to stress that there is no way around
using natural data, since models adapted with it tended to show the best performance
in all circumstances. Still, adaptation with synthetic data showed considerable poten-

1For more information, as well as procedures that control sources of randomness, see https://

pytorch.org/docs/stable/notes/randomness.html.

https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
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tial, especially in the scenario of data augmentation, where synthetic data was added
to natural parallel corpora. Customizing the proprietary AT model using synthetic
data always showed at least some improvement over the baseline, and there seemed to
be no point where synthetic data would start to be harmful, leading to catastrophic
forgetting, since using as much as 10 times more synthetic than natural data proved
to be useful. Fine-tuning OPUS-MT models with synthetic data, on the other hand,
proved to be more nuanced. While in the two of the three domains that were evaluated,
and where unadapted models already performed on par with customized AT models,
improvements were not obtained even when using natural data for adaptation, in the
third domain, where the unadapted model performed the worst of the six baselines,
we were actually able to obtain significant improvements over the baseline using fully
synthetic parallel corpora.

When it comes to recommendations for future work, firstly, the method for adapt-
ing models using synthetic data presented in this thesis needs to be evaluated in the
“real-world” scenario, where target side data that will be back-translated to source to
construct a synthetic parallel corpus will be natural data, and not translations. I was
already able to secure some data in a domain not explored in this thesis, but unfor-
tunately, do to time constraints, I was unable to run an additional experiment in the
scope of this work.

Secondly, there are promising methods that refine back-translation even more, in-
cluding iterative back-translation, where models used to generate back-translations are
adapted in steps, which is especially relevant when it comes to low-resource scenarios
(Wei et al., 2020). Additionally, one method that I did explore, but very briefly and
quite superficially, is selecting synthetic data that is more in-domain or closer to the
test set. I only evaluated the method of using LASER embeddings to compute seman-
tic similarity, and calculated it exclusively on the source side of the parallel corpora,
but there are other methods that proved promising in previous research that I would
like to explore further, such as using transductive data selection algorithms (Poncelas
et al., 2019; Poncelas and Way, 2019). Furthermore, this thesis concentrated only on
evaluating synthetic data generated by translation, but there are many other promising
methods for SDG in the context of NMT, for example, targeting domain-specific words
that are the hardest to translate (Fadaee et al., 2017).

Lastly, and connected to all the points above, I would like to evaluate this experi-
mental setup in a true low-resource scenario, for which the methods of synthetic data
generation are primarily designed.
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Appendix A

Examples selected for qualitative
analysis

Below, the five examples from the e-commerce domain selected for qualitative evalua-
tion can be found, as described in the Qualitative Analysis section. For each example,
the source (S) and reference (R) sentences from the test set are listed, followed by
translations obtained by the baseline and upper-bound systems, and then each of the
models selected for qualitative evaluation. Next to each translation, the COMET score
this translation obtained is provided.

A.1

S
Insulin pen The cartridges are to be used in conjunction with an insulin pen such
as OptiPen and other pens suitable for Insulin Human Winthrop cartridges and as
recommended in the information provided by the device manufacturer.

R
Insulinepen De patronen dienen te worden gebruikt met een insulinepen zoals de
OptiPen en andere pennen geschikt voor Insulin Human Winthrop patronen, en zoals
beschreven in de informatie verstrekt door de fabrikant van de pen.

AT
Insulinepen De cartridges moeten worden gebruikt in combinatie met een insu-
linepen zoals OptiPen en andere pennen die geschikt zijn voor Insulin Human Winthrop
cartridges en zoals aanbevolen in de informatie die door de fabrikant van het apparaat
wordt verstrekt. 0.6783

OPUS-MT
Insulinepen De patronen moeten gebruikt worden in combinatie met een insu-
linepen zoals de OptiPen en andere pennen geschikt voor Insulin Human Winthrop
patronen en zoals aanbevolen in de informatie verstrekt door de fabrikant van het
hulpmiddel. 0.7433

47



48 APPENDIX A. EXAMPLES SELECTED FOR QUALITATIVE ANALYSIS

ACT natural
Insulinepen De patronen dienen te worden gebruikt met een insulinepen zoals de
OptiPen en andere pennen geschikt voor Insulin Human Winthrop patronen en zoals
beschreven in de informatie verstrekt door de fabrikant van de pen. 0.9290

OPUS-FT natural
Insulinepen De patronen dienen te worden gebruikt met een insulinepen zoals de
OptiPen en andere pennen geschikt voor Insulin Human Winthrop patronen en zoals
beschreven in de informatie verstrekt door de fabrikant van het hulpmiddel. 0.8044

ACT ATbt
Insulinepen De patronen dienen te worden gebruikt in combinatie met een in-
sulinepen zoals de OptiPen en andere pennen geschikt voor Insulin Human Winthrop
patronen en zoals aanbevolen in de informatie verstrekt door de fabrikant van het
apparaat. 0.7593

ACT OPUSbt
Insulinepen De patronen dienen te worden gebruikt in combinatie met een in-
sulinepen zoals de OptiPen en andere pennen geschikt voor Insulin Human Winthrop
patronen en zoals aanbevolen in de informatie verstrekt door de fabrikant van het
apparaat. 0.7593

OPUS-FT ATbt
Insulinepen De patronen moeten worden gebruikt in combinatie met een insu-
linepen zoals de OptiPen en andere pennen geschikt voor Insulin Human Winthrop
patronen en zoals aanbevolen in de informatie verstrekt door de fabrikant van het
hulpmiddel. 0.7418

OPUS-FT OPUSbt
Insulinepen De patronen dienen te worden gebruikt in combinatie met een in-
sulinepen zoals de OptiPen en andere pennen geschikt voor Insulin Human Winthrop
patronen en zoals aanbevolen in de informatie verstrekt door de fabrikant van het
hulpmiddel. 0.7494

ACT ATft
Insulinepen De cartridges moeten worden gebruikt in combinatie met een insu-
linepen zoals OptiPen en andere pennen die geschikt zijn voor Insulin Human Winthrop-
cartridges en zoals aanbevolen in de informatie die door de fabrikant van het apparaat
wordt verstrekt. 0.667

ACT ATbt&ft
Insulinepen De cartridges moeten worden gebruikt in combinatie met een insu-
linepen zoals OptiPen andere pennen die geschikt zijn voor Insulin Human Winthrop-
cartridges en zoals aanbevolen in de door de fabrikant van het apparaat verstrekte
informatie. 0.615
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OPUS-FT ATft

Insulinepen De cartridges moeten worden gebruikt in combinatie met een insu-
linepen zoals OptiPen en andere pennen die geschikt zijn voor Insulin Human Winthrop-
cartridges en zoals aanbevolen in de door de fabrikant van het apparaat verstrekte
informatie. 0.6649

OPUS-FT ATbt&ft

Insulinepen De patronen moeten worden gebruikt in combinatie met een insu-
linepen zoals de OptiPen en andere pennen geschikt voor Insulin Human Winthrop
patronen en zoals aanbevolen in de informatie verstrekt door de fabrikant van het
apparaat. 0.7540

ACT 1 natural : 1 synthetic

Insulinepen De patronen dienen te worden gebruikt met een insulinepen zoals de
OptiPen en andere pennen geschikt voor Insulin Human Winthrop patronen en zoals
beschreven in de informatie verstrekt door de fabrikant van de pen. 0.9289

OPUS-FT 1 natural : 1 synthetic

Insulinepen De patronen dienen te worden gebruikt met een insulinepen zoals de
OptiPen en andere pennen geschikt voor Insulin Human Winthrop patronen en zoals
beschreven in de informatie verstrekt door de fabrikant van het hulpmiddel. 0.8043

A.2

S

Fixed equipment for the dissemination of incapacitating or irritating chemical sub-
stances, which can be attached to a wall or to a ceiling inside a building, comprises
a canister of irritating or incapacitating chemical agents and is activated using a
remote control system

R

Vaste apparatuur voor de verspreiding van verdovende of irriterende chemische stoffen
die kan worden vastgemaakt aan een muur of een plafond in een gebouw, die een bus
bevat met irriterende of verdovende chemische stoffen en die met afstandsbediening
wordt geactiveerd

AT

Vaste apparatuur voor de verspreiding van niet-bekwame of irriterende chemische
stoffen, die aan een muur of aan een plafond in een gebouw kunnen worden bevestigd,
bestaat uit een bus met irriterende of niet-bekwame chemische agentia en wordt
geactiveerd met behulp van een afstandsbedieningssysteem 0.4603

OPUS-MT

Vaste apparatuur voor de verspreiding van schadelijke of irriterende chemische stoffen,
die aan een wand of aan een plafond binnen een gebouw kan worden bevestigd, bestaat
uit een busje van irriterende of arbeidsongeschikte chemische agentia en wordt
geactiveerd met behulp van een afstandsbedieningssysteem 0.4995
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ACT natural

Vaste apparatuur voor de verspreiding van verdovende of irriterende chemische stof-
fen, die aan een muur of plafond in een gebouw kunnen worden bevestigd, bestaat uit
een bus met irriterende of niet-bekwame chemische stoffen en wordt geactiveerd
door middel van een afstandsbedieningssysteem. 0.6679

OPUS-FT natural

Vaste apparatuur voor de verspreiding van verdovende of irriterende chemische stof-
fen, die aan een wand of aan een plafond in een gebouw kan worden bevestigd, bestaat
uit een bus van irriterende of verlammende chemische stoffen en wordt geactiveerd
met behulp van een afstandsbedieningssysteem 0.7297

ACT ATbt

Vaste apparatuur voor de verspreiding van niet-bekwame of irriterende chemische
stoffen, die aan een muur of aan een plafond in een gebouw kunnen worden bevestigd,
bestaat uit een bus met irriterende of niet-bekwame chemische agentia en wordt
geactiveerd met behulp van een afstandsbedieningssysteem 0.4607

ACT OPUSbt

Vaste apparatuur voor de verspreiding van niet-bekwame of irriterende chemische
stoffen, die aan een muur of aan een plafond in een gebouw kunnen worden bevestigd,
bestaat uit een bus met irriterende of niet-bekwame chemische stoffen en wordt
geactiveerd met behulp van een afstandsbedieningssysteem. 0.5882

OPUS-FT ATbt

Vaste uitrusting voor de verspreiding van ontplofbare of irriterende chemische stoffen,
die aan een wand of aan een plafond binnen een gebouw kan worden bevestigd, bestaat
uit een bus van irriterende of ontplofbare chemische agentia en wordt geactiveerd
met behulp van een afstandsbedieningssysteem 0.4039

OPUS-FT OPUSbt

Vaste apparatuur voor de verspreiding van ontplofbare of irriterende chemische stof-
fen, die aan een wand of aan een plafond binnen een gebouw kan worden bevestigd,
bestaat uit een bus van irriterende of ontplofbare chemische agentia en wordt ge-
activeerd met behulp van een afstandsbedieningssysteem 0.5125

ACT ATft

Vaste apparatuur voor de verspreiding van niet-bekwame of irriterende chemische
stoffen, die aan een muur of aan een plafond in een gebouw kunnen worden bevestigd,
bestaat uit een bus met irriterende of niet-bekwame chemische stoffen en wordt
geactiveerd door middel van een afstandsbediening 0.6071

ACT ATbt&ft

Vaste apparatuur voor de verspreiding van niet-bekwame of irriterende chemische
stoffen, die aan een muur of aan een plafond in een gebouw kunnen worden bevestigd,
bestaat uit een bus met irriterende of niet-bekwame chemische stoffen en wordt
geactiveerd met behulp van een afstandsbedieningssysteem 0.5848
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OPUS-FT ATft
Vaste apparatuur voor de verspreiding van ongeschikte of irriterende chemische stof-
fen, die aan een muur of aan een plafond in een gebouw kunnen worden bevestigd,
bestaat uit een busje irriterende of ontregelende chemische agentia en wordt geac-
tiveerd met behulp van een afstandsbedieningssysteem 0.5065

OPUS-FT ATbt&ft
Vaste apparatuur voor de verspreiding van inactieve of irriterende chemische stoffen,
die aan een muur of aan een plafond binnen een gebouw kan worden bevestigd, bestaat
uit een busje irriterende of actieve chemische stoffen en wordt geactiveerd met behulp
van een afstandsbedieningssysteem 0.6438

ACT 1 natural : 1 synthetic
Vaste apparatuur voor de verspreiding van niet-bekwame of irriterende chemische
stoffen, die aan een muur of plafond in een gebouw kan worden bevestigd, bestaat uit
een bus met irriterende of niet-bekwame chemische stoffen en wordt geactiveerd
met behulp van een afstandsbedieningssysteem 0.5865

OPUS-FT 1 natural : 1 synthetic
Vaste apparatuur voor de verspreiding van verdovende of irriterende chemische stof-
fen, die aan een wand of aan een plafond binnen een gebouw kan worden bevestigd,
bestaat uit een bus van irriterende of verstorende chemische stoffen en wordt ge-
activeerd met behulp van een afstandsbedieningssysteem 0.7148

A.3

S
This means arsenic-free glass, a mercury-free panel, halogen-free laminates in its circuit
boards and a chassis that features more than 25% post-consumer recycled materi-
als.

R
Dat betekent arsenicumvrij glas, een kwikvrij beeldscherm, halogeenvrije platen in de
printplaten en een chassis dat voor meer dan 25% uit gerecyclede materialen bestaat.

AT
Dit betekent arseenvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na de consument.
0.3097

OPUS-MT
Dit betekent arsenicumvrij glas, een kwikvrij paneel, halogeenvrije laminaat in de print-
platen en een chassis met meer dan 25% gerecycled materiaal. 0.8109
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ACT natural
Dit betekent arsenicumvrij glas, een kwikvrij paneel, halogeenvrije laminaten in print-
platen en een chassis met meer dan 25% gerecyclede materialen uit de con-
sumentenkringloop. 0.7564

OPUS-FT natural
Dit betekent arsenicumvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na consumptie.
0.7309

ACT ATbt
Dit betekent arseenvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na de consument.
0.3104

ACT OPUSbt
Dit betekent arseenvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na de consument.
0.3104

OPUS-FT ATbt
Dit betekent arsenicumvrij glas, een kwikvrij paneel, halogeenvrije laminaten in zijn
printplaten en een chassis dat voorzien is van meer dan 25% postconsumer gerecy-
clede materialen. 0.6513

OPUS-FT OPUSbt
Dit betekent arsenicumvrij glas, een kwikvrij paneel, halogeenvrije laminaten in zijn
printplaten en een chassis dat voorzien is van meer dan 25% postconsumer gerecy-
clede materialen. 0.6513

ACT ATft
Dit betekent arseenvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na de consument.
0.3104

ACT ATbt&ft
Dit betekent arseenvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na de consument.
0.3104

OPUS-FT ATft
Dit betekent arseenvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na de consument.
0.3104
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OPUS-FT ATbt&ft
Dit betekent arseenvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na de consument.
0.3104

ACT 1 natural : 1 synthetic
Dit betekent arsenicumvrij glas, een kwikvrij paneel, halogeenvrije laminaten in print-
platen en een chassis met meer dan 25% gerecyclede materialen uit de con-
sumentenkringloop. 0.7562

OPUS-FT 1 natural : 1 synthetic
Dit betekent arsenicumvrij glas, een kwikvrij paneel, halogeenvrije laminaten in de print-
platen en een chassis met meer dan 25% gerecyclede materialen na consumptie.
0.7306

A.4

S
This cartridge, when used in conjunction with the Cyan, Magenta and Yellow
cartridges, can produce high resolution color printouts with sharp images and text.

R
Wanneer deze cartridge in combinatie met de cyaan, magenta en gele cartridges
wordt gebruikt, kunt u in kleur en met hoge resolutie afdrukken waarbij tekst en af-
beeldingen haarscherp worden weergegeven.

AT
Deze cartridge kan, wanneer deze wordt gebruikt in combinatie met de Cyaan, Ma-
genta en Yellow cartridges, kleurenafdrukken met hoge resolutie produceren met
scherpe afbeeldingen en tekst. 0.7514

OPUS-MT
Deze cartridge, bij gebruik in combinatie met de Cyan, Magenta en Yellow car-
tridges, kan hoge resolutie kleurenprints met scherpe afbeeldingen en tekst produceren.
0.7512

ACT natural
Wanneer deze cartridge in combinatie met de cyaan, magenta en gele cartridges
wordt gebruikt, kunt u in kleur en met hoge resolutie afdrukken waarbij tekst en af-
beeldingen haarscherp worden weergegeven. 1.0235

OPUS-FT natural
Wanneer deze cartridge wordt gebruikt in combinatie met de cartridges cyaan, ma-
genta en geel, kan deze kleurafdrukken met hoge resolutie produceren met scherpe
afbeeldingen en tekst. 0.7532
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ACT ATbt
Deze cartridge kan, indien gebruikt in combinatie met de cyaan, magenta en gele
cartridges, kleurenafdrukken met hoge resolutie produceren met scherpe afbeeldingen
en tekst. 0.7658

ACT OPUSbt
Deze cartridge kan, wanneer deze wordt gebruikt in combinatie met de Cyaan, Ma-
genta en Yellow cartridges, kleurenafdrukken met hoge resolutie produceren met
scherpe afbeeldingen en tekst. 0.7516

OPUS-FT ATbt
Deze cartridge, bij gebruik in combinatie met de Cyan-, Magenta- en Yellowcar-
tridges, kan kleurenafdrukken met hoge resolutie produceren met scherpe afbeeldingen
en tekst. 0.7113

OPUS-FT OPUSbt
Deze cartridge, bij gebruik in combinatie met de Cyan-, Magenta- en Yellowcar-
tridges, kan kleurenafdrukken met hoge resolutie produceren met scherpe afbeeldingen
en tekst. 0.7113

ACT ATft
Deze cartridge kan, wanneer deze wordt gebruikt in combinatie met de cyaan, ma-
genta en gele cartridges, kleurenafdrukken met hoge resolutie produceren met scherpe
afbeeldingen en tekst. 0.7657

ACT ATbt&ft
Deze cartridge kan, wanneer deze wordt gebruikt in combinatie met de cyaan, ma-
genta en gele cartridges, kleurenafdrukken met hoge resolutie produceren met scherpe
afbeeldingen en tekst. 0.7657

OPUS-FT ATft
Deze cartridge kan, wanneer deze wordt gebruikt in combinatie met de cyaan-, magenta-
en gele cartridges, kleurenafdrukken met hoge resolutie produceren met scherpe af-
beeldingen en tekst. 0.7662

OPUS-FT ATbt&ft
Deze cartridge kan, wanneer deze wordt gebruikt in combinatie met de cyaan-, magenta-
en gele cartridges, kleurenafdrukken met hoge resolutie produceren met scherpe af-
beeldingen en tekst. 0.7662

ACT 1 natural : 1 synthetic
Wanneer deze cartridge in combinatie met de cyaan, magenta en gele cartridges
wordt gebruikt, kunt u in kleur en met hoge resolutie afdrukken waarbij tekst en af-
beeldingen haarscherp worden weergegeven. 1.0234
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OPUS-FT 1 natural : 1 synthetic
Wanneer deze cartridge wordt gebruikt in combinatie met de cartridges cyaan, ma-
genta en geel, kan deze kleurafdrukken met hoge resolutie met scherpe afbeeldingen
en tekst produceren. 0.756

A.5

S
Do not use Humalog Mix50, if clumps of material are present or if solid white particles
stick to the bottom or wall of the cartridge, giving it a frosted appearance.

R
Gebruik Humalog Mix50 niet wanneer er klontjes of deeltjes aanwezig zijn of wanneer
er witte vaste deeltjes aan de bodem of wand van de patroon plakken, en een bevroren
indruk geven.

AT
Gebruik Humalog Mix50 niet als er klonten materiaal aanwezig zijn of als vaste witte
deeltjes aan de onderkant of wand van de cartridge kleven, waardoor het een mat
uiterlijk krijgt. 0.6586

OPUS-MT
Gebruik Humalog Mix50 niet als er klontjes of deeltjes aanwezig zijn of als er witte
vaste deeltjes aan de bodem of wand van de patroon plakken, wat een bevroren indruk
geeft. 0.9133

ACT natural
Gebruik Humalog Mix50 niet wanneer er klontjes of deeltjes aanwezig zijn of wanneer
er witte vaste deeltjes aan de bodem of wand van de patroon plakken, en een bevroren
indruk geven. 1.0232

OPUS-FT natural
Gebruik Humalog Mix50 niet wanneer er klontjes of deeltjes aanwezig zijn of wanneer
er witte vaste deeltjes aan de bodem of wand van de patroon plakken, en een bevroren
indruk geven. 1.0236

ACT ATbt
Gebruik Humalog Mix50 niet, als er klontjes materiaal aanwezig zijn of als er vaste
witte deeltjes aan de bodem of wand van de patroon plakken, waardoor deze er mat
uitziet. 0.7220

ACT OPUSbt
Gebruik Humalog Mix50 niet wanneer er klontjes materiaal aanwezig zijn of wanneer
er witte vaste deeltjes aan de bodem of wand van de patroon plakken, en een bevroren
indruk geven. 0.9023
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OPUS-FT ATbt
Gebruik Humalog Mix50 niet, als er klontjes materiaal aanwezig zijn of als er vaste
witte deeltjes aan de bodem of wand van de patroon plakken, wat een bevroren uiterlijk
geeft. 0.8104

OPUS-FT OPUSbt
Gebruik Humalog Mix50 niet, wanneer er klontjes of deeltjes aanwezig zijn of wanneer
er witte vaste deeltjes aan de bodem of wand van de patroon plakken, en een bevroren
indruk geven. 0.9736

ACT ATft
Gebruik Humalog Mix50 niet als er klonten materiaal aanwezig zijn of als vaste witte
deeltjes aan de onderkant of wand van de cartridge kleven, waardoor het een mat
uiterlijk krijgt. 0.6587

ACT ATbt&ft
Gebruik Humalog Mix50 niet als er klonten materiaal aanwezig zijn of als vaste witte
deeltjes aan de onderkant of wand van de cartridge kleven, waardoor het een mat
uiterlijk krijgt. 0.6587

OPUS-FT ATft
Gebruik Humalog Mix50 niet als er klonten materiaal aanwezig zijn of als vaste witte
deeltjes aan de onderkant of wand van de cartridge kleven, waardoor het een mat
uiterlijk krijgt. 0.6584

OPUS-FT ATbt&ft
Gebruik Humalog Mix50 niet als er klonten materiaal aanwezig zijn of als vaste witte
deeltjes aan de onderkant of wand van de patroon kleven, waardoor het een mat uiter-
lijk krijgt. 0.5999

ACT 1 natural : 1 synthetic
Gebruik Humalog Mix50 niet wanneer er klontjes of deeltjes aanwezig zijn of wanneer
er witte vaste deeltjes aan de bodem of wand van de cartridge plakken, en een bevroren
indruk geven. 0.8376

OPUS-FT 1 natural : 1 synthetic
Gebruik Humalog Mix50 niet wanneer er klontjes of deeltjes aanwezig zijn of wanneer
er witte vaste deeltjes aan de bodem of wand van de patroon plakken, en een bevroren
indruk geven. 1.0233
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