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Abstract

Automated linguistic analysis using Natural Language Processing (NLP) and integrat-
ing ontological architectures into Human Resources (HR) process have proved to be
extremely key tools in the industry’s automation. Inevitably, an occupation is related
to the key requirements and information within a given job description, whether this be
based on the occupational title, the competencies, the education type, or all combined.
However, extracting this relevant information from the raw text is a huge challenge,
especially when reliant on human volunteers to manually annotate training data; this
is both expensive and time-consuming. In addition to this, creating an ontology can
prove to be a difficult task, especially given that many different occupations are often
labelled as the same title, despite having very different requirements; without their
related requirements, it can be hard to disambiguate two given occupations.

As a result, this thesis aims to leverage the information and requirements within job
posting data to perform the multi-class classification of occupations, using ontology-
based extracted information. Since the data is completely unlabelled, firstly we map
out an annotation guideline framework to be used to annotate a batch of the data for
gold label generation; making this a semi-supervised task. Then, a distantly-supervised
bootstrap system of pattern learning is utilised, to extract relevant terms within the
occupation descriptions using ontological seed lists as a basis. For the final component,
namely the occupation classification model, the limited manually annotated data is
then leveraged in a semi-supervised approach, formally known as pseudo-labelling. An
exploration is therefore undertaken to determine to what extent the ontology-based
extracted information will aid in this type of classification task.
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Chapter 1

Introduction

Occupational coding, or as referred to in this thesis, occupation classification, is the
complex task of categorizing occupations into clearly defined classes aiming to describe
the job labour market through the systematic aggregation of related data. Through
undertaking such a task, a combination of statistical and predictive analyses can be
undertaken into the job market to help with a variety of different socio-economic Hu-
man Resources (HR) and Recruitment processes. For example, by tracking salary rates
for different occupations, otherwise known as salary benchmarking, and analysing the
development of certain skills or occupation titles to determine whether they are becom-
ing increasingly in demand or obsolete, the tasks of both attracting and retaining the
right talent can be improved; these are formally referred to as Talent Acquisition and
Talent Retention, respectively. However, with every company having its own unique
organisational culture and language, it can be extremely difficult for them to attract
and identify suitable candidates to fit into these conditions at not only a technical level,
but also on a cultural level. A technical fit can be defined as a job seeker having the
right set of skills, knowledge and ability to perform tasks within a role whilst a cultural
fit refers to the “likelihood that [a candidate] will reflect and/or be able to adapt to the
core beliefs, attitudes, and behaviors that make up [the] organization” (Bouton, 2015).
Similarly then, each job seeker has their own set of aptitudes and personality traits
which can only be exerted to their full-potential in the right working conditions for
them. The hiring process can be both time-consuming and expensive for the prospect
candidates as well as the companies, with the average cost for hiring and replacing a
new employee being around 4,700 euros (Muehlemann and Pfeifer, 2016) notwithstand-
ing the amount of time spent by candidates. If a company took the time to ensure a
good balance on both fits, it could lead to a higher job satisfaction for their employees,
improving the aforementioned HR practices and ultimately saving money, effort and
time.

Before a cultural fit however, which is likely only be later determined during the in-
terview process, the easiest and arguably most important aspect to initially match is
the technical fit; without a match on this skill-related side, a good cultural match will
deem redundant since the candidate will be unable to perform the tasks required for
the given occupation. One of the most powerful and informative sources of initial in-
formation that a company can use to therefore reduce these costs for both sides by
explicitly outlining these requirements is through the use of job postings. Job postings
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2 CHAPTER 1. INTRODUCTION

are powerful sources of data defined as “official advertisement[s] of a [given] position
for which [a] company is actively seeking a new-hire” and often comprise of a mini-
mum of two main text fields, namely a job title and a job description (Boselli et al.,
2018). Their highly influential aptitude is emphasised with the fact that they are often
the first ever interaction that occurs between a given candidate and a company and
therefore present the first impression to a job seeker. Although originally job postings
were advertised on paper in newspapers, magazines and even bulletin-boards, following
a rise in the popularity of internet usage and interest in automating the HR industry
as a whole, there has been an increase in companies electing to utilise online social
networking platforms by posting open vacancies online. By doing so, they are able
to promote themselves as desirable businesses to work for and advertise potential em-
ployment opportunities at no longer just a local or national level, but on a global scale.
Particularly then, the dynamic influx in the number of job advertisements being posted
online has significantly impacted both the Talent and Job Search processes because of
their increased exposure and improved accessibility. Using international job boards,
including StepStone, LinkedIn and Indeed, it has been reported that the German job
market has seen a total of 14,524,239 online job postings during the first 6 months of
2020 alone (Skills-OVATE, 2020).

This type of data source therefore plays a vital role in the HR industry and has the
potential to both determine and predict future insights in the development of the job
market through an analysis of their contents. A vacancy posting describes the key
requirements and information related to a given occupation, whether this be based
on the title, the competencies, the education type or all combined. With regards to
occupation classification, there are multiple different types of schema that are utilised
across the world, as explored in more detail in Chapter 3, with some electing to cat-
egorise occupations using the title alone, the skill type and/or level, the education or
a mixture of all aspects together. Naturally, there are advantages and disadvantages
to each of the systems, however for the purpose of this thesis, the schema selected
categorises occupations using a combination both skills and education in a hierarchical
structure, entitled the Standard Occupation Classification (SOC). The reason for this
choice, is because of the challenge in the lack of uniformity that occurs when using the
job title alone, as is used in some of the other candidate schema. Rather than utilising
a systematic system, titles within job postings are selected manually by each individual
company based on their own understanding of the position. This, in turn, not only
means it can be difficult to disambiguate two different jobs with the same title but also
introduces unconscious bias; subjective influences, conscious alongside unconscious bi-
ases are exerted into the recruitment processes by gatekeepers (HR professionals) which
then exclude and discriminate against prospect candidates belonging to certain societal
groups, albeit this may be unintentional. Moreover, by solely using the occupation titles
for classification without a normalised system for title selection, inaccurate statistical
predictive analyses may occur as a result of inaccurate title labelling and requirement
alignment; despite the explicit requirements, similar occupations may have syntacti-
cally different titles, whilst different occupations may have titles that are syntactically
similar. An example of this, emphasising the the importance of using the requirements
contained in the descriptions, is shown below in Figure 1.1.

In Figure 1.1, the first job posting exhibits that the job requires a lot of hard, technical
Information Technology (IT) related skills as well as a university degree whilst the sec-
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3

Figure 1.1: Two job postings of occupations labelled with the same written titles,
“Projektmanager” (Project Manager), however each is categorised into a different oc-
cupational class from SOC based on their respective requirements

ond posting requests more customer-orientated soft skills with no mention of education
necessary. Inevitably then, despite the fact that two jobs are labelled with the exact
same job title, the occupations themselves are in fact very different and would therefore
be classified into two separate occupational categories. Moreover, particularly in the
German job market as is focused upon within this research, as a result of various socio-
historical factors, one crucially being globalisation, there has been growing increase in
Anglo-Germanic language contact that has inevitably led to an influx of anglicisms.
An anglicism can be defined as “a word from British or American English brought into
German or a change of a German word meaning or word use, according to the British or
American model“ (Zindler, 1959) [Translated by Lauren Green]. This has subsequently
driven to even more variations of syntactic differences in job titles in the German job
market, with many companies adopting these Anglo-transformations as exoticisms or
as a sign of culture, inevitably to make them more appealing to the consumer, or in
this case the job seeker.

Given the evident abundant number of syntactic variations that exist in natural lan-
guage in this scenario alone, the manual coding of occupations undoubtedly can be
“a demanding, time-intensive [and non-trivial] activity because in each case the [ex-
pert] coder must decide anew which category from the long list is the correct one”
(Züll, 2016). In addition to this, a human expert will require extensive training in
order to manually annotate each of the occupations which is both expensive and time-
consuming. In a continuously growing digitalised world, these traditional and manually-
expensive tasks are being enhanced by artificial intelligent (AI) applications. Attempts
have been made to therefore automate this process using a combination of Machine
Learning (ML) and Natural Language Processing (NLP) techniques, however because
of the challenges in ascertaining high quality labelled data and automatic data normal-
isation, determining the correct mapping of occupations to classes still proves to be an
extremely challenging task.

Furthermore, the descriptions themselves within job postings are raw, unstructured
text which often not only include information about the occupation alone, but instead
entail descriptions of the companies themselves as well as what the company may have
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4 CHAPTER 1. INTRODUCTION

to offer. Since the task of occupation classification in our research is to categorise the
occupations based on the skill and education requirements, as mirrored from SOC, it
is necessary to filter out this irrelevant information. For this reason, extracting the
occupational relevant information with regards to the requirements from raw text also
poses as a challenge, notwithstanding the fact that this type of information extraction
(IE) system requires large numbers of labelled data instances in order to ascertain
highly-accurate, industry-ready results.

This research is therefore split into two core components; term extraction and occupa-
tion classification. The term extraction system serves as part of the feature engineering
for the occupation system itself, whereby the requirements from the raw job postings
are both identified and extracted. This component also serves as a comparative model,
whereby the performance of the classification models will be compared both with and
without the extracted terms; the aim is to emphasise how automatically classifying oc-
cupations using the extracted related requirements could lead to improved classification
performance.

As mentioned in the Preface, this thesis is undertaken as part of an internship for
Greple GmbH. Although there is an abundance of data accessible, this is the first
research undertaken for the task using it and therefore this data is not labelled. In
order to therefore obtain this partially labelled data for the occupation classification
system, a set of annotation guidelines will be created for the data to be annotated by
the highly skilled HR experts employed by Greple. Similarly, the same job posting
data is also completely unlabelled for the term extraction system therefore the exact
alignment of requirements for each occupation is not readily available. For clarity, this
means that each of the job advertisements do not have any gold labels with regards to
which occupational class they should belong nor do they have any requirement terms
explicitly labelled. Although in an ideal scenario another annotation framework would
also be created, specific to the Term Extraction task to at least obtain some gold-
standard testing data, this is not possible due to time-constraints within this thesis.
Nonetheless, it is still possible to generate a semi-supervised system using the external
data resources provided. Automated linguistic analysis using NLP and integrating
ontological architectures into the HR process have proved to be extremely key tools
in the industry’s automation, with Greple currently building their own Ontology; an
Ontology can be defined as a structured knowledge base which encodes all of the key
information regarding a domain in a systematic and organised format. Thus, despite
the fact that we do not have any explicit labelled data in relation to the job postings,
the current state of this Ontology can be leveraged by using the structured seed lists
to extract the relevant, key terms.

The overall aim of this thesis then is to be an exploratory study by analysing and com-
paring the effectiveness of using specific occupational requirements and the full vacancy
descriptions for the classification of occupations. Since Ontologies contain domain-
specific knowledge, with key information already structured into specific classes, it is
hypothesised that the ontology-based extracted features will help to create an improved
classification system. In a further analysis, a comparison between different ML, NLP
and Deep Learning techniques will also be made, tailored for this specific task. Al-
though DL has also made improvements in multiple state-of-the-art in NLP related
applications, its predictability can vary drastically across tasks based on not only the
size, but also the accuracy of the dataset. Often an abundance of precise data, directly
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1.1. RESEARCH QUESTIONS 5

impacts the levels of its performance. One of the well-known feature of semi-supervised
systems is that they are able to leverage the information contained within a small
labelled dataset

As a semi-supervised task, this thesis will focus on leveraging the limited labelled data
to maximise efficiency and performance, and ultimately“exploit the hidden information
in [the] unlabelled dataset” (Pintelas et al., 2020). A closer analysis into what extent
the performance of the system using this type of learning will also be undertaken,
comparing the results of the classification in a limited labelled supervised setting as
well as using all of the unlabelled data in a semi-supervised environment. Here, due to
the fact that a well-known attribute of semi-supervised learning involves shifting the
decision boundary between classes using the unlabelled instances, it is hypothesised
that this will in fact improve results. However whether DL itself will aid in improving
the performance is an open question.

The overall process will firstly involve extracting relevant terms from job advertisements
in a distantly supervised manner using the ontological seed lists. These extracted terms
will then be used to classify and cluster occupations into the pre-defined occupational
classes. The final model should therefore be able to classify a given occupation into one
of the given groups, based on the requirements within the respective job advertisement.
In an ideal situation, both the term extraction and the occupation classification would
be evaluated however due to time-constraints, only an extrinsic evaluation is done of
the former. This means that although an exploratory analysis of the final results is
undertaken to some extent, the main focus in evaluation will be upon impact of the
Term Extraction on the overall task of the Occupation Classification System. The clas-
sification system, on the other hand, is evaluated using F1, precision and recall.

1.1 Research Questions

This leads us to the main points of comparison within this research, formulated into
three individual research questions:

1. To what extent can the Ontology based extracted features aid with the classifi-
cation of occupations?

– Since Ontologies contain domain-specific knowledge with key information al-
ready structured into specific classes, it is hypothesised that these features
will help the occupation classification.

2. Despite it being used in many state of the art NLP-related tasks, how does Deep
Learning compare to Machine Learning for this task?

– Both a SVM and CNN are used as a comparison here based on recent works
for other multi-class classification tasks. Due to the fact that DL models
usually require extensive amounts of training data to perform well, it is un-
sure how the CNN’s performance will fair against more traditional ML SVM
system.

3. Given the complexity of implementing a semi-supervised approach using only a
limited number of gold labelled instances, to what degree will the pseudo-labelled
data not only change the decision boundary between classes, but also improve a
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6 CHAPTER 1. INTRODUCTION

given system’s performance.

– Results for each of the experiments will be both undertaken in a supervised
setting only utilising the manually labelled data available, as well as in a
semi-supervised setting. It is hypothesised here than although this may not
affect the dramatically affect the results for the SVM, it will have a greater
impact on improving the performance of the CNN as increasingly more data
is used as training input

The main findings of this thesis prove that the semi-supervised pseudo-labelling ap-
proach utilised does in fact not only adjust the decision boundary, but in most cases
improve the overall performance. Particularly regarding the DL experiments, the in-
creasing amount of labelled data clearly results in a better performing system. However,
in the case of the SVM, the large amount of data leads to exhausted computational
resources and a negatively distorting decision boundary, resulting in a lower perfor-
mance. Nonetheless, the SVM is able to employ a more calibrated and stratified ap-
proach when dealing with the imbalance of classes as used in this research, of which
the CNN is unable to do with little data. The ontological extracted features, namely
the skill and education related requirements, generally do improve the performance
of the system, however further filtering and post-processing of them is necessary for
maximal effect. The final results prove that incorporating the extracted features using
an ensemble approach, whereby a calibrated SVM is implemented at the first iteration
of the pseudo-labelling architecture followed by a continuation of CNNs, achieves the
highest result of 0.62.

1.2 Outline

By firstly exploring the theoretical background and recent work for occupation clas-
sification and information extraction in Chapter 2, the fundamental foundations and
understanding needed for this research are both described and summarised. This will
lead us into the methodology in Chapter 3, which is split into four main sections; data
collection, annotation framework, preprocessing and the overall system pipeline. Since
the data within this research is completely unlabelled after describing the data collec-
tion, we propose an Annotation Framework to be used to manually annotate a subset
of the data and generate gold labels for both testing and training ; making the classifica-
tion system a semi-supervised task. Following this, the preprocessing steps undertaken
for each of the systems are outlined individually, since each require different pipelines.
The subsequent Chapters 4 and 5 provide information and explicitly explain each of the
systems in detail. The results however of the overall classification system with regards
to each of the comparative experiments are presented in Chapter 6. These results are
then presented and examined through an in-depth Error Analysis in this same chapter,
before finally leading us to the Conclusion and any future recommendations in Chapter
7.
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Chapter 2

Theoretical Background and
Recent Work

Job postings are powerful data sources for the task of occupation classification because
of their informativeness when it comes to the most integral requirements for a given
occupation at hand. Although predominantly job postings include information about
the role or occupation itself, they are ultimately still advertisements with the aim of
attracting potential candidates and therefore often they also include information un-
related to the occupation itself; entailing details about the company, benefits and any
other “interests [or] preferences of the specific people [the] organisation want[s] to at-
tract“ Kerzazi and Adams (2016). As a result, with the purpose of this research in
classifying occupations using the related requirements, a combination of Natural Lan-
guage Processing and special filtering techniques is needed to extract only information
related to the given occupation itself. This chapter thus outlines both the theoreti-
cal foundations and previous related work that form the basis of this thesis, serving
its purpose of introducing, and build thereupon, the core phenomena and knowledge
necessary for understanding the existence of the research problem. Since there is no
directly correlated related work, mirroring our data type and language nor the exact
methodology, the chapter is divided into various sections, addressing each of the key
components.

Firstly, in Section 2.1, an overview of the different Machine Learning (ML) supervision
techniques is explored, with specific focus on the approach utilised in this thesis, namely
semi-supervised learning. Here, we address and take into consideration the various sub-
methods that can be used for classification tasks as a whole where there is a limited
amount of labelled instances in comparison to unlabelled data. Following this, in Section
2.2, as we utilise an ontology as an additional resource, we look into the power of the
semantic web, particularly concentrating on the power of ontologies and how they
can be leveraged for our specific research. Since this thesis ultimately consists of two
components, a detailed insight is undertaken into the recent work of both systems. In
Section 2.3 we subsequently undertake a detailed exploration of similar research for the
overall task of occupation classification before then finally investigating previous work
for term extraction in Section 2.4. Each of the systems for both components of similar
work are explored in terms of the method applied alongside preprocessing steps and
input features.

7



8 CHAPTER 2. THEORETICAL BACKGROUND AND RECENT WORK

2.1 Machine Learning

Here an overview of basic concepts within the field of ML is provided, with specific
focus on the type of supervision utilised within this thesis, namely semi-supervised
learning.

ML is a sub-field of Artificial Intelligence (AI) which can be defined as utilising “al-
gorithms [which] can learn from data without relying on rules-based programming”
(Faggella, 2020). Ultimately then, ML involves using state of the art techniques to pro-
cess algorithms and learn from the data, whilst also having the capability of making
predictions for future use through generalisations; being able to interpret and observe
patterns within data, ascertaining valuable insights which can be used for future, unseen
data, whether this be numerical or as is used in this thesis, textual data.

Unlike Deep Learning (DL), a subfield of ML itself in which deep neural network (NN)
architectures entail hidden layers, traditional ML techniques typically require more
structured data. For transparency, the core differences between them lies in the fact
that DL makes use of language models trained on unlabelled data whereas traditional
ML employs explicit linguistic features that are obtained usually through preprocessing.
Nonetheless, despite these distinctions, both techniques have proved to be very effective
within multiple different Natural Language Processing (NLP) challenges and should
each be considered individually for implementation dependent on the task itself. There
are multiple different types of learning techniques used within ML, with the most
common including supervised, semi-supervised and finally unsupervised learning.

Supervised ML algorithms rely heavily on large collections of manually annotated data
in order to make efficient predictions. Although supervised learning is proven to as-
certain high accuracy scores, inevitably, the large amount of manually labelled data
needed to train the algorithms can be expensive, in terms of both time and cost; a
prerequisite of supervised learning is the accessibility of readily available labelled data
(Sekine and Ranchhod, 2009). Some of the most common supervised traditional ML
algorithms used include Support Vector Machine (SVM), Näıve Bayes (NB) and Logis-
tic Regression (LR), whilst common supervised DL algorithms include Convolutional
Neural Network (CNN) and Long-Short Term Memory (LSTM).

Unsupervised learning, on the other hand, is capable of learning relationships between
features and mapping these structures using unlabelled data. Here, models can be
trained using unannotated data in order to predict, optimise and evaluate a system
through adjusting weights of the distributed vector representation and learn patterns
in the data by itself. These networks are able to learn from all of the information
that is inputted into the machine as well as the feedback that is given after it makes
the predictions. Although unsupervised techniques are a lot more cost efficient in
comparison to supervised methods since they do not require any labelled data during
training, often this is compromised with achieving less accuracy.

For the purpose of this thesis however, a combination of both of these approaches
is utilised, formally known as semi-supervised learning, as explored in more detail
below.
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2.1. MACHINE LEARNING 9

2.1.1 Semi-Supervised Learning (SSL)

Following the rise in technological advances and the popularity of internet usage, ob-
taining unlabelled data has become relatively easy because of its increasing abundance.
However, despite this ease in accessibility, the manual labelling of data by human ex-
perts is both time-consuming and expensive. Alternatively, without any labelled data
or guidance, it can be difficult for a model to obtain precise information from the data
sorting, since the output labels are unknown. An optimal solution to this therefore, is
semi-supervised learning (SSL).

SSL is a learning paradigm in which a mixture of both labelled and unlabelled data
is used during training. For this reason, it is a powerful alternative for leveraging
unlabelled data, particularly when there is limited labelled data, which is both cost and
time expensive to obtain (Odena et al., 2018); saving both time, money and without
jeopardising accuracy. As a result of its ability to leverage a small sample of labelled
data in relation to larger amounts of unlabelled data to generate a more precise decision
boundary, semi-supervised learning is becoming increasingly more important. Multiple
text classification tasks have also been shown to achieve improved results through using
a SSL over a supervised approach with a model’s error being reduced by up to 30%
(Nigam et al., 2000).

SSL can be divided into two different types of learning, namely inductive and trans-
ductive. Inductive learning refers to traditional supervised learning whereby a model
is trained using the labelled training data before the label predictions are made upon
the unseen test data. Transductive learning, on the other hand, involves utilising both
the labelled and unlabelled data during training, making predictions on unlabelled in-
stances; the information, features and relations learned from the labelled data points
are used to infer and predict the correct labels of the unlabelled instances. Exam-
ples of both of these methods include bootstrap methods of self-training, co-training,
transductive methods and graph-based methods. For the purpose of this thesis, only
more detail into the type of approach implemented within this research is undertaken,
namely self-training.

2.1.2 Self-Training (ST)

The most simplest form of semi-supervised learning is known as self-training (ST).
Initially applied to the task of Word Sense Disambiguation (WSD) (Yarowsky, 1995),
Yarowsky’s Bootstrap self-training algorithm followed two powerful heuristics for the
task; one sense per collocation (Yarowsky, 1995), whereby the meaning is determined
by the context and one sense per discourse(Yarowsky, 1995) in which the meaning of
an ambiguous word will be consistent throughout the entire given corpus. Here, this ST
bootstrap method involves labelling training data using a supervised classifier and then
through labelling the new data in the same way, more words will be associated with
a certain meaning/sense. This tactic is then repeated iteratively with more training
data.

Variations of this ST approach have since then been further researched, particularly
following the rise in interest in DL. Rather than just taking all of the predictions
made by the model at each iteration, new methods of ST have been introduced using
a threshold for limiting which predictions to add to the labelled data and fine-tuning
DL models based on the results. Although these types of thresholds vary, one of the
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10 CHAPTER 2. THEORETICAL BACKGROUND AND RECENT WORK

most common and efficient is using the confidence level in a pseudo-labelling (Lee, 2013)
approach; as is applied in this research.

2.1.2.1 ST: Pseudo-Labelling

Originally developed for training deep neural networks, pseudo-Labelling (Lee, 2013)
is a specific variant of semi-supervised ST, based on the same theoretical foundation
as that of Entropy regularization (ER) (Grandvalet and Bengio, 2005), known as the
cluster assumption. The cluster assumption ultimately assumes in a classification set-
ting that the instances within the data are grouped, or clustered, in a close proximity
dependent on the class in which they belong; “two points are likely to have the same
class label if there is a path connecting them passing through regions of high density
only” (Chapelle et al., 2003). As a result, if data points labelled as the same class are
grouped closely together whilst instances from different classes have increased distance
apart, the true decision boundaries are driven through regions of low density (Grand-
valet and Bengio, 2005). Through using a low-density separation between classes in
this semi-supervised setting (Lee, 2013), pseudo-labelling is able to leverage a small
amount of labelled data to iteratively train a model and generate confident predictions
on the unlabelled data, whereby the maximum predicted probabilities, or confidence
levels, are generated for each unlabelled instance during training. Pseudo-labelling
classification models are therefore often guided to generate confident predictions and
generate pseudo-labels with the aim of improving the generalisation power through the
unlabelled data (Lee, 2013).

The basic main workflow of the method is as follows: the available labelled train data
is used to train a model before the pseudo-test data is then used to generate predictions
for each of the test instances. After these predictions are generated, the confidence score
of each is calculated; if this is above the certain threshold, then the labelled instances
get added to the labelled data whilst the remaining are added back to the unlabelled
data. This process continues for n iterations or until all of the data has been labelled.
It is important to understand here that the pseudo-labels are taken as true labels and
therefore it is recommended to select a high threshold for the confidence.

As a result of its simplicity and generality, pseudo-labelling is becoming an increasingly
used heuristic in practice (Odena et al., 2018) and the realm of semi-supervised learning.
Nonetheless, it is important to note that despite its intuitive nature it may not always
be the optimal solution; often producing false predictions of the unlabelled instances if
the base classifier isn’t capable of learning representative patterns between the classes
(Odena et al., 2018). This measn that if the model generates incorrect, yet still confident
predictions, the decision boundary will become negatively distorted. For this reason,
adaptions of this pseudo-labelling paradigm have also been researched in an attempt
to overcome this challenge, divided into two variations.

The first and more traditional approach involves repeatedly training a new model after
each iteration when the pseudo-labelled data and the original labelled data are con-
catenated together each time. This is a simple, yet effective, method for labelling the
unlabelled training data and has proven to ascertain high performance in many text
classification tasks. Alternatively, the second variant considers iteratively training a
given model in the same way in which it would be within a supervised setting, however
rather than training the same model or a new model each time, the weights from the
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2.2. ONTOLOGICAL REPRESENTATIONS 11

previous model are saved each time and fine-tuned on the new pseudo-labelled data each
time; simply here, the last checkpoint of the model is saved once it has converged.

Although there has not been extensive research on this variant with regards to text
classification itself, the overall theory can be applied to other classification tasks in the
field of ML and NLP.

In earlier works, Liu et. al (Liu et al., 2004) build a text classification model using
the first variant, there is little to no labelled data. Here, they use iterative clustering
for feature selection of the documents in order to determine the most representative
words of each class which are then fed into two different classification models as a
comparison; Näıve Bayes (NB) and the expectation-maximization (EM) algorithm.
This process continues by training a new classifier at each iteration however, they
do not select any confidence threshold for the classification systems; instead, manual
intervention is undertaken during the word extraction, though inevitably this would be
too time-consuming and inefficient for our purposes.

Babakhin et al. (2019), on the other hand, implement the second variant of the pseudo-
labelling approach to overcome their lack of labelled data by training an ensemble of
Convolutional Neural Networks (CNNs) for the segmentation of salt bodies in image
classification (Babakhin et al., 2019). Here, they start with 4000 labelled images and
18000 unlabelled images to be pseudo-labelled by their system, for a maximum of 3
iterations for 200 epochs; if not all of the images are labelled by this point, the un-
labelled data is discarded. Unlike previous approaches however, the original labelled
data and pseudo-labelled data is not concatenated together each time. Instead, the
second and third iterations are trained only using the pseudo-labelled data before then
fine-tuning on the original labelled data; in their specific experiments the joining of
the pseudo and original labelled data yielded a lower performance. Nonetheless, simi-
lar to previous work, the “unreliable predictions” are still filtered out by removing all
pseudo-labelled instances that are assigned with a low-confidence; where the predicted
confidence is below a given threshold (Babakhin et al., 2019).

Inevitably, although the second approach could help the model learn better, it could
also lead to over-fitting. Diversely, the first variant would avoid any issues of potentially
overfitting the model, however this also runs the risk of not learning enough information
from the data given. Since the performance of both types of this pseudo-labelling
approach highly depend on the the type, quality and size of data at hand, it is not clear
which may prevail in our research. As a result, both are therefore carefully considered
in this research.

2.2 Ontological Representations

Since the Ontology developed and provided by Greple is used to aid with the methodol-
ogy in this thesis, this section offers a brief overview of ontological representations as a
whole, exploring to what extent this additional resource can be leveraged as a powerful
tool in this research. Considering the aim here is to provide the foundations needed for
understanding why exactly this specific data model is selected, only a brief overview
of the Semantic Web itself is described. The main focus instead lies on describing what
exactly an ontology is, how they can be applied to different ML and NLP applications
and why it is chosen for this specific task at hand.
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12 CHAPTER 2. THEORETICAL BACKGROUND AND RECENT WORK

In the world today, the accessibility and abundance of data that can be found online
continues to exponentially increase as a result of the increase in popularity of the inter-
net and the World Wide Web (Web). It should be noted here that terms internet and
Web are not synonymous; the internet is the global system of interconnected computer
network, otherwise referred to as the network of networks (Panda, 2020), whilst the
Web refers to a model used for sharing information which is created on the internet
itself and is one of the mediums that can be used to access the internet. With more
people being therefore being able to share information on the internet through the Web,
the internet has become one of the main sources for accessing data. However, despite
this increasing supply of information, one of the biggest problems this leads to is the
multiple different formats in which the data can be captured within, such as in re-
sumes, professional social media profiles and job postings as in the HR industry. This
multitude of information captured in different structures and forms therefore makes
it difficult to understand the relations between each of them. In order to overcome
this issue and ultimately allow these relationships become visible, the Semantic Web is
introduced.

The Semantic Web can be defined as “an extension of the current Web in which infor-
mation is given well-defined meaning, better enabling computers and people to work
in cooperation” (Berners-Lee et al., 2001). Rather than comprising of a collection of
individual webpages like that of the Web, the idea of the Semantic Web is to create
a single repository allowing for both data and information to be shared in a system-
atic, organised and free way, capturing the relationships between them. Using the
definition described by Berners-Lee et al. (2001) as a basis, the Semantic Web should
therefore not be regarded as a separate Web, but rather an extension of it. With its
inter-connected properties between concepts in the form of triples, the Semantic Web
is often referred to as the web of linked data. These triples thus illustrate the relations
between concepts in the following manner: subject (concept 1), predicate (relationship)
object (concept 2).

Over the last decade, there has been increasing interest in one of the most renowned
building blocks within the Semantic Web, namely Ontologies. An Ontology is a data
model that “represents knowledge as a set of concepts within a domain [through de-
scribing both the concepts as well as] the relationships between these concepts“ (Sathe
et al., 2017). A single Ontology therefore does not only contain the data itself of the
domain at hand, but also entails a set of metadata which specifically describe the data
by providing semantic information about its context and use. Thus, providing new
data and meta-data to the existing documents within the Web. Through creating one
main repository of linked data between all of the concepts within a domain, using var-
ious data sources, Ontologies allow for not only the sharing of re-usable knowledge but
also allow for new knowledge about the given domain to also be incorporated and fur-
ther shared (ont). Their organised format enables them to be easily and continuously
populated with new information as a domain grows and adapts over time.

Particularly when there is a lack of labelled data, Ontologies have demonstrated to
be powerful resources for multiple Knowledge Representation and NLP related tasks,
such as Named Entity Recognition (NER), Ontology population and, as is utilised in
our case, IE. Techniques involving the latter can be used to aid in the population of the
Semantic Web whilst, on the other hand, the IE process can be guided by Semantic Web
techniques(Martinez-Rodriguez et al., 2020). The structural and informative properties
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2.3. OCCUPATION CLASSIFICATION 13

within an Ontology, which often also include hierarchical relations linked between the
various concepts, therefore provide intelligent direction for an IE system.

As a result of the organised domain-specific information captured within Ontologies
as a whole, the data within the Ontology provided by Greple serves as a vital and
powerful component within this research, offering a source of labelled seeded data to
be used as leverage when developing the term extraction system; this is specifically
explored in more theoretical detail in Section 2.4 and practically in Chapter 3. In
addition to this, the current state of the Ontology used only takes in the candidate
perspective, through capturing all of the information within professional social media
platforms and resumes. Inevitably when developing an Ontology, it should capture
all of the knowledge within the given domain; for this reason, the client perspective
should also be incorporated through using the job postings, as written by the clients
themselves. Consequently, the results ascertained in this research could also be used in
future works to both populate the Ontology as well as provide further inferences to its
current state. The implementation in using this Ontology as an additional labelled data
source, will therefore not only allow association with meaning through the domain as a
whole, but also enable a more insightful and expert-guided experiment when extracting
the relevant terms of the data classes as well as during the error analysis.

2.3 Occupation Classification

Here an exploration is undertaken into similar work in relation to the different ap-
proaches which have been utilised for occupation classification (OC) as a whole. For
each work, we discuss the following, where available: the core underlying approach, the
data, the features, preprocessing steps, results and any future work comments. Through
understanding the full-pipeline and background of similar research, this Section aims
to build the foundations for the methodology and purpose of this specific research.
It should be noted, however, that there are no directly correlated previous work that
utilise the same semi-supervised approach and language data as is implemented within
this research; although some of the previous related work utilise different supervision
approaches, we still investigate them with the purpose of understanding the overall
pipeline in terms of objectives, data cleaning and feature engineering. Additionally,
despite the fact that the data utilised within this thesis is in the German language, the
core body of similar work in the field is focused towards English data, likely as a result
of its popularity and larger number of resources available for research.

2.3.1 Supervised

In earlier works, Goindani et al. (2017) implement a supervised binary classification sys-
tem for determining the employer industry using job posting data. Here, two datasets
are used for the two core industries focussed upon, namely the Transportation and
Health Care industry; each of the datasets entail positive and negative examples in
relation to the given industry. Minimal preprocessing is used here since the job titles
and employer names are extracted from an existing external resource, Career Builder
whereby each name is linked to a knowledge base (KB). Nonetheless, each of the nor-
malised titles and keywords are converted into two separately calculated feature vectors,
before then being concatenated together for one final vector representation. Imbalance
in the classes so use cost-sensitive learning for training; “different costs are assigned for
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misclassifying examples belonging to different classes” (Goindani et al., 2017), where
the positive classes are more penalized than the negative classes. Cross-validation is
also utilised. For the classification itself, two supervised algorithms are utilised; (1)
Support Vector Machine (SVM) and (2) Gradient Boosted Decision Trees (GBDT).
Although for the transportation industry the SVM outperforms GBDT with an F1
score of 0.81 in comparison to 0.79, the GBDT exceeds that of the SVM for the health
care dataset, scoring an F1 of 0.86 compared to 0.82. For future works which could
also be relevant in this research, they suggest to include additional features, such as
whether a job description contains specific key terms as well as verbal string patterns
such as our client is looking for (Goindani et al., 2017). We can assume that their
suggestion of using job-content keywords could refer to the requirements of a specific
occupation as well as any task related terms. Moreover, they note that some employers
belong to multiple industries despite just having one label, referred to as “industrial
conglomerates” and therefore for future works would consider the task as a fuzzy clas-
sification problem to output multiple class labels. As a result, this should be taken into
consideration for this specific research, as some occupations may have fuzzy boundaries
between two classes, where only one, single label is assigned.

Van Huynh et al. (2019) utilise deep neural networks (NN) in another supervised ap-
proach however rather than predicting an occupational class from the description, in-
stead they focus on classifying the related job title using the requirements within the
postings; knowledge, skills, interests. Here, the job descriptions from online postings
are used to predict 25 different job titles, all of which are related to the IT sector. A
combination of different NN are implemented, both alone as well as ensemble meth-
ods to use as a comparison through the use of majority voiting, including Bidirection
Gated Recurrent Unit (Bi-GRU), a Convolutional Neural Network (CNN) and Long-
Short Term Memory (LSTM). For the preprocessing, each of the job descriptions are
converted to lowercase and tokenized, before special characters and stopwords are re-
moved. As a final step, the text is thereafter transformed into feature representations
using one-hot encoding alongside two pre-trained language word embedding models
as a comparison, namely GloVe and FastText. Regarding the results, each of their
proposed ensemble methods outperform the single models, including the TextCNN +
FastText which scored an accuracy score of 0.69; the highest performing model is the
Bi-GRU-CNN + GloVe scoring an accuracy of 0.72. For future works, it is suggested
to expand the current dataset of 10,000 manually annotated instances as well as to
explore with more traditional classifier in order to do more feature engineering. Al-
though this approach again uses a supervised method, it is also the first to utilise DL
techniques alongside a comparison in word embeddings at different levels whereby both
types illustrate improvements in performance against using simple one-hot encoding
transformations.

2.3.2 Semi-Supervised

Djumalieva et al. (2018), on the other hand, developed a semi-supervised, distantly-
supervised hierarchical multiclass classification of occupations based on the skill-related
requirements within online job postings for the United Kingdom (UK) job market. Us-
ing a total of four layers within the hierarchy, the first three layers build up granularity
for clustering occupations with similar skill types together whilst the final layer utilises
the salary to indicate the skill level. The highest level entailed a total of 16 classes are
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utilised, otherwise referred to as broad groups and is based based on the UK Standard
Occupation Classification (SOC) taxonomy, whilst the final level, the skill level, com-
prised of 150 salary clusters. Although unlike the previous aforementioned works the
the full job descriptions were not available, most of the job postings within Djumalieva
et. al research still comprised of a job title, a salary and a set of related keywords, oth-
erwise referred to as skills. Particularly relevant for this research, is their finding during
Exploratory Data Analysis (EDA) that multiple occupational categories within their
data were under-represented, such as agriculture skill-related occupations, whilst other
categories were largely over-represented, such as business skill-related occupations. For
this reason, a semi-supervised over an unsupervised approach is implemented since the
former is more likely to capture even the classes of which only a small number of job
postings are contained within (Djumalieva et al., 2018). As a result, seed lists of skills
and competencies from both ONS 2010 Index (Office for National Statistics)1 and the
European Dictionary of Skills and Competencies (DISCO)2 are utilised to guide the
semi-supervised classification. Regarding the preprocessing, two different approaches
are implemented for both the job titles alongside the keyword-skills. For the job titles,
the following steps were undertaken: plural forms to singular, abbreviation transfor-
mation using a dictionary, digit and punctuation removal, remove words not in known
dictionary, removal of “and” from beginning or end of string and finally additional
whitespace removal. For the skills, on the other hand, “inappropriate skills and lan-
guage skills” are manually removed before being converted to lowercase, stripping most
punctuation and removing extra whitespace characters. These final terms are then
transformed into US English for normalisation and ease of string matching. Both the
skills and job titles are then converted into vector representations using pre-trained
word embeddings, namely GloVe. The overall preprocessing pipeline is summarised
in Table 2.3.3. Both unsupervised and semi-supervised methodologies were initially
compared, namely Latent Dirichlet Algorithm (LDA) and k-means clustering respec-
tively, however due to a potential lack of keywords, LDA produced less stable results.
As a result, k-means accompanied with the cosine score to calculate the distance be-
tween each of the clusters is primarily utilised. The cluster stability is then evaluated
using the Jaccard Coefficient. For future works, Djumalieva et. al suggest to train
“an occupation-specific word embedding model to improve the accuracy of job assign-
ment to reference categories”. give the example of “scrum” which currently links to
more leisure and sport related categories because of its association to rugby, however
in the occupational context it should be associated with agile software development
techniques.

Another semi-supervised system for the classification of occupations for the UK job
market, again using SOC, is developed by Turrell et al. (2019), however with focus on
using one specific datasource of vacancies, from Reed 3. Here, both the job title and
the full job description are utilised in order to classify occupations at a more granular
level within SOC, referred to as the 3 digit level. The basic pipeline of their method-
ology includes cleaning of the vacancy text, matching job titles to the SOC titles at
an exact matching level before thereafter finally identifying similar SOC codes using
fuzzy matching; grouping an occupation to the SOC code determined by the distance
between the vectors calculated using the cosine similarity. For the preprocessing steps

1https://www.ons.gov.uk/
2http://disco-tools.eu/disco2_portal/
3https://www.reed.co.uk/

https://www.ons.gov.uk/
http://disco-tools.eu/disco2_portal/
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of the vacancy data, plurals are normalised through conversion to their singular forms,
abbreviation transformation, stopword removal, digit removal, punctuation removal,
extra whitespace removal and removal of non-salient words; salient words are deter-
mined through the use of Term Frequency- Inverse Document Frequency (TF-IDF).
In addition to this, words related to the job level are removed, including terms such
as senior or junior ; both a senior financial analyst and a financial analyst should be
categorised in the same way (Turrell et al., 2019). Finally, following an in-depth EDA,
frequent words discovered across the job postings as a whole are further filtered and
stripped since do not carry and real semantic role regarding the type of occupation; e.g.
candidate and role. Although it is noted that supervised method may ascertain higher
accuracy, the maintenance costs would be higher to get the manually annotated data.
As a result, semi-supervised learning is implemented through the use of a known dic-
tionary of job titles and their associated SOC codes for training. For linguistic feature
engineering, each text field is thus transformed into a TF-IDF feature representation
for the exact and fuzzy matching and n-grams of the most salient terms are used as an
additional feature. For future works, rather than just outputting the soc code itself,
they suggest a probability or confidence level for each class could also be given for
human intervention for marginal cases.

2.3.3 Summary of Recent Work for OC

A summary of each of the preprocessing steps for the similar occupation-related clas-
sification tasks is illustrated in Table 2.3.3. Although, as mentioned, the main sources
of data for each of them is in fact in the English language, the table shows that these
linguistic data cleaning steps can still also be applied to the German data at hand; the
steps are more task -related rather than language-dependent. It should be noted that
some additional preprocessing steps may need to be taken into consideration, however
this is explored in the subsequent Chapter 3.

Goindani et al. (2017) Van Huynh et al. (2019) Djumalieva et al. (2018) Turrell et al. (2019)

Data Title Keywords Description Title Keywords Title Description

Language English English English English

Lowercase
pre-

normalised
nm True True True True True

Plural-Singular nm True False True True
Abbreviation
Transformation

nm True False True True

Digit Removal nm True False True True

Punct Removal

- only special
chars are
removed:

(#, &, *, $ etc)

True False True True

Stopword/
Non-relevant word
Removal

True
- “and”

before/end
of sentence

- “inappropriate”
skills

- language skills
True

- stopwords
- non-salient words
- job level related

i.e. “junior“
Additional
Whitespace
Removal

nm True False True True

Table 2.1: Summary Table of the Preprocessing Steps undertaken for Occupation Clas-
sification in Recent Work (“nm“: no mention)

Overall, it is evident that each of the aforementioned similar work primarily utilise two
text fields; the job title alongside either relevant keywords or the job description itself,
dependent on availability. However, none of the previous work mention utilising all three
fields as sources for occupation-related classification. In addition to this, although a
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seed list of keywords of requirements for various occupations as a whole is available for
this thesis, unlike the previous semi-supervised methods, our seed list is not specific to
each job posting itself and therefore these methods cannot be directly applied to our
research task.

Nonetheless, since Greple GmbH specialise in the field of Human Resources (HR) and
therefore have experienced HR experts at hand, this domain-specific knowledge can be
leveraged for annotating gold instances for both training and testing for training a semi-
supervised classifier; using a pseudo-labelling approach as mentioned in Section 2.1.2.1.
Moreover, since our data already entails both a job title alongside the description for
each posting, it is possible to therefore extract relevant keyword requirements from the
descriptions themselves, enhancing on the previous methods through using all three text
fields as features. As a result, we now explore recent work for the second component
of this thesis, Term Extraction and investigate how these methods can be used for
extracting keyword requirements from the job postings.

2.4 Term Extraction

Term Extraction, or terminology extraction, is a subtask of Information Extraction
(IE), with the goal of transforming unstructured, or often semi-structured, data into
structured representations by automatically extracting of clear and factual specific
information.

There are multiple different approaches which have been applied for the task of Term
Extraction, with some of the most common approaches being feature based classifica-
tion and pattern-learning systems. The former approaches have proved particularly
successful for Term Extraction in different domains, with some using Gazetteers and
lists of dictionaries as features in themselves. An example of one of the most effective
models which have been used here is Conditional Random Field (CRF) (Gupta, 2015).
Although these types of classification systems can yield high results, the challenge in
implementing in our research is that they require at least some partially labelled data
to train the algorithm, which is not available in our case.

Pattern-based learning approaches, on the other hand, can be both supervised and
distantly supervised, whereby the latter require only a small sample of seeds. These
seeds can be patterns in themselves or, alternatively, a set of terms. One of the most
advantageous aspects in the development of pattern-learning techniques is that they
have proven to be particularly successful when there is already a certain format and
structure within the unlabelled; this can be leveraged to generate clear syntactic con-
textual patterns surrounding new terms in a powerful way. Furthermore, increased
research in distantly-supervised pattern-learning has demonstrated to still ascertain a
high performance even when there is limited labelled data, which can be expensive to
obtain in both terms of time and cost.

Since the job posting data utilised within this research does have a structure to some
extent, whereby each posting is searching for a candidate with certain skills and other
requirements, it is decided that this distantly-supervised pattern-learning approach is
most suitable for this research. Moreover, although the job posting data is completely
unlabelled for this Term Extraction sub-task, as mentioned in Section 2.2, we can
leverage the available data at hand, in the form of Greple GmbH’s ontology, as an
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additional resource for generating a sample of seeds.

This Section therefore discusses variable pattern-learning approaches in a distantly-
supervised setting for the task of IE, specifically Term Extraction. Within each work, we
explore the different patterns, features, preprocessing techniques and scoring methods
utilised for each as a comparison. Both systems which use terms and/or patterns as
seeds are investigated

2.4.1 Distantly-Supervised Pattern Learning

Pattern-learning based Term extraction, otherwise known as Entity Set Expansion
(ESE) is a distantly supervised task whereby a set of seed entities is given as the
only supervision for the system to try and expand this list by trying to extract new
similar terms. Unlike other unexplainable black box methods, distantly-supervised
bootstrapped ML patterns allow for effective performance, time and money savings
alongside interpretability by humans (Chiticariu et al., 2013), as is important for this
research. As a result, pattern-learning methods are known as one of the most robust
systems for extracting relevant key terms, often referred to as a feature selection ap-
proach, whereby the patterns are used as the feature templates themselves (Gupta,
2015). There are two variants in terms of input in this bootstrapped ML pattern-based
technique; seed list of patterns or seed lists of terms, though the latter has ascertained
more research in recent years. Inevitably without any types of threshold or scoring sys-
tem of the patterns or the terms, the approach would generate incorrect lexico-syntactic
patterns which would thus lead to the extraction of irrelevant new terms; leading to a
low performance. Here, we investigate similar work in terms of both input seeds and
scoring functions for pattern-based ML, all in a distantly supervised setting.

Riloff introduced the classical bootstrapping algorithm, known as AutoSlog-TS (Riloff,
1996) whereby the system extracted terms from unlabelled text only using a set of
seeds as labelled input. Here, the model is fed a seed list of terms from a specific
class and some heuristic rules to iteratively learn the surrounding syntactic patterns
to find new terms, ultimately expanding the original dictionary set. The heuristic
rules thus activate the system to therefore extract relevant noun phrases. Although
this system does not use any semantic features as a result of “technical reasons“, it is
noted that this would have improved the precision (Riloff, 1996). AutoSlog-TS system
ranks patterns based on the number of positive terms extracted. Each lexico-syntactic
pattern is scored using a function titled RlogF ; if the pattern is scored above a certain
threshold, it is added to the pattern dictionary, else it is discarded. Ultimately then,
this calculates the weighted conditional probability through summing the number of
positive terms over the total number of terms extracted by a single pattern.

Thelen and Riloff (2002) build further upon the aforementioned work utilising the
same RlogF metric for scoring however, their system, Basilisk, is adapted for multi-
class extraction; here the begin with a value of N=20 for the first iteration. Basilisk
also implements a term scoring system here based on the frequency of the patterns
and in which only the head noun of each Noun Phrase (NP) is added to the candidate
pool.

Pasca (2004), on the other hand, uses seed patterns rather than terms as the sole
input, using syntactic structures which are not domain specific. Examples of pat-
terns utilised include Hearst Patterns, originally used for Hyponymy detection, to learn

skgpc
Highlight



2.4. TERM EXTRACTION 19

both named entities and their categories from unlabelled web-pages. Hearst patterns
(Hearst, 1992) are explained in more detail in Section 2.4.2 with examples illustrated
in Table 2.2.

English German

Y such as X Y zum Beispiel X

X and other Y X und ander[e/n] Y

X or other Y X oder ander[e/n] Y

such Y as X beispielsweise Y wie X

Y including X Y einschließlich X

Y, especially X Y, insbesondere X

Table 2.2: List of Hearst Patterns with their German translations; X is the Hypernym
and Y is the Hyponym

Gupta and Manning (2014) developed a system whereby new terms are detected and
extracted through bootstrapping from just a small sample of seed dictionaries. In an
iterative process, “patterns are learned using labelled entities, and [terms] are learned
based on the extractions of learned patterns” (Gupta, 2015) until neither anymore
patterns nor entities can be learned. As an improvement of their slightly earlier work,
here they score patterns additionally through the prediction of labels of the unlabelled
entities using a combination of Edit Distances for fuzzy matching alongside TF-IDF
scores (Gupta and Manning, 2014).

So far, the aforementioned work does not evaluate any of the extracted terms on a
semantic level, since they only rely on the syntactic rules generated by the system.
Nonetheless, in more recent work, Gupta (2015) built further upon her previous work
in developing one of the most powerful pattern-based learning frameworks capable
of evaluating the extracted terms semantically, using Word2Vec 4 word embeddings.
Based on the distributional hypothesis (Harris, 1954), the degree of similarity between
two given terms can be calculated using these word vector representations to deter-
mine how semantically similar they are. In order to do so, both the seed terms and
extracted candidate terms are transformed into word vectors before calculating the co-
sine similarity score. If the similarity scores above a certain threshold it is added to
the seed list. Fuzzy matching of the tokens is also undertaken for calculating the fuzzy
similarity score between tokens using the edit distance metric, however this is only as
a comparative component to the word embeddings; inevitably the semantic measure
ascertains higher performance. Unlike the previous systems, the preprocessing steps
are also indicated in this work; tokenization on both a word and sentence level, tagging
Part of Speech (POS), to be used as a feature, before then lemmatizing both the seeds
and the data, for generalisation, and finally converting to lowercase for normalisation
(Gupta, 2015). Regarding the contextual window size, a range between two to four
word before or after a labelled tokens is utilised. This allows the system to be able
to therefore learn the POS features of the surrounding words, generate patterns and
ultimately extract new terms in a more robust and automatic way, taking the context
and semantics into consideration.

Since then, similar work has been done also using word embeddings for calculating
different similarity scores, such as in the work by Batista et al. (2015) in extracting the

4https://code.google.com/archive/p/word2vec/
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relationships between two given terms. Here, a seed set of relations is instead used as
input to the model with the task of further expanding it. For the relationship scoring
system, again here a baseline of TF-IDF is compared with using the distributional
semantics within Word2Vec word embeddings. They note here however, that despite
the high performance of word embeddings, they can still introduce the semantic drift.
The semantic drift can be defined as “the progressive deviation of the semantics for
the extracted [items] from the semantics of the seed [items]” (Batista et al., 2015).
As a result, this work avoids the semantic drift by both scoring the patterns and
ranking the extracted relationships however only by comparing with the original seeds
rather than the set of seeds extracted at each iteration. Again here, if a the score
of a given relationship is equal to or exceeds a certain threshold then it is added
to the dictionary set, else it is discarded. The extracted relationships are then used
during the following iteration of the bootstrapping algorithm. Although this work is
for relationship rather than term extraction, similar preprocessing is undertaken again
here, with the tokenization again on both the word and sentence level, tagging POS,
lemmatization however with the addition of using Named Entity Recognition (NER)
for capturing local relationships.

Roller et al. (2018) however, compare pattern-based methods with distributional ap-
proaches to evaluate their performance for the task of detecting Hyponymy relations.
Similar to Pasa, Hearst Patterns again are used as one of the baseline methods. In
addition to this, POS tagging and dependency parsing are used as features for the
distributional models. Here, the data alongside the patterns themselves are tokenized
as well as lemmatized as part of the preprocessing, in order to maximise the number of
exact matches where possible. Despite the high performance of distributional models
in other works, this work illustrates Hearst patterns to outperform them.

Finally, in most recent work, Kim et al. (2019) developed a bootstrapping approach for
biomedical term extraction, again only using a small sample of seeds, however rather
implement the addition of a NER classification model for the learning of patterns using
only some features. The two models used as a comparison are CRF and LSTM. Rather
than manually labelling data for their classification systems, instead the classifier used
to automatically label the training data in an iterative way, with the aim of improving
The classifier each time. The system thus takes both the original seed corpus in addition
to the iterative machine labelled data as input, combined, in a CoNLL 2003 format;
each word is represented on a single row with its respective features in a tab-separated
style. Biomedical domain word embeddings are used again for this system, namely
BioSQ, to handle the domain specific out of vocabulary (OOV) terms which may not
be present in normal word embeddings. Regarding the preprocessing steps, although
not explicitly stated, it can be assumed that the text and seeds are lemmatized since
ngrams of the term lemmas are used as a feature for the classifier. Further features
include ngrams for POS tags, capitalisation (first letter and all letters). The final
results illustrate the third iteration of the bootstrapped classifier to achieve the highest
performance, of 71.87% in comparison to the initial one which only scores 43.88%. For
future works, they suggest to “apply external resources [and other] approaches, such as
lexico-syntactic patterns [to] improve the quality of the machine-labelled data” (Kim
et al., 2019).
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2.4.2 Pattern Creation

As illustrated below, a summary of the features used in the aforementioned previous
work shows the variety of different lexico-syntactic and linguistic features that can be
used for creating patterns.

• Lexico-Syntactic Patterns: Lexico-syntactic patterns do not take into con-
sideration semantic or grammatical rules rather they just focus on the syntactic
rules.

– Regex Patterns: One of the most basic patterns for IE, or more specifically
ESE, is the use of regex patterns which use explicit lexical items for pattern
creation. These can be particularly useful for data with significant syntactic
properties. In our use case of job advertisements, an example of a regex
pattern could include “Skills should include X”.

– Hearst Patterns: These lexico-syntactic Hearst patterns (Hearst, 1992)
are one of the most influential approaches to IE despite their original de-
velopment for detecting classic Hyponymy relations (Roller et al., 2018).
Examples of these Patterns with their German translations can be seen in
Table 2.2. One thing to note about Hearst Patters is despite the fact they
can ascertain high precision, often this is accompanied by low recall ; they
are very accurate however because of their scarcity they only encompass a
minority of patterns. Jacques and Aussenac-Gilles suggest using synonyms
of the patterns to improve their scarcity. For example, “such as” could be
replaced with “like” in English (Aussenac-Gilles and Jacques, 2006).

• Linguistic Features: Manually crafted linguistic features using NLP techniques
can be used to generate patterns by extracting the information encoded within
each of the contextual surrounding words to that of each seed. These features
offer a more generalised procedure.

– POS: One of the most important integral features used for ESE is the use of
morpho-syntactic POS tagging. This feature is particularly useful when the
class of terms to be extracted is of a certain type. For example, a skill can
be both a noun or adjective. POS tagging is also imperative for lemmatizing
text, whereby words are reduce to their root form.

– Dependency Parsing: Dependency parsing encodes information about
various linguistic features, such as POS, morphology as well as grammar. As
a result, this feature can be considered a good basis for not only syntactic,
but semantic patterns to illustrate the relations between terms in a given
string; Hearst Pattern-like features may also be captured by distributional
representations such as dependency based features (Roller et al., 2018).

– Capitalisation: As seen in some of the recent work, capitalisation of ei-
ther an entire word or just the first letter is used for aiding in the pattern
creation. Some acronyms or skills may be fully capitalised therefore this
feature would help to capture this information. Although not all of the pre-
vious work use this as a feature, it should be noted that this is probably as a
result of transforming the English text data to lowercase for normalisation.
Particularly in German however, nouns are always capitalised therefore this
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could be a useful feature for this research, dependent on the class of terms
for extraction.

2.4.3 Summary of Recent Work for TE

Each of the aforementioned approaches within similar work demonstrate how a small
number of labelled seed instances can be powerfully used to develop a system capable
of extracting terms from unlabelled corpora. Inevitably, the introduction of using
distributional word embeddings has been a revolutionary turning point in capturing the
semantics within text, however as seen in work undertaken by Roller et al. (2018), the
syntactic properties captured in using these basic patterns should not be completely
discarded. In addition to this, despite the latter work by Kim et al. (2019) using
a combination of bootstrapping and a classifier could be particularly useful for our
research, as a result of time-constraints and because of the lack of labelled data even
for our test set, it is not implemented. It could however be used in future work, building
further upon the research undertaken for this thesis.

This research will therefore use a combination of the aforementioned methods, through
utilising a list of seeds for each of the relevant classes of terms to be extracted, a set of
patterns as well as certain selected features to be used for generating additional patterns
following the first iteration. For the scoring, a mixture of the proposed algorithms will
be used; (1) to capture any misspellings or typos in the data, edit distances can be a
powerful tool for obtaining a fuzzy matching term similarity score (Gupta and Manning,
2014) (2) to capture the semantic similarity, distributional semantics have illustrated
to yield a high performance. The technique in avoiding the semantic drift used by
Batista et al. (2015) in using only the original seed patterns will also be implemented,
but adapted in using the original seed terms. Although TF-IDF is used as a baseline
comparison in most of the work, it will not be utilised in this thesis and instead we aim
to further build upon the previous research using word embeddings; evaluating vector
representations at different levels will instead be used as a comparative feature. A
deeper analysis and exploration into the methodology used in this thesis is undertaken
in Chapter 3.



Chapter 3

Methodology

In this Chapter, I present the full methodology pipeline of this research, mapped out
in 4 aggregated steps, namely the Data Collection, Annotation Framework, Prepro-
cessing and the Overall System pipeline for both the Term Extraction and Occupation
Classification systems combined.

Firstly, the Data Collection in Section 3.1 provides explicit information regarding the
three different job posting data sources alongside the seed lists extracted from the
Ontology. A combination of descriptions alongside statistical distributions and visu-
alisations are displayed. Since each of the sources are taken from different platforms,
this section further describes the process of re-formatting the data through aligning the
headers before then finally outlining the steps undertaken to extract a sample of the
entire dataset, as a result of computational limitations.

Subsequently, Section 3.2 presents the Annotation Framework, in which the occupa-
tion classification schema selection, the annotation guidelines themselves alongside the
intermediary analysis and inter-annotator agreement scores are discussed.

The Preprocessing in Section 3.3 involves two main phases, namely basic preprocessing
which is applied initially to the entire dataset together as part of the annotation data
preparation, as well as the final preprocessing, whereby two individual data prepara-
tion pipelines are applied for the classification and term extraction systems, respec-
tively.

Finally, a brief overview of the entire system overview is mapped out and described in
Section 3.4 for both the term extraction alongside the occupation classification. Each
of the systems themselves however are explored and outlined in more detail in Chapters
5 and 4, respectively. For the purpose of this research, it should be noted that all of
the computational techniques are applied using Python

3.1 Data Collection

The first step involves collecting the job posting data itself provided by Greple GmbH.
This data is firstly queried and downloaded from the company database, Kibana. For
the purpose of this research, data from three different sources are used, namely Step-
stone, Historical Vacancies and Vakanzen. Whilst both the Historical Vacancies and
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Vakanzen data resources entail a combination of job postings from various different job
boards during the last 5 years, the Stepstone1 data is specific to the single job board
in the same time frame. Inevitably then, each of the datasets are formatted slightly
differently in terms of both their contents alongside the syntactic forms in their head-
ers. To filter out and determine the most relevant information necessary for this task,
the data is explored and headers thus aligned, as described in more details in Section
3.1.1.

In addition to the job posting data, as mentioned in the previous chapter, Greple
GmbH are currently building an Ontology containing a variety of information about
occupations from the candidate perspective. Since this data model will be leveraged
within the methodology for the Term Extraction system, acting as the main labelled
resource, this data is also collected now. In order to do so, seed lists from each of
the relevant classes are collected from the Ontology to be later preprocessed in the
same means as the job posting data. Since the goal of the Term Extraction model is
to extract only the core requirements related to a given occupation, namely the skills
and the education, the related terms from each of the classes are withdrawn from the
Ontology. The meta-data extracted for the skills contains both the main skill-related
terms themselves, as well as further data describing them. In order to thus maximise
the number of instances available and ascertain additional coverage, both the main
skills alongside the related synonyms are extracted and concatenated together. At
the time of writing this thesis, the Education class is not yet incorporated within the
Ontology. However since it is hypothesised that this is a key requirement in defining
how exactly an occupation can be defined, instead a list of Education-specific seeds
is manually curated by both myself and a native German HR expert. To maintain
quality, this list is kept at a minimal number; the quantity of seeds will thus be used
as a comparative module within the Term Extraction system, outlined in more detail
in Chapter 4. A summary illustrating the total number of seeds within each relevant
class is illustrated below in Table 4.1.

Class #Instances

Skills 1,004

Skill Synonyms 909

Education 12

Table 3.1: Number of instances within each of the class seed lists for the Term Extrac-
tion

3.1.1 Header Alignment

Since the job posting data is originally crawled from various websites and ultimately
contains semi-structured information, the data in its raw form contains a multitude of
information organised into various columns with headers. For example, alongside the
vacancy title and vacancy description, other information such as the language, locality,
company name as well as the skill terms used to crawl the job postings initially. In
total, each posting entails around 19 different columns. After an exploration into the
information contained within each and the extent of their relevance for this specific
task, a total of 4 headers were selected. As shown in Table 3.2, after having aligned

1https://www.stepstone.de/en/

https://www.stepstone.de/en/
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the headers based on their contents, it is evident that not all of the same information is
contained within each of the data sources. Nonetheless, through their utilisation it still
enables for some filtering of the job postings, for example through using the language
header to filter out the postings which are not in German; as mentioned for the purpose
of this thesis, using only postings in the German language are focussed upon.

Stepstone Vakanzen Historical Vacancies

id id id

content.vacancytitle content.title content.title

content.vacancydescription content.description content.description

source.language source.language

Table 3.2: Aligned column headers from each of the data sources. Headers in bold
indicate all three data sources contain same information so headers can be fully aligned.

3.1.2 Data Sampling

After having dropped all rows whereby the vacancy title or vacancy description was
dropped, a total of 4,525,33 instances were left. However, due to computational power,
each of the datasets are then also sampled and used as the main datasets in this research,
as shown in the final column of Table 3.3.

Data Source #rawInstances #preprocessedInstances #finalInstances

StepStone 549,948 77,512 77,512

Vakanzen 4,092,698 4,069,188 150,225

Historical Vacancies 441,000 378,638 150,225

Total 5,080,646 4,525,338 377,957

Table 3.3: Number of instances from each dataset in the raw data, the data after
dropping missing values and after sampling the final instances to be used within this
research.

3.2 Annotation Framework

In the world today, the classification of occupations is a key component in automating
HR processes because of it’s ability to group similar occupations together in a consis-
tent and standardised form. Inevitably, as a result of the variances within job markets
across the world, there are an abundance of different occupation taxonomies and schema
used for occupation classification. Although the approaches and methodologies do vary
to some extent for each of these schema, they all serve a similar purpose; grouping oc-
cupations “based on work performed and, in some cases, on the skills, education and/or
training needed to perform the work” (Emmel and Cosca, 2010). By organising jobs
into explicitly defined groups based on their given requirements in both a standardised
and structured way, not only can it allow for a deeper analysis in occupations which
share similar requirements, but it can also aid in building more refined systems, such
as a offering insights into an individual’s career progression within the same domain
and thus developing a more robust recommendation system. However choosing such
a system to use for our specific purposes can be difficult, without knowing what the
underlining reasons for each of their variances.
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As a result, this section presents an annotation framework for manually generating
gold standards for the classification of the occupations within the job vacancy data at
hand. Firstly, a short exploration and comparison into the three different aforemen-
tioned occupation classification schema will be made, before illustrating the reasons for
selecting the framework of choice for this thesis, namely SOC. Following this, a detailed
description of the level of aggregation within the framework is provided, along with its
specific classes. As the final and main component within this section, we describe the
methodology for the annotation process itself, including the annotation data prepara-
tion, intermediary analysis milestones as well as the inter-annotator agreement score;
the latter part also includes the final result. For the full annotation guidelines used by
the annotators themselves, please see Appendix A.

3.2.1 Schema Selection

As mentioned, there are a multitude of different frameworks used across the world,
each with the shared aim of classifying occupations into some type of defined groups.
However, since each of these systems vary in what exactly entails this type of classi-
fication, it is important to understand the reasons for each of these variances before
selecting which one to use for our specific use case. After some initial research, the three
main frameworks which are taken into consideration are: (1) the German Classification
of Occupations (KldB) 2 (2) the International Standard Classification of Occupations
(ISCO) 3, and finally, (3) the Standard Occupation Classification (SOC) 4.

Since the majority of the data at present is based on the German job market, the first
type of classification system considered was a German based occupation classification,
namely the KldB 2010. The KldB contains around 27,000 job titles and has a total of 5
different aggregation levels within its hierarchical structure, with the main level (level
2) containing 37 classes, otherwise referred to as Occupational Main-Groups; the level
just above this (which is also the highest level) contains just 10 classes, or occupational
areas, however as according to the official guidelines, these cannot be utilised as they
are “not suitable for analytical purposes” (Paulus et al., 2013).

In contrast to the other occupation frameworks, KldB focuses primarily on classifying
the job titles (Züll, 2016); “the education and training required for the competent
performance of the job [...] are not classification criteria. [...] (Hoffmeyer-Zlotnik
and Warner, 2013). Inevitably then, despite the fact that this is the only German
occupation classification schema, using this type of classification approach would pose
a problem for our research since we aim to use education as a factor for distinguishing
different occupations.

In addition to this, although similar to the other frameworks the KldB is updated
periodically (in this case every 5-10 years), at the time of writing this thesis the most
recent version of the KldB was published a decade ago. As even stated on their own
website, “the professional landscape is subject to constant changes. New jobs are
created, old job profiles lose their importance or disappear completely.” (original “Die
Berufslandschaft unterliegt ständigen Veränderungen. Es entstehen neue Berufe, alte
Berufsbilder verlieren an Bedeutung oder verschwinden komplett” (Kld). Thus, using

2https://fdz.iab.de/187/section.aspx/Publikation/k140117303
3https://www.ilo.org/public/english/bureau/stat/isco/
4https://www.bls.gov/soc/

https://fdz.iab.de/187/section.aspx/Publikation/k140117303
https://www.ilo.org/public/english/bureau/stat/isco/
https://www.bls.gov/soc/
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an outdated system as the basis could lead to a loss of information for grouping the
more recent occupations.

Aggregation Level #Classes

Areas 10

Main Groups 37

Groups 144

Sub-groups 700

Types 1286

Table 3.4: Level of Aggregation levels within KldB-10 with the respective number of
classes

The next option to be considered for the research schema is ISCO; ISCO is the “stan-
dard categorization most commonly used worldwide for reporting and comparing oc-
cupational information data” (CHOI et al., 2019) and has a total of four different
aggregation levels within its hierarchical structure; see Table 3.5. Similar to KldB, the
highest level entails 10 classes which in ISCO, is the major, main, level. ISCO groups
occupations however not only by using the type of skill required within a certain occu-
pation, but also by the skill level. This skill level is measured in various ways, with a
core aspect being the level of formal education and informal training, where the latter
may refer to the amount of previous experience (isc).

Nonetheless, although this system does therefore utilise education as a factor within its
classification process, the last version of ISCO was updated in 2008 which is even older
than the latest version of KldB itself. In addition to this, for time-constraint purposes
of the thesis we are limited to only choosing the major level of aggregation; it would
not be possible to annotate enough instances for each class within any of the other
levels during the time given.

Aggregation Level #Classes

Major 10

Sub-major 43

Minor 130

Unit 436

Table 3.5: Level of Aggregation levels within ISCO-08 with the respective number of
classes

The final schema for consideration is the Standard Occupation Classification (SOC).
SOC is used “for the purpose of collecting, calculating, analyzing, or disseminating
data” developed by United States (US) government agencies although, there are also
national versions across other countries such as United Kingdom, Canada, Spain the
Philippines and Singapore. Similar to both KldB and ISCO, SOC also has a hierarchical
structure with a total of 6 levels of aggregation, as illustrated below in Table 3.6.

As a result, despite the fact that is not predominantly a structure built specifically
for the German job market, given the purpose of this research being that occupations
should be classified by both competencies and education type and that our data is
up-to-date from the past 5 years, it is decided to use SOC as the main basis for the
classification schema.
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Aggregation Level #Classes

Highest 6

Intermediate 13

Major 23

Minor 98

Broad 459

Detailed 867

Table 3.6: Level of Aggregation levels within SOC with the respective number of classes

In order to aid with the annotations themselves, SOC also offers an up to date Crosswalk
tool with O*Net 5, a freely accessible online database and includes detailed knowledge
on various aspects within a given occupation, such as knowledge, skills and the edu-
cation level. This O*NET-SOC combined crosswalk provides not only a detailed and
structured system for classifying occupation, but also allows for a an easier annota-
tion process; by being able to search for occupation titles and keywords to find similar
matches and ultimately aid in determining a given class. Moreover, the most recent
update of the O*NET-SOC crosswalk is just in 2019, inevitably meaning it contains
the most current information of the job market with up to date occupational data.
Although inevitably this information is not in German but rather English, since the
purpose of this structure is to classify occupations as concepts with similar attributes
rather than as single job titles, this should thus not affect the annotations.

3.2.2 Guidelines Development

Given the fact that there are multiple different levels of aggregation within the SOC
hierarchy, after careful consideration, the intermediate level is selected, which includes
a total of 13 different occupational classes as shown in Table 3.6. As pointed out
by Turrell et al. (2019), there is often a “trade-off between more granularity and more
accuracy in classifying jobs according to the correct SOC code”. As a result, by choosing
this particular intermediate level, it reduces the granularity in comparison to the other
levels, including the major group itself, however still allows for an automatic two-tier
hierarchical structure with the highest class just above. This higher tier could also be
used if either the inter-annotator agreement isn’t sufficient or if there are not enough
instances within a given class, the annotation labels can also be easily mapped to the
high aggregation level to generate larger samples for each.

The 13 annotation labels used in this project are exemplified in Table 3.7 in the “soc
label” column, alongside both an “included groups” and “name” column. A short
description of each of the three columns is given below:

• 1. soc label : used as a reference to the branch name and should be used as the
annotation labels.

• 2. Included Groups: refer to the SOC occupation codes included within each
branch; each occupation in SOC is assigned a 6 digit code, with the first two
digits referring to it’s respective major group branch number (see Figure A.1).

• 3. Name: Formal title of branch, as assigned by SOC for this level of aggregation.

5https://www.onetonline.org/crosswalk/SOC/

https://www.onetonline.org/crosswalk/SOC/
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soc label Included Groups Name ( + “Occupations”)

1 11-13 Management, Business, and Financial

2 15-19 Computer, Engineering, and Science

3 21-27 Education, Legal, Community Service, Arts, and Media

4 29 Healthcare Practitioners and Technical

5 31-39 Service

6 41 Sales and Related

7 43 Office and Administrative Support

8 45 Farming, Fishing, and Forestry

9 47 Construction and Extraction

10 49 Installation, Maintenance, and Repair

11 51 Production

12 53 Transportation and Material Moving

13 55 Military Specific

Table 3.7: Overview of SOC category names, the included SOC group numbers for each
branch alongside label reference to be used for annotations.

As mentioned in the previous section, the O*Net SOC Crosswalk Quick Search should
be used to aid the annotation process6. Each occupation in this system is assigned a 6
digit code, with an exemplar breakdown shown in Figure A.1. The annotator should
focus only on the first two digits, representing the major group, to determine which soc
label the occupation should fall into, based on it’s included groups.

Figure 3.1: SOC Occupation Code: Structure Breakdown (of Labor Statistics)

Each of the instances for annotation should therefore be labelled with an integer be-
tween 1-13 representing the SOC label.

In addition to the label itself, in order to aid with the error analysis in Chapter 6
and thus measure the scale of certainty for choosing a given label, a confidence scale
is also established. For each annotated item, a confidence score should therefore also
be assigned to each instance, in the respective column. This score should correlate
to an integer on the scale, ranging from 1-3, as shown in Figure A.2 below. A brief
description for each label is given below, however it should be noted that full guidelines
here have been purposefully omitted, to allow for a certain level of subjectivity.

6https://www.onetonline.org/crosswalk/SOC/

https://www.onetonline.org/crosswalk/SOC/
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Figure 3.2: Confidence Scale

(1) Unsure: The annotator is somewhat sure however also somewhat doubtful. Both
levels of confidence and doubt are equal.

(2) Confident: The annotator is somewhat doubtful, however confidence exceeds
doubt.

(3) Highly Confident: The annotator is sure that the instance should be classified to
the
assigned label and has no form of doubt.

Regarding the annotation tool itself, Microsoft Excel (xlsx) is selected for both simplic-
ity and ease of annotations. Since the annotators in question are already familiar with
the tool, it therefore requires the least amount of training in becoming familiar with it
and allows the main focus to remain on the task itself.

Once these core components had been mapped out, the full annotation framework was
then created to be used by both myself and an additional annotator, an experienced
HR consultant, to create an unbiased and normalised process. The full annotation
guideline document is illustrated in Appendix XX.

3.2.3 Data Preparation

In order to prepare the data for annotation, basic preprocessing is firstly carried out
to ensure readability for the annotator; this is explored in more detail in Section 3.3.2.
Following this preparation of the data, and after having tested the annotation frame-
work with a dummy dataset, it was calculated that a single annotator would be able to
annotate total of 4050 instances (4052 after rounding to nearest divisor of 3) during the
time limits of this thesis. In order to maximise the labelled data however also obtain an
inter-annotator agreement score, it was then decided to randomly select an additional
sub-sample from the shuffled main data to extract a further 2500 instances to be used
as an overlap. This empirical choice meant that the final number of unique instances to
be annotated for the classification totalled to 6,552; with exactly 2,184 instances from
each of the datasets as shown in Table 3.8.

#Instances

Annotator 1 4052

Annotator 2 4052

Overlap 2500

Total (Unique) 6552

Table 3.8: Number of Instances for Annotation
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3.2.4 Intermediary Analysis

One of the main challenges during the annotation process itself when there are multiple
annotators, is the level of disagreement which may come when comparing variances in
annotations (Wang et al., 2017). One strategy which can be used to reduce this level
is through providing rounds of intermediary analysis, whereby common patterns of
variance, between the datasets are extracted for further discussion. For clarification,
a pattern of variance could be where multiple instances are consistently labelled as
X by one annotator and as Y by another. With the purpose of reaching a common
agreement, through having these intermittent stages and discussions, it allows both
annotators to understand the decision process behind certain choices and delineate any
fuzzy boundaries which may lie between two given classes.

For the purpose of this research and given the size of the data, three key milestones
were mapped out after a certain number of instances had been annotated, as shown in
Figure 3.9.

Within each of these milestones, excluding the last, the inter-annotator agreement score
is calculated using Cohen Kappa, described in more detail below, before extracting the
top four patterns of variance. After each discussion, additional guidelines were formu-
lated and extended to the original list to aid with the subsequent round of annotations.
Some of these further guidelines are listed below:

• The level of education, for example a university degree, may affect the classification
of an occupation. Some fuzzy boundaries which are delineated using this rule are

– 1 vs 7

∗ E.g. given an Accountant (Buchhaltungsleiter): If university degree
required, the occupation is classified into soc label 1, else it is categorised
into soc label 7.

– 2 vs 9

∗ E.g. given an Engineer: If university degree required, the occupation is
classified into soc label 2, else it is categorised into soc label 9.

• Whether any physical contact within an occupation may affect the classification
of an occupation

– 5 vs 7

∗ E.g. given a Receptionist: If the role requires more of a front desk
position with physical contact, the occupation is classified into soc label
5, else it is categorised into soc label 7

• If an occupation seems to be split in terms of requirements across two different
roles, select the occupation which fits the majority of the them. If the occupation
is equally split, select the most leading position

– 1 vs 5

∗ E.g. given a HR assistant: If the role requires more recruitment and
outsourcing skills, rather than administrative abilities, the occupation
is classified into soc label 1, else it is categorised into soc label 5
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– 1 vs 2

∗ E.g. given an IT Assistant Manager: If the position is split and has
some leading aspect however not the majority, despite “manager” being
in the title, the occupation would be classified into soc label 2, else it
would be categorised into soc label 1.

3.2.4.1 Inter-Annotator Agreement

In order to generate the inter-annotator agreement results, we utilise one of the most
common algorithms used to calculate inter-rater reliability, formally known as Cohen’s
Kappa (McHugh, 2012). Based on the observed agreement and expected agreement,
Cohen’s Kappa-Coefficient measures the inter-annotator agreement through calculat-
ing the probability of agreeing on each individual class by chance (Brennan and Predi-
ger, 1981). As exemplified in Table 3.9, through having the various milestones, dis-
cussions and confidence calculation intervals as part of the annotation process, the
inter-annotator agreement score increases drastically from the first round of 0.68 to
the final round at 0.84. This final score can therefore be considered moderate to strong
agreement (McHugh, 2012), especially given the high number of classes. It should be
noted here that the number of total final annotated instances is reduced from 2500 to
2468, due to the fact that some job postings did not contain enough information about
the advertised occupation and were therefore categorised as “nv”, not available; these
instances are dropped from the data.

Date Milestone Cohen-Kappa Agreement

07/05/2020 (1) 650 instances before Discussion 0.68

07/05/2020 (1) 650 instances after Discussion 0.83

14/05/2020 (2) 1300 instances before Discussion 0.8

14/05/2020 (2) 1300 instances after Discussion 0.87

28/05/2020 (3) 2500* instances final 0.84

Table 3.9: Annotation Milestone Information: Cohen-Kappa Agreement Scores. * after
removing “nv” labels, a total of 2468 were left.

3.2.4.2 Final Labelled Dataset

Once the inter-annotator agreement is calculated and both of the individual datasets
have been manually labelled by each given annotator, the ultimate step involves as-
certaining the final labelled dataset to be used for the classification system. Although
the intermediary analysis discussions and transformations aided with the process, in-
evitably there is still a differing overlap in some of the labels chosen by both annotators.
Consequently, since I also partially annotated the data, the final labels are selected at a
random to avoid bias; some prejudice may be unconsciously integrated through manual
selection of myself. The final results are then concatenated together to form the fully
labelled dataset from both annotators.

As discovered during the annotation process, there were several instances in which the
vacancy descriptions contained little to no information about the given occupation. As
a result, these instances which contained less than 120 characters are also removed from
both the labelled and unlabelled datasets; 138 and 19,269 are dropped, respectively.
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The final labelled dataset therefore consists of 6,342 instances in total. It is suggested
to undertake this step before extracting a sample of the data during future works.

3.3 Preprocessing of the Data

The preparation and cleaning of textual data is a vital component in all NLP-related
tasks and an integral step before applying data to any ML algorithm since it can have
a direct impact on the performance of a given system. There are various approaches
which can be used to preprocess raw text to remove noise and ensure machine read-
ability however, each of these techniques are not directly transferable across tasks. For
example, inevitably by cleaning the data and transforming it into a more generalized
state, some of the fidelity of the data will be lost which may be integral information
dependent on the task at hand (Barushka and Hajek, 2019). As a result, a careful
selection of the most appropriate preprocessing steps should be made for each of the
given components within this research

In order to prepare the data for the various experimental components within this re-
search, this section describes the breakdown of the preprocessing pipeline. The first
parameter taken into consideration is the fact that this research utilises German lan-
guage data, whereby a short exploration into the linguistic differences between German
and English are made, given that the abundance of NLP related data, research and
computational tools are tailored to English itself. Once these foundations have been
made, a description of the basic preprocessing for the annotation data preparation is
undertaken. Following this, a brief description of how the data is split into train, val-
idation and test subsets is made, in relation to using both the labelled and unlabelled
data before finally going into detail regarding the final preprocessing steps. This latter
part is broken-down and outlined for each of the two remaining core components within
the methodology, namely the term extraction and the occupation classification systems;
given the fact that these are in fact different tasks, each require different preprocessing
steps.

3.3.1 Characteristics of the German Language

Since the majority of the data is in German, it is firstly important to analyse the
key characteristics of the German language in itself in order to establish the primary
methodology and computational tools to utilise within this research; despite the abun-
dance of research and tools available for the English language, different computational
resources specifically for German may have to be utilised as well as/instead given
their linguistic differences. For example, although both English and German are Indo-
European languages and share the same roots being derived from the West Germanic
branch, there still remain differences regarding syntactic structures and grammatical
rules. Here, an analysis into the linguistic features of the German language are made,
with an indirect comparison taken into consideration with those in English. The dif-
ferences which will need to be considered before designing the preprocessing approach,
are listed below:

• German nouns have three genders; male vs neutral vs female. These gender
markings also change when the noun becomes plural and also change dependent
on the case (”der”, “die”, “das”, “den”, “dem”, “des”); 6 different forms in total
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with 16 different uses across them all - in comparison to English’s “the” (Articles
change based on case)

• German is a highly inflectional language and therefore has more morphological
inflections, primarily suffixes; as a result, German tends not to use personal pro-
nouns

• The lexicalization of compound nouns is imminent in German; there is an abun-
dance of compound words in German

• German punctuation differs from English in terms of quotation marks - these
need to be included when removing punctuation.

• Commas used in place of decimals

• Word order differs greatly; German is freer than English as the dependency relates
to the article of the noun rather than the word order; also differs with verb
ALWAYS in second position

• Unlike English, German capitalise ALL nouns

• Reflexive verbs in German maintain reflexive pronoun where they may be dropped
in English

• Separable verbs in German (”Ich kaufe im Supermarkt ein”)

3.3.2 Basic Preprocessing: Annotation Data Preparation

Before we transform the text to a machine readable format, it must firstly be converted
into a human readable format ready to be manually annotated; removing noise and
encoding instances which may have been incorporated into the text as a result of web
crawling within the data collection stage. Since the data is in German which inevitably
contains non-ASCII symbols such as ä, ö, ü and ß, it is firstly UTF-8 encoded. X The
following basic preprocessing steps are applied on all of the data, including both the
vacancy descriptions alongside the vacancy titles.

As mentioned in the Data Collection section, the job posting data itself is extracted
and collected through crawling multiple professional job websites. As a result of this
crawling, some noisy tags are therefore added into the raw data and will need to be
removed during this basic cleaning phase. Here, both HTML and JavaScript tags are
stripped, before the strings are tokenized on the word level and all additional white-
space characters are further removed, where two or more appear together consecutively.
The reason for these steps specifically during this basic cleaning phase is inevitably to
aid with the readability of the texts by the human annotators; these machine-readable
tags may both distract or influence the process particularly for someone of a non-
technical background.

The subsequent preprocessing stage here includes removing digits, which may refer to
job numbers or salary ranges which are not relevant for this task, alongside punctu-
ation, excluding carefully selected special characters. Both question and exclamation
marks are replaced with full-stops, to still indicate a sentence ending, before nearly all
remaining punctuation is stripped. A total of 4 special characters chosen to maintain
within the text, including [”.”, “,”, “#”, “+”]; the reasons behind these choices are
illustrated in Table 3.10.



3.3. PREPROCESSING OF THE DATA 35

Special Character Reason

.

indicates end of a sentence; both “!” and “?” are replaced with “.”
for normalisation. This may be important when creating the patterns
for the Term Extraction system as well as for different levels of
embeddings during the Classification System.

,
may be particularly useful when creating the patterns for the Term
Extraction system.

#
may be important information regarding an occupation; for example,
the skill “C#”

+
may be important information regarding an occupation; for example,
the skill “C++”

Table 3.10: List of special characters maintained when removing punctuation within
the preprocessing stage, with their respective reason

The final stage of the basic preprocessing, includes removing and transforming abbre-
viations from the texts. However since this part requires external knowledge for the
given domain, here we utilise two types of gazetteers to aid with this conversion and
ultimately improve the normalisation process; these are specifically described in more
detail below, in Section 3.3.2.1.

3.3.2.1 Gazetteers

Gazetteers are ultimately sets of lists or dictionaries consisting of terms related to a
certain concept, such as locations, people or organisations, which can be used to help
with both the cleaning and normalisation process within this preprocessing stage. Given
the abundance of syntactic differences and ambiguities that exist in natural language,
this direct implementation of external knowledge has demonstrated to have positively
correlated effects and “a major impact on the performance of NLP applications” which
apply them (Zhang and Iria, 2009). Within this research, two types of gazetteers are
utilised.

The first is a list based resource which includes various forms of gender representa-
tive abbreviations, such as m/f/d (male/female/diverse), to be stripped from both the
vacancy titles alongside their respective descriptions. Following the introduction of
anti-discrimination law, many companies explicitly use these types of abbreviations
within their corresponding job titles to emphasise the fact they do not discriminate
against any gender, whether this be male, female or gender neutral. Nonetheless, for
the purpose of this research, all occupations should be considered available to all gen-
der types regardless of their specific markers and therefore their removal will aid in
the normalisation of the occupations. However, given the abundance of their variable
formulations, it can prove to be challenging when detecting all of them without ex-
ternal knowledge; some of these variable abbreviations here include d, for diverse, i
for intersexual, a for different and x for no defined gender (kar). As a result, manual
data exploration and analysis can help to ascertain improved coverage and develop a
full gazetteer list for them to be stripped and thus normalise the text for our specific
research.

The second type of gazetteer is a dictionary based resource, whereby various abbrevia-
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tions or acronyms are mapped with their respective expansions. Since each additional
word/character often can have a direct correlation with the price for online job post-
ings, abbreviations are used in abundance as an alternative (kar). However, similar to
the problem of variable gender abbreviations, without domain-specific knowledge and
context, it can be difficult to computationally determine their true meanings. As a
result, this research utilises four different types of abbreviation-dictionaries specifically
tailored for different aspects within job posting data; education-related, skill -related
title-related as well as a generalised other abbreviations.

The full lists of each of the preprocessing gazetteer utils can be found in Appendix
B.

3.3.3 Train, Validation and Test Split

This is done before the final preprocessing, since both the Term Extraction and the
Occupation Classification will require slightly different forms of input.

Whilst the entire unlabelled data can be referred to here as unlabelled train data, since
this will be used in the training phase of the occupation classification model, the labelled
data is split into a 60, 20, 20 distribution here. The reason for this choice in split is
so that we have a substantial number of labelled instances within the test data, yet
still having enough for the system models to train and ultimately learn patterns from.
Ultimately then, this provides the research with four data subsets, namely labelled train,
unlabelled train, validation and finally test. I specifically chosen to stratify the split since
some of the classes contain very few instances; this way, each data subset contains at
least one instance from each of the occupational classes. The final distribution of the
data is seen below in Table 3.11.

#trainInstances #validationInstances #testInstances

Labelled 3,697 1,232 1,232

Unlabelled 371,796

Total 375,493 1,232 1,232

Table 3.11: Number of instances within each of the datasets, split into labelled and
unlabelled subsets.

3.3.4 Final Preprocessing

For the final preprocessing stage, the remaining cleaning and text transformations is
undertaken to prepare the data for the models. Since ultimately this research utilises
both a term extraction and occupation classification system, two different approaches
are used during the latter cleaning stages to prepare the data for each. Inevitably since
the data used in this research includes multiple text fields, these have also each been
specifically taken into consideration through the implementation of unique preprocess-
ing pipelines. A summary of these differences can be seen in Table 3.12, with a short
summary of each below.

• Umlaut Conversion: Multiple vacancy postings contain a mixture of umlaut
characters alongside their Latin encoded representations. The umlauts are thus
maintained and their respective translations imputed with umlauts for the term
extraction however, they are removed/converted for the classification system. The
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Term Extraction Occupation Classification
*Preprocessing Seeds Data Titles Descriptions

Umlaut Conversion False False True True

Digit Removal True True True True

URL Removal True True True True

Stopword Removal False False True True

Lemmatisation True False True True

Stemming True False True False

Gender Normalisation True True True True

Lowercase False False False False

Final Punctuation Removal False False True True

Table 3.12: Table illustrating differences in final preprocessing techniques for each of
the systems; False indicates the technique isn’t utilised whilst True indicates it is

reason for using them in the former is to avoid any mis-tagging of linguistic fea-
tures when using the NLP python package, SpaCy, which could lead to misleading
pattern creation. Umlauts are transformed in the latter system to their respec-
tive Latin characters (e.g. “ae”) in order to normalise the corpora. In addition
to this, umlaut transformation within the latter system will help to avoid any en-
coding issues that may arise when transforming the text into computer readable
representations.

• URL Removal: URLs are removed for both of the systems since they do not
carry the semantic meaning necessary for the task; usually these are links to the
company website or webpage where the applicant can apply for the position.

• Stopword Removal: Stopwords are maintained for the term extraction however
removed for the occupation classification; although they are considered as noise
for the latter since they do not carry any real semantic meaning, they may prove
to be important when creating syntactic patterns for the former. The final set of
stopwords are composed from those of NLTK7 as well as SpaCy 8 using both the
German and English sets; latter used for anglicism coverage.

• Lemmatisation: Lemmatisation is applied to both the seed data in the term
extraction alongside all of the data in the classification system to help to remove
the abundance of different inflections in German and specifically here to strip
gender specific endings for normalisation. Here, a German-based lemmatiser is
utilised namely the Inverse Wiktionary for Natural Language Processing (Liebeck
and Conrad, 2015)(IWNLP)9 and is applied on every token. Since it requires
Part-Of-Speech (POS) tags as additional input, the capitalisation of tokens is
still maintained to avoid any mis-tagging.
E.g. Input: Entwicklerin, Output: Entwickler. Lemmatisation is not applied
to the job posting data in the term extraction hwoever to avoid incorrect NLP
tagging of features.

7https://www.nltk.org/
8https://spacy.io/
9https://github.com/Liebeck/IWNLP.Lemmatiser

https://www.nltk.org/
https://spacy.io/
https://github.com/Liebeck/IWNLP.Lemmatiser
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• Stemming Recursive Stemming using German Snowball Stemmer 10 is applied
to the seed data for the Term Extraction system. By using both lemmatisation
and stemming here, the most normalised forms of the words are ascertained which
will aid in detecting the maximum number of patterns as well as the maximum
number of matches possible; ultimately improving coverage. This is again applied
on every token to ascertain each true stem. It is again not applied to the job
posting data within the same system to avoid mis-tagging of linguistic features.
Stemming is also applied to the occupational titles for gender normalisation in
the classification system.
E.g. Input: Entwickler, Output:Entwickl

• Gender Normalisation: Normalise gender word suffixes i.e. “frau”/”mann”
to masculine forms. This also includes removing endings such as “innen” and
“frau”.
E.g. Input: Kauffrau, Output: Kaufmann

• Lowercase: Capitalisation is maintained fully for the term extraction system
to avoid NLP mis-tagging and optimal pattern learning. Although it was con-
sidered to be applied for the occupation classification model, capitalisation is an
important aspect of the German language therefore it is retained in this model
also.

• Final Punctuation Removal:] Remove commas for the classification system
however maintain all remaining special characters; even full-stops at the end of
sentences (not only within skills) will be important when generating the embed-
dings at different levels for the classification model.

As exemplified above, ultimately the Term Extraction system requires minimal prepro-
cessing in order to capture enough semantic and syntactic information for the pattern
generation and learning whilst the Occupation Classification requires further cleaning
to remove additional noise. It should also be noted here however, that the ontology
seed lists are also preprocessed in line with the Term Extraction, whereby each seed
is stemmed and lemmatised in the same way; ascertaining the most generalised word
forms to detect as many patterns and exact term matches as possible.

3.4 The Overall System Pipeline

This Section provides a brief overview of the architecture implemented in this research
with regards to both the Term Extraction as well as the Occupation Classification
systems. Since the results of the Term Extraction are used as a comparative aspect
serving as features for the main classification model, first this is outlined. Following
this, a short introduction and summary with regards to the method and structure of
the Occupation Classification is given. Both systems are described in more detail in
their own individual sections, Chapter 4 and Chapter 5, respectively.

In order to extract the relevant skill and education related requirements in the Term Ex-
traction module, I implement a similar Distantly-supervised Pattern Learning method-
ology, as described in Chapter 2, Section 2.4. Here, the preprocessed job postings
alongside the preprocessed seed lists and manually crafted patterns are used as input,

10https://www.nltk.org/_modules/nltk/stem/snowball.html

https://www.nltk.org/_modules/nltk/stem/snowball.html
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initially finding exact matches. As mentioned, I use two seed lists, one skill-related
and another education-related. Once these matches have been found, the bootstrapped
system learns the contextual patterns and features of the neighbouring words. These
patterns are then applied to the text to identify new terms before the terms are there-
after scored against the terms from the original seed list. Two metrics are used to
evaluate a given extracted term, namely Edit Distance for fuzzy syntactic matching
alongside FastText word embeddings for semantic similarity scoring. If the terms score
above a certain threshold, as discussed further in Chapter 4, the terms are labelled as
either a Skill or Education, dependent on what the system is trying to extract. This
system is thus implemented twice consecutively; once for the extraction of skill-related
terms and once for the education-related terms.

Once these terms have been extracted, they used as features for their respective job
postings to be inputted into the Occupation Classification model. For this classification
system, the pseudo-labelling architecture is implemented, as described in Chapter 2,
Section 2.1. This approach allows the partially labelled data annotated by Greple’s
experts to guide the process, whilst leveraging the abundance of unlabelled data which
is available. This implementation is developed using two models, namely a Support
Vector Machine (SVM) alongside a Convolutional Neural Network (CNN), to compare
the effects of traditional Machine Learning (ML) with regards to neural networks with
hidden layers, otherwise referred to as Deep Learning (DL). In addition to this, two
different text representations applied to the job postings as well as the extracted re-
quirements, namely Term Frequency Inverse Document Frequency (TF-IDF) alongside
FastText. I utilise these two text representation types due to the fact that the main
source language of our data is in German and thus it contains a multitude of compound
words and therefore this is to determine how well the word embeddings will perform in
comparison to the more traditional TF-IDF. FastText is able to capture the semantics
using the sub-word level; allowing for better generalisation across these word types.
Since this section only offers an overview of the systems, these embedding models are
only described in full-detail in Chapter 5. Each of these models are further compared
with and without the extracted terms as features.

The overall system pipeline should therefore take a preprocessed job posting as input,
extract the relevant skill and education requirements before then using the extracted
information to predict which occupational category the occupation advertised should
fall into.
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Chapter 4

Term Extraction

This chapter provides a detailed description of the Information Extraction (IE) ap-
proach used in this thesis, namely the Term Extraction model. The structure of this
chapter is mapped out in five parts as outlined below.

Firstly, in Section 4.1, the two classes of terms to be extracted from the job postings
are defined, namely the Skill and Education related terms. Here, a statistical overview
of the distributions in terms of number of seeds are illustrated as well as the reasons
for their choice in implementation.

In Section 4.2, I describe the technical details regarding the architecture of the Term
Extraction model implemented, through explaining the core principles behind it; the
input, method and output. For clarity, a visualisation of the pipeline is also illus-
trated.

Following this, Section 4.3 discusses the features which are used for both extracting
and creating the patterns, whereby visualisations of the initial ontological seeds are
illustrated, by looking into and comparing their respective linguistic features.

Section 4.4 explores the scoring of the candidate terms on both a syntactic alongside a
semantic level.

Lastly, the results of the final extracted terms are examined in Section 4.5, whereby
only an extrinsic evaluation is undertaken as a result of time-constraints within this
research. In other circumstances, it would be recommended to create a test set with
gold labels for a sample of the job posting data, assessing the performance of the model
through using Precision and Recall as the evaluation metrics.

4.1 The Seed Data

A single job posting can contain an abundance of information about an occupation,
with specific requirements relating to various aspects such as the types of skills or even
the type and level of education. In fact, often it is all of these aspects combined which
are integral for determining how a given occupation can be defined exactly and thus
analyse market changes for given roles. In this thesis, it is hypothesised that with the
inclusion of these requirements methodologically mapped out for each respective job
posting, the overall performance of the occupation classification will improve. However,

41
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given the fact that the job posting data within this research is completely raw natural
language, these requirements are not defined in a systematic and structured way. As
a result, using the literature described in Chapter 2 as a basis, a Distantly Supervised
Pattern Learning architecture is thus implemented, of which only a small number of
terms is required as the input, referred to here as seeds or seed data; these ultimately
act as gold labels for the model.

For the purpose of ascertaining the requirements related to each occupation advertised
in the job posting data, I look at two core classes, namely the skills alongside the edu-
cation level. Skills can be defined as the expertise and specific knowledge needed to be
applied to undertake a given task in a practical setting and are often the first impor-
tant factors considered by both clients posting job vacancies and candidates applying to
them; a good match in the required and desired skills to be used in the given advertised
occupation is necessary for a good fit on both sides. Skills can be further divided into
two categories, namely soft skills which are more interpersonal and hard skills of which
relate to more hands-on, technical skills. For time purposes, both of these groups are
combined into one single class though they could be later further analysed to perform
a more granular analysis. Education, on the other hand, is the process of ascertaining
given knowledge which can be used as the basis for developing certain skills. There
are many different types of education which also exists, ranging from formal education
with regards to school and university but also non-formal relating to more hands-on
practical apprenticeships. In addition to the skills, some occupations require a a candi-
date to have undertaken a specific form of education; for example, in order to become
a doctor it is mandatory to obtain some type of degree level and attend medical school.
For this reason this Education is also selected as a requirement to extract from the text,
with the aim of improving the classification system. Inevitably, education systems vary
across the world with different levels and types varying from country to country. Since
this research is primarily based on the German data and the German job market, only
German related education types are considered for the task.

Regarding the creation of a Skill class seed list, since we already have this specific type
of information contained within the company Ontology, this data can thus be extracted
and used as seed information to guide the process of extracting new, relevant terms.
However, since the Ontology is still under-going maintenance, it does not yet include
information regarding the Education class. As a result, instead, a list of education-level
related seeds are manually curated by both myself and a native German HR expert.
Here, an extensively smaller list of gold seeds are created based on the Education system
in German, comprising of a total of just 12 seeds. Through developing this much more
limited list of seeds, it allows for the Pattern-learning system to be extensively tested
and compared to using the larger list of seeds as is utilised with the Skill class. This
type of seed list size is also similar to was is implemented in Gupta’s Pattern Learning
system Gupta and Manning (2014) as described in Chapter 2, in which a total seed list
size of 4 is used as the basis. The total number of seeds used for both the Skill and
Education class are 2,003 and 12, respectively, as illustrated in Table 4.1.

4.2 The Model: Distantly-Supervised Pattern Learning

In order to extract the competency related terms from the unlabelled data, with regards
to the skills and education, a Distantly-Supervised Pattern Learning Bootstrapped ap-

skgpc
Highlight
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Class #Instances

Skills 1,004

Skill Synonyms 909

Total Skills 2,003

Total Education 12

Table 4.1: Number of instances within each of the class seed lists for the Term Extrac-
tion

proach is implemented, similar to which is developed by Gupta and Manning (2014) and
described in Chapter 2. Here, each of the Education and Skill class seed lists alongside
manually crafted patterns, as described in Section 4.3, are used as the only labelled
input for identifying and extracting similar candidate terms within the data.

In order to do so, the system initially takes the list of seed terms as input, which are
used to find exact matches within the entirety of the job posting corpora. Once these
are detected, the model then is able to learn the contextual patterns of a given window
size either side of the match, with regards to each of the tokens linguistic features.
The window size here refers to the number of tokens either side of a matched term;
if window size is defined as 1, then 1 token either side of the match is taken as the
basis for learning the patterns. At this point, the manually crafted patterns can also be
inputted into the system as is performed in my research, though it should be noted that
this is optional. Once the system has learned the surrounding matched term patterns,
these patterns are then used to search across the job posting data again, to discover
new terms, based on whether their respective contextual patterns are matched by those
learned by the system.

This process occurs iteratively for n iterations. Within each iteration, the new terms
extracted by the previously learned patterns are scored semantically, with only the
higher scoring results being added to the base dictionary. Here, if an extracted term
is scored above a threshold of x, it is added to the seed term set, else it is disregarded
and added to the rejected terms. The cosine similarity is calculated between each single
extracted term and each of the terms within the seed list. It should also be noted here
that the new extracted terms are only measured against the original seed list and not
the newly generated one. The reason for this is to avoid the semantic drift as described
in Chapter 2, which could lead to extracting terms which are far away from the original
seeds; this appeared to be one of the challenges in previous similar implementations.
For my research, the model will continue to learn the contextual patterns and extract
new terms for a maximum total of 10 iterations before the system stops. In addition to
this, as an extra parameter, I have also decided to allow the model to stop if the number
of accepted terms falls below 20. The reason for both of these choices is based on the
aim to further avoid the semantic drift, ultimately preventing the model from extracting
noisy data and trying to ascertain more streamlined and filtered final results.

Unlike previous literature, the patterns themselves are not explicitly scored in this
research. Instead, in order to try and streamline the pattern learning component of
the system, the model implemented here learns the linguistic features of not only the
contextual patterns but also the matching seed patterns. For example, given a window
size of i of a match, the system will be able to learn the linguistic information of each
token within the window size as well as the linguistic attributes of the match term
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itself. As mentioned in Chapter 3 with regards to the cleaning of the the data, minimal
preprocessing is undertaken. This thus allows the system to learn important infor-
mation which may be relevant of terms in a given class including their capitalisation,
dependencies and other linguistic details that could help the model to achieve a better
understanding of the data. Regarding the contextual patterns to be learned, it should
also be noted here that the system will only learn the features of the tokens within
a window size given the tokens are in the same sentence; if the window size spreads
across multiple sentences, it is cut short.

Ultimately, the system will thus be run individually for both the Skill and Education
class; this system only focuses on extracting one unique class of terms each time.
The specific features to be learned within these contextual patterns are explored in the
subsequent section, Section 4.3 whilst the final window size for each of the class systems
are defined in Section 4.5. The overall pipeline of the architecture is illustrated below
in Figure 2.4.

Figure 4.1: Distantly-supervised Bootstrap Term Extraction Pipeline

4.3 Features

Feature selection is one of the most integral components in nearly all Machine Learning
(ML) and Natural Language Processing (NLP) tasks, having the ability to drastically
improve the performance of a system through better generalisation, reducing the com-
plexity of the data and thus improving interpretability. A feature can be defined as a
specific and descriptive characteristic of data of which can be used as powerful predic-
tive leverage within a given model by reducing the number of attributes. In order to
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thus maximise the potential of this distantly supervised pattern learning architecture,
this section presents the carefully selected features used for extracting the relevant
terms.

Firstly, the manually crafted explicit patterns created as initial input are described,
both in terms of the explicit regular expressions chosen as well as the linguistic at-
tributes selected within them; both differing inevitably dependent on the Skill or Ed-
ucation class to be extracted. Following this, I explore the definite linguistic features
elected to help the system create and learn the patterns surrounding the matched seeds
within the main basis of the model. Unlike previous literature, not only are the features
to be learned within the contextual patterns of the matched terms explored, but also
the linguistic attributes of the matched terms themselves. Since the patterns them-
selves are not scored in my research as a result of time-constraints, the aim of this
additional implementation is to enable the system to become more streamlined and
improve understanding of what exact features both skill and education related terms
can be comprised of.

4.3.1 Manual Pattern Creation

In addition to the seed lists, manually crafted patterns are also created for each of the
Skill and Education classes, to be used as further input within the respective models.
Using the high performing results from previous literature as a basis, the aim of using
these patterns as additional gold data is to inevitably try and guide the system at
the very first iteration in detecting and extracting relevant terms. If the given model
is unable to extract a high quality range of terms at the first iteration, it could lead
to confusion in the system and thus potentially lead to learning false and misleading
patterns; ultimately worsening the performance and final results.

Both of the Education and Skill class Term Extraction systems will thus take a vari-
ety of synonymous Hearst Patterns, as implemented by Aussenac-Gilles and Jacques
(2006). Since these specific patterns are in the English language, they are undoubtedly
translated firstly into German, before the synonymous patterns are thereafter defined.
For these patterns to extract the most number of terms, a combination of “PROPN”
referring to proper noun as well as “NOUN” are used, as shown in Listing 1. Here,
each of the lists within the main list is representative of a single pattern, with each
dictionary relating to a single token. The token “OP” is used to refer to this being an
optional parameter and therefore the system can either use this as a basis, or disregard
it, dependent on if there are any matches.

In addition to these Hearst Patterns, a specific list of patterns is also specifically curated
for each of the individual Education and Skill classes, illustrated in Listings 2 and 3
respectively. These each were developed as a result of an extensive manual analysis
into the job posting data itself.

4.3.2 Linguistic Features

The linguistic tagging of items within the text being mandatory for both learning the
contextual patterns as well as the matched term features. In order to both dertemine
and learn these linguistic attributes of both the terms and the surrounding patterns,
the NLP python package SpaCy is used as the core guidance. Here, it is extremely
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1 hearst_patterns = [

2 [{"LOWER": "beispielweise"},

3 {"POS": "NOUN"},

4 {"LOWER": "wie"},

5 {"POS": "PROPN"}],

6

7 [{"POS": "NOUN"},

8 {"LOWER": "einschließlich"},

9 {"POS": "NOUN"}],

10

11 [{'POS':'PROPN'},

12 {'LOWER': 'wie'},

13 {'POS': 'NOUN'}],

14

15 [{'POS':'PROPN'},

16 {'LOWER': 'zum'},

17 {'LOWER': 'Beispiel'},

18 {'POS': 'NOUN'}],

19

20 [{'DEP':'amod', 'OP':"?"},

21 {'POS':'PROPN'},

22 {'LOWER': 'und', 'OP':"?"},

23 {'LOWER': 'oder', 'OP':"?"},

24 {'LOWER': 'ander'},

25 {'POS': 'NOUN'}],

26

27 [{'POS': 'NOUN'},

28 {'POS': 'PUNCT'},

29 {'POS': 'PROPN'},

30 {'POS': 'PUNCT', 'OP':"?"},

31 {'LOWER': 'und', 'OP':"?"},

32 {'LOWER': 'oder', 'OP':"?"},

33 {'POS': 'PROPN'}]

34 ]

Listing 1: Manually Crafted Synonymous Hearst Patterns (German translated)
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1 education_patterns = [

2 [{"LOWER": "Qualifikationen"},

3 {"POS": "ADP", "OP": "?"},

4 {"POS": "VERB", "OP": "?"},

5 {'POS': 'PROPN'}],

6

7 [{"LOWER": "Qualifikationen"},

8 {"POS": "ADP", "OP": "?"},

9 {"POS": "VERB", "OP": "?"},

10 {'POS': 'NOUN'}],

11

12 [{"LEMMA": "abgeschlossenen"},

13 {"POS": "NOUN"},

14 {"POS": "CCONJ", "OP": "?"},

15 {'POS': 'NOUN', "OP": "?"}],

16

17 [{"LEMMA": "Abschluss"},

18 {"POS": "CCONJ"},

19 {"POS": "NOUN"},

20 {'POS': 'CCONJ', "OP": "?"},

21 {'POS': 'NOUN', "OP": "?"}]

22 ]

Listing 2: Manually Crafted Education Patterns

1 skill_patterns = [

2 [{"LEMMA": "Fähigkeit"},

3 {"POS": "CCONJ"},

4 {"POS": "NOUN"}],

5

6 [{"LEMMA": "Qualifizierung"},

7 {"POS": "ADP"},

8 {"POS": "NOUN"}],

9

10 [{"LOWER": "Du"},

11 {"LEMMA": "sein"},

12 {"POS": "NOUN", "OP": "?"}],

13

14 [{"LOWER": "Du"},

15 {"LEMMA": "bring"},

16 {"POS": "NOUN"},

17 {"LOWER": "sowie", "OP": "?"},

18 {"POS": "NOUN", "OP": "?"}],

19

20 [{"LOWER": "sicher"},

21 {"LOWER": "umgang"},

22 {"POS": "ADP"},

23 {"POS": "DET", "OP": "?"},

24 {"POS": "PROPN ", "OP": "?"},

25 {"POS": "NOUN", "OP": "?"}]

26 ]

Listing 3: Manually Crafted Skill Patterns
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important to ascertain the correct NLP tags since an incorrect tagging could lead to
falsely learnt patterns and ultimately extract irrelevant terms. As described in the pre-
vious chapter, the data is only preprocessed at a basic level to avoid false NLP tagging
of the linguistic items tokenized within the text. Umlauts are thus maintained, stop-
words are included, capitalisation remains and even the lemmatisation and stemming
is not undertaken on the job posting data; though these latter two steps are performed
on the seed data.

In order to test and decipher exactly which linguistic features to implement as part of
both the matching term attributes as well as the contextual pattern features, extensive
testing was performed based on a small sub-sample of the training job posting data and
seeds. For example, investigating to what extent features such Part-of-Speech (POS),
Capitalisation, Dependency relations (DEP) information and even with regards to the
Length of the terms themselves. Despite the fact that it was hypothesised that the
dependencies could help the performance of obtaining high quality terms, perhaps as
a result of the data being mixed in with English, the model appeared to generate
more misleading results when this was implemented as a feature of the matching token
during testing. POS and capitalisation, on the other hand, did however show to have a
positive impact on the system when used for both the contextual patterns and matching
terms; they are therefore implemented. Length seemed to perform also surprisingly
well, perhaps as a result of filtering short stopwords which eventually appeared to seep
through during the final iterations of testing. The final selected linguistic features for
generating the contextual patterns for both the surrounding tokens within the window
size alongside the exact matches tokens themselves, are shown below.

• Matching Token Features:

– POS: The idea here is that most of the extracted terms will be a mixture
of mainly proper nouns, nouns and adjectives; relating to both the Skill and
Education class.

– Punctuation: This is used as a boolean feature, of which aims to capture
information that may be necessary for a given skill or education type. E.g.
C and C++

– Shape: This single feature combines both capitalisation as well as the num-
ber of characters in a token, avoiding the extraction of stopword and abbre-
viations where possible. Particularly this capitalisation aspect should also
help since nouns are normally capitalised in German whilst adjectives are
not. For example, particularly with the Education class a lot of the terms
are nouns and thus capitalised.

• Contextual Token Features:

– POS: The POS here may also be indicative to creating the patterns, par-
ticularly after having observed the Hearst patterns whereby some terms are
in fact surrounded by conjunctions.

– Punctuation: This captures information whether the matching term is
used in the middle of a given sentence in a list form surrounded by commas
or even at the end of a sentence followed by a full-stop.
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– Shape: This is useful for detecting whether any shorter and lowercase stop-
words are used surrounding the matching tokens.

– DEP: After the fourth iteration, the system then implements the depen-
dency feature into the contextual token features. The reason for its intro-
duction at this stage is to attempt to filter and streamline the number of
patterns extracted even more so and again ultimately avoid noisy and irrel-
evant information being extracted.

4.4 Term Scoring

One of the most core components within this type of distantly supervised pattern
learning architecture is how the extracted terms from the learned patterns are scored
exactly. Since the system should not be limited to only extracting single token terms,
but rather multi-token terms where necessary, it is important for the term scoring
component in this research to take this into consideration. As a result, each of the
extracted terms are then embedded as sentence embeddings, based on the number of
tokens within a given term.

Although the job posting data mainly consists of German data, as mentioned in the
previous Chapters, there are still some English language instances. As a result, initially
the scoring system was tested using Multi-lingual sentence embeddings taken from
Laser1. However, these proved to underperform during testing and were unable to
capture the semantics of even similar seeds at a sufficient level, perhaps as a result
of the large number of compound words within the seed lists. Although it could be
considered in future works to perform some type of compound splitting, this is not
undertaken within this research. Instead, since German FastText2 word embeddings
are used as one of the main semantic text representation models within this research,
these were instead selected to use as the basis for the term scoring.

In order to thus generate the embeddings for the multi-token terms at a phrase or
sentence level, the vectors need to be computed in a way whereby a final vector rep-
resentation can be generated that captures the syntactic and semantic properties of
the term as a whole. Schwenk and Douze (2017) note that “to process sequences of
words [...], word embeddings need to be combined into a representation of the whole
sequence”. For this reason, each of the tokens are firstly transformed into a FastText
vector representation before pooling is applied (Arora et al., 2016); ultimately here this
means that all of the given token vectors in a term are averaged. Although I only
use German word embeddings, in future works it could be suggested to combine both
English and German embeddings for the scoring through reducing their dimensionality
using PCA (Speer and Lowry-Duda, 2017). Again, due to time-constraints, this is not
undertaken in my research.

Each of the vectorised candidate terms are then compared with each of the terms
from the original seed list by computing the cosine similarity. To determine what
type of similarity threshold to use, a sample of the seeds from each of the lists were
selected and tested against each other. A score of 0.7 was firstly initialised, on the
basis of the similarity between “Mann” (man) and “Frau” (woman). Since both the

1https://github.com/facebookresearch/LASER
2https://fasttext.cc/

https://github.com/facebookresearch/LASER
https://fasttext.cc/
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Education systems and Skill systems proved to have varying results, different thresholds
are selected for each unique system. The final threshold selected is defined in the
subsequent section, Section 4.5.

4.5 Results and Discussion

This section presents the final results from the pattern learning term extraction sys-
tem for both the skill and education based models. Since we do not have any hard
gold labels which can be used to evaluate the system, instead an in-depth extrinsic
evaluation is undertake on both sets of results. Firstly, I analyse the results obtained
using the education related seeds, describing the parameters selected for the final model
and the reasons behind their selection. The subsequent section repeats this analysis
however based on the results obtained for extracting the Skill related terms. In or-
der to perform this type of evaluation, the extracted terms are examined through a
combination of manual exploration alongside statistical measures presented alongside
illustrative visualisations for clarity. It could be suggested to perform topic modelling
for further analyses and investigate how similar certain terms are grouped together
using the FastText embeddings however as a result of time-constraints, this is not per-
formed in this specific research. Although both of the final systems utilise a window
size of 2 tokens either side of the matched term, the semantic similarity thresholds set
are different; these are explored in each of the respective subsections. Different window
sizes were tested for both of the systems, ranging from 1-4. Window sizes of 4 and 3
demonstrated to not extract many terms or at least when it did these were mostly noisy
and single terms contained additional prepositions making them multi-tokens that did
not seem semantically fitting. On the other hand, despite a window size of 1 extracting
a vast number of terms, these tended to lean more towards just relevant frequent terms
in general, rather than being Skill specific. A window size of 2 proved to generate the
highest quality and most representative terms during testing and was thus selected.
The results from both of the systems are post-processed in the same means in which
the job descriptions for the classification system are undertaken, whereby the terms
are lemmatised, umlauts converted for normalisation and any stopwords present are
stripped. These final cleaned terms will be used as features within the classification
system, as described in Chapter 5. The full extrinsic evaluation of the extracted terms
and their impact on the main task of this thesis, namely the Occupation Classification,
is undertaken in Chapter 6.

4.5.1 Education Level

Initially, the first threshold of 0.55 was set which extracted a total of 54 new terms.
Although from my first observation this deemed to be a sufficient number of extracted
terms to be expected given the specificity of the class and the fact that the seed terms
are based on the German education system, some terms such as “Master” referring
to a Master degree, were not recognised. This was particularly surprising given that
other university degree related terms such as “Bachelor” were in fact extracted. In
order to determine whether this was as a result of insufficient pattern learning or
the scoring system, further analysis and testing was undertaken. This proved that
when embedding this particular rejected term and semantically comparing it to the
original seed list, it did not surpass the threshold of 0.55. It can be assumed that
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the reason for this peculiarity is as a result of the ambiguities that exist in natural
language, particularly regarding Polysemy, which can be defined as “as the form of
ambiguity where two [or more] related senses are associated with the same word” (Gries,
2019). This therefore suggests that perhaps the term was transformed into a embedding
representation based on the anglicism salutation for a man, “Master”. Since it was
expected that some occupational groups would require more university based education
types whilst others more vocational, it seemed necessary to adjust the threshold so that
terms such as “Master” were in fact accepted. As a result, the final scoring threshold
selected is instead 0.5, which thus allows the term “Master” to be included within the
final results.

Once the terms are extracted, they are then all post-processed in the same means in
which the job posting classification data is preprocessed; this involved lemmatizing the
terms and ensuring not any stopwords were included. From initialising the extraction
using just 12 seeds, 6 synonymous Hearst patterns and 4 class specific manually crafted
patterns, a total of 134 terms are extracted across the entirety of the data, as shown
in Table 4.2. Given the specificity of the Education class type, with the number of
different types of education realistically available, it can be concluded that this is a good
estimate of number of terms to be extracted. In order to analyse the extracted terms
further however, the extracted terms are clustered together based on their respective
occupational classes using the labelled data available. Inevitably, some non-related
education noisy terms such as “Arbeit” (work) and “Bewerbung” (advertisement) were
also extracted therefore these are added to a list of manually curated stopwords to be
stripped. It should be noted here that to evaluate the final results without biasing the
classification task, only the terms ascertained within the training and validation data
subsets combined are analysed. The results for the top 30 education related terms both
exact matching to the seeds alongside those extracted within these combined subsets
are illustrated in Figures 4.2 and 4.3, respectively.

#Iteration
#Input
Patterns

#Input
Seeds

#Learned
Patterns

#Extracted
Terms

#Rejected
Terms

#Accepted
Terms

0 10 12 2,984 4,587 4,493 94

1 - 94 14,835 6,447 6,410 37

2 - 37 317 106 102 4

Total 11,005 135

Table 4.2: Results from Term Extraction System at each Iteration for the Education
Class using 0.5 Semantic Similarity Scoring Threshold

Figure 4.3 illustrates that the pattern learning system has been able to extract a re-
fined nuumber of fairly high quality education related terms, including terms such as
“Lehrstelle” (apprenticeship), “Master” and even “Weiterbildung” (further education).
Perhaps given the similar roots of German and English both being Germanic languages
and therefore in some cases having similar syntax, the pattern learning system is able
to extract the term “University” as well, despite the fact that the original seed list only
included German terms. Nonetheless, even after manual filtering there are still some
anomalies within the results including terms such as “Beschaeftigung” (employment),
“Rekrutierung” (recruitment) and ”Praktikum” (internship) which could be more in-
terpreted as frequent key terms just not necessarily education related.



52 CHAPTER 4. TERM EXTRACTION

In order further analyse the terms extracted within the training and validation subsets
and ultimately visualise to what extent they may prove as indicate features for the oc-
cupation classification task, they are clustered together based on the SOC label. Since
the aim of the Term Extraction system is to extract features to be used for the occu-
pation classification, here both the exact alongside the extracted terms are combined
to ascertain a better coverage and understanding of each of the occupational groups.
Terms which occurred most frequently in all of the occupational such as “Ausbildung”
(vocational training), “Studium” (studies) and “Weiterbildung” (further education)
are removed at this point in order to analyse the granularity of the most frequent
terms specific to each occupational group. Terms such as “Lehre”, “Berufslehre” and
“Lehrstelle”, each referring to a type of apprenticeship level of education requirement
are grouped together as ”Lehrstelle” (apprenticeship). Figure 4.4 illustrates the final
results of the education term extraction system after post-processing, showing the top
5 education-related terms within each of the occupational categories; including both
exact matches alongside extracted terms.

We can see in the doughnut chart visualisations in Figure 4.4 how different types of
education types and levels are in fact to the job posting data utilised in this research.
Here, the extracted term “Lehrstelle” (apprenticeship) proves to be most common
amongst occupational groups 9, 10, 11 and 12 whilst more university related degree
requirements, such as “Diploma”, “Bachelor” and “Master” are more necessary for
groups 1,2,3 and 4. Although initially it would seem perhaps some what surprising to
some that the one of the most required education levels for Military specific occupations
is a Diploma, these occupations could be related to the engineers within the field, such
as combat engineers whereby a university degree is required. This type of cluster
analysis demonstrates not only how this type of analysis can be extremely useful when
aggregating occupations based on their groups, but also how the importance of an
education-related requirement contributes to how an occupation can be defined exactly.
The individual visualisations of the top 10 education related exact matches alongside
the top 10 education related extracted terms can be found in Appendix C.

4.5.2 Skill

Again, initially the term scoring threshold was tested using 0.7 as a basis, however
despite this appearing to perform relatively well, some terms such as “programmierung”
meaning Programming where still rejected. As a result, this threshold was reduced and
instead the final threshold selected for scoring the Skill class terms is 0.65.

As illustrated in Table 4.3, the Skill Term Extraction system ran continuously using
the learned patterns until the maximum number of 10 iterations was reached, before
then breaking. Here, we can see that from starting of a sum of 2,003 seeds, a total of
17,902 terms are extracted as accepted items whilst an almost similar total of 19,136
terms are rejected. Despite having a higher threshold than what was determine for
the Education extraction model, we can see that more terms are still scored as being
semantically similar to the original terms in the seed list. Needless to say, with the
abundance and variety of different skills necessary not only for a single domain, but a
single occupation, it is not surprising that the number of accepted terms is far greater
than those of the Education class. However, the difference in proportion between those
terms accepted and rejected demonstrates to be very minimal with only 51.67% of the
extracted terms being rejected and 48.33% accepted.
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Since there is a greater number of terms accepted from the Skill extraction system
in comparison to the Education system, a greater number of most frequent terms are
used as part the analysis. Figures 4.5 and 4.6 thus illustrate the overall most fre-
quent 50 exact terms alongside the most frequent 100 extracted terms across the entire
training and validation corpora. From first observation, the system does appear to
extract a large number of relevant skill related terms, ranging from “Kundenorien-
tierung” (customer-orientated), “Fuehrungserfahrung” (leadership experience) as well
as “Controlling” (Controlling). However, unlike the majority of terms extracted for the
Education class, the results from the Skill Term Extraction model appear to combine a
lot more noisy and less fine-grained terms, with some examples including “mit Angabe”
(with indication), ‘mit Schwerpunkt‘ (with main focus) as well as “von Kunde” (from
customers); though the latter does seem to related to fit into the customer-orientated
skill.

Additionally, as a result of the compound nouns within the German language, de-
spite “Verantwortungsbewusst” (responsible) being a lemmatized seed from Vertant-
wortungsbewusstsein (a sense of responsibility), the system still also extracts the term
“Vertantwortung” (responsibility), ultimately both referring to the soft skill of being
responsible. This similar pattern is further seen with some of the adjectival nouns which
inevitably are not lemmatized in the same means in which their respective adjective
are. For example, “Teamfaehigkeit” and “Teamfaehig” both refer to the same skill of
being team-orientated yet they are not yet clustered together as a single skill.

For a more fine-grained analysis, these different syntactic forms with similar semantic
meaning and clustered together before computing the top 10 Skill related as a whole,
for each of the occupational classes. These final visualisation of the doughnut charts
can be seen in Figure 4.7. After the careful and manual filtering of some irrelevant
and noisy terms, the final results combined show that there are in fact some indica-
tive patterns with regards to different different occupations requiring a specific set of
skills. For example, in Occupation SOC Label 4, the most frequent skills required for
Healthcare practitioners include “Medizin” (medicine) and “Sozialkompetenz” (social
competence). Additionally in Soc Label 9, we can see that skills specifically related
to Construction occupations are computed as frequent skills, including as “CAD” re-
ferring to Computer Aided Design and “Umbau” translating to reconstruction and
“Plannung” (planning). Other related words such as ”Maschine” (machine) are also
extracted within this same group however the challenge here lies in the fact that de-
spite this term being related and thus semantically similar to the other terms, it is
problematically not a skill in itself. Instead, it is more of just a key word, related to
the field. This is mirrored in other occupational groups also, for example in Soc Label
5, the Service related occupations, where “auf Gastro” meaning by Gastro as well as
in Soc Label 8, where terms such as “Pflanze” (plants) and “Blumen” (flowers) are
extracted as frequent skills; it can be definitely considered as key words related to the
respective class, however again they are not necessarily skills. Nonetheless, the final
results do prove to illustrate a good mixture between both soft and hard skills.

4.6 Discussion

Despite not being able to evaluate the final results in a more traditional way through
statistical metrics, the pattern-learning bootstrap system implemented in this research
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#Iteration
#Input
Patterns

#Input
Seeds

#Learned
Patterns

#Extracted
Terms

#Rejected
Terms

#Accepted
Terms

0 11 1,910 12,337 12,213 8,661 3,552

1 - 3,552 60,144 8,264 5,005 3,259

2 - 3,259 12,912 2,004 795 1,209

3 - 1,209 4,165 2,802 345 2,457

4 - 2,457 11,552 1,948 307 1,641

5 - 1,641 4,429 2,985 654 2,329

6 - 2,329 5,026 1,868 643 1,225

7 - 1,225 2,532 1,672 832 840

8 - 840 1,660 1,390 671 638

9 - 638 1,604 1,026 611 415

10 - 415 923 949 612 337

Total 19,136 17,902

Table 4.3: Results from Term Extraction System at each Iteration for the Skill Class
using 0.65 Semantic Similarity Scoring Threshold

does appear to ascertain promising results. Particularly for the Education class, we
can see a variety of different related terms extracted, ranging from levels such as
“Lehrstelle”, meaning apprenticeship “Bachelor” as well as“Fortbildung” translating to
advanced training. As described and analysed in Section 4.5.1, the clustering of these
most frequent terms for each of the occupational classes illustrates how the type of
education does show to vary between classes, in a similar way as what can be predicted
by a human expert. For instance, with more university related education types being
regarding for Healthcare Practioners and Technical Occupations whilst more practi-
cal and hands-on vocational training being required for Construction and Extraction
Occupations.

Initially, it was thought that by using a larger number of seeds it would allow for greater
coverage and thus extract more relevant seeds. However, as shown in the results for the
Skill class, this can also lead to further noise being extracted, particularly in comparison
to the results from the Education class. This difference in noise however could also be
as a result of the class definitions themselves, with there being a lot more variance with
regards to what can be considered as a skill and the number of different education types
that exist in Germany alone. Even from visualising the most frequent seed terms within
the Skill corpora, it is evident that the ontology is still undergoing maintenance at the
time of this thesis. In fact, there are still some ambiguous and potentially noisy terms
even in this gold standard seed list, such as “Berufserharung” which translates literally
to work experience; it is questionable whether this can be considered as a skill as such
and therefore in the final filtering, even this gold seed is removed. Furthermore, there
are even some Skill seeds of which overlap with with the seeds from the Education class.
Examples of such gold seeds from the ontology include “Abschluss einer berufsbildenden
mittleren Schule” (Completion of a vocational secondary school) as well as “Google-
Zertifikate” (Google Certificate). Arguably these former examples could have been
classes as skills had they included exactly what field of education they are referring
to, similar to how “Hundetrainingsausbildung” (dog training education) clearly refers
to completing education of specifically training dogs. However, as in the case in the
exemplar instances, this type of information is not included. Preceding on from the
apparent overlap between the two seed classes, there are also other gold skill seeds which
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appear misleading and ambiguous, without the additional meta-knowledge contained
within the ontology. For instance, although it may be unknown to even the human
eye how the seed “Internationales Zertifikat der Universität von Perugia” meaning
International Certificate of the University of Perugia relates to Skill, with the external
meta knowledge we learn from the description that this in fact refers to obtaining a
certificate for proficiency in the Italian language.

Given the fact that the extracted terms are scored based on semantic similarity scores
to the original seeds themselves, it can be concluded that if seed lists are to be used as
the core gold data within this type of pattern learning system, less ambiguous and more
refined seeds should be selected. The quality of manually cultivated, or at least clarified,
seeds seems to have a greater impact in increasing the performance of this system over
the quantity in the number of seeds for our data, as seen in the comparison between the
results for the Education and Skill class. Nonetheless, this is not to say that this may
differ for the extraction of a different type of requirement class or through the utilisation
of a different dataset. It can be speculated however, that if the system were to be able
to incorporate the meta-data from the ontology or some type of world knowledge, this
could lead to the system having a greater understanding of the semantics of the seeds
when scoring them and potentially meaning an improved and more robust system.

Regarding the patterns themselves, from a manual analysis into the data we can see
that an abundance of more diverse patterns are learnt by the system for the skill data,
although it can be suspected this is also related to the number of seeds also extracted
each time, with the Skill class extracting substantially more at each iteration. For future
works here, it would be suggested to implement a pattern scoring system, similar to
what is undertaken in similar work by Gupta (2015), to further improve the robustness
of the pattern generation itself.
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Figure 4.2: Most Frequent Exact Seed Education Terms across the entire Corpora
(Train + Validation)

Figure 4.3: Most Frequent 30 Extracted Education Terms across the entire Corpora
(Train + Validation)
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(1) Management, Business and (2) Computer, Engineering, and
Financial Science

(3) Education, Legal, Community (4) Healthcare Practitioners
Service, Arts, and Media and Technical

(5) Service (6) Sales and Related

(7) Office and Administrative (8) Farming, Fishing, and
Support Forestry
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(9) Construction and Extraction (10) Installation, Maintenance
and Repair

(11) Production (12) Transportation and Material
Moving

(13) Military Specific

Figure 4.4: Doughnut Chart Visualisations illustrating Top 5 Education Terms within
each of the Occupational Classes
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Figure 4.5: Most Frequent 50 Exact Seed Skill Terms across the entire Corpora (Train
+ Validation)
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Figure 4.6: Most Frequent 100 Extracted Skill Terms across the entire Corpora (Train
+ Validation)
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(1) Management, Business and (2) Computer, Engineering, and
Financial Science

(3) Education, Legal, Community (4) Healthcare Practitioners
Service, Arts, and Media and Technical

(5) Service (6) Sales and Related

(7) Office and Administrative (8) Farming, Fishing, and
Support Forestry
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(9) Construction and Extraction (10) Installation, Maintenance
and Repair

(11) Production (12) Transportation and Material
Moving

(13) Military Specific

Figure 4.7: Doughnut Chart Visualisations illustrating Top 10 Skill Terms within each
of the Occupational Classes



Chapter 5

Occupation Classification

This chapter provides the in-depth technical detail regarding the main component
within this research, the Occupation Classification model.

First, in Section 5.1, a statistical overview in terms of the distribution in number of
instances per occupational class within the labelled training, validation and test subsets
is described, accompanied by their distributional percentages in relation to the size of
the data as a whole.

Following this, in Section 5.2, I describe the architecture of the pseudo-labelling clas-
sification model itself, offering a deeper insight into the technical choices made during
its implementation. For clarity of the model, this section is accompanied by both an
explicit example of a data instance as input along with a visual representation of the
pipeline itself.

Section 5.3 subsequently provides the key steps and illustrations necessary for undertak-
ing a detailed exploratory analysis (EDA) into the data. Here, Rather than describing
the job posting data as is already undertaken in Chapter 3, this Section provides an
in-depth examination into the manually labelled instances through a combination of
statistical counts of the data distribution alongside illustrative visualisations for each
of the classes within the labelled training data. This type of detailed analysis thus
provides the fundamental foundations needed for determining which features should
be incorporated into the final classification model. These illustrations and analyses
will also serve as a comparative basis with the final results in Chapter 6. The final
features selected alongside the comparative text representation embedding models are
also listed at the end of this section.

In Section 5.4, I subsequently outline the two main classification models to be imple-
mented into the pseudo-labelling architecture described in Section 5.2, namely a Sup-
port Vector Machine (SVM) as well as a Convolutional Neural Network (CNN).

Finally, in Section 5.5, the experimental setup is described through providing more
information into the parameter tuning of the final models. The related results are
revealed in Chapter 6.
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5.1 The Data

After having ascertained the final labelled dataset as described in Chapter 3, Section
3.2, it is important to understand the exact distribution of the data not only across
data subsets, but also across classes.

In Table 5.1, both the number of instances alongside a percentage is shown for each
of the individual classes within the labelled train, validation and test subsets. The
percentage is calculated in relation to the number of instances in the single subset, in
order to demonstrate the distribution in number of instances per class. As shown in
Table 5.1, there is a large skew across each of the subsets, with a difference of 584
instances between the largest class, 2, containing 595 instances and the smallest class,
13, consisting of a mere 11 instances, in the training data alone. To emphasises this
skew, Figure 5.1 illustrates a bar plot of the number of instances for each class within
each subset.

As a result of stratification during the splitting of the data, this similar skew in distribu-
tion across the classes into consideration is mirrored across each of the subsets with the
validation and test subsets having a similar ratio of instances for each of the categories;
as seen in Table 5.1 and visualised explicitly in Figure 5.1. Despite the imbalance in
classes, through stratifying the split it should prevent a given model will from drasti-
cally changing in terms of its performance as it could do if trained on different data
distributions regarding the validation and test subsets.

Although it would be suggested here to perform some type of Upsampling, in order to
try and balance out the minority class proportions, as a result of time-restrictions it
is not possible to carry this out. Nonetheless, after ascertaining the model results and
thereafter performing the error analysis in Chapter 6, this information may prove inte-
gral and therefore should be taken into consideration throughout the experiment.

Following this exploration into the distribution of the data as a whole, an in-depth
analysis into the data is undertake order to determine which features to incorporate
into the model, as discussed in the Section 5.3.

5.2 System Architecture: Pseudo-Labelling

In this section, I describe the architecture of the pseudo-labelling system implemented
within this thesis, using the works described in Chapter 2, Section 2.1.2.1 as the foun-
dations. Although there are two types of variations which can be implemented in this
type of pseudo-labelling classification, with one involving re-training the same model
each time whilst the other involves training a new model, for the purpose of this thesis
only the latter is implemented. The reason for this is as a result of computational
limitations and lack of time to use both types as a further comparative feature within
the research; this could be incorporated in future works nonetheless.

Using the previously extracted terms related to the given occupations, we therefore
come to the primary task of this thesis at hand, namely classifying each given job post-
ings into a single occupational class relative to the occupation being advertised. The
manually annotated gold data is used as leverage in categorising the unknown, unla-
belled occupations, by iteratively training a model and generating confident predictions
on the unlabelled data. In order to do so, the original gold labelled data is used as the
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SOC Label #Train #Validation #Test %DS

1 553 183 184 14.94

2 595 194 198 16.03

3 144 50 49 3.95

4 359 120 120 9.73

5 398 112 127 10.35

6 253 88 85 6.92

7 481 166 162 13.14

8 20 11 8 0.63

9 274 93 92 7.45

10 364 126 122 9.94

11 69 33 25 2.06

12 171 48 55 4.45

13 11 5 4 0.32

TOTAL 3,693 1,232 1,232 100

Table 5.1: Number of Instances and Distributional Percentage for each class within
each of the labelled data subsets

basis for generating predictions on the entire unlabelled training data, in the same way
in which a supervised classification model would be run. For the purpose of this section,
I refer to the labelled training data as the pseudo-train data, the unlabelled training
data as the pseudo-test data. and the outputted predictions as the pseudo-labels.

After having trained a given model and generated the predictions, these pseudo-labelled
instances are then added to the pseudo-train data, thus generating a larger dataset.
However, rather than taking all of the pseudo-labels as the gold labels, the foundation
of this approach relies on using a confidence threshold in which only predictions that
surpass this number are added to the pseudo-train. This process continues for either n
iterations, until there are no more instances in the pseudo-train data or until the number
of pseudo-train instances falls below a certain rest length before breaking. Subsequently,
the model is evaluated using the test data and the hypothesis is that the pseudo-labelled
data can help to achieve a higher performing model in relation to just using the original,
limited gold labelled data. For the purpose of the model in this research, the number
of iterations is set to 10 whilst the confidence level varies dependent on the model
utilised; the exact confidence thresholds are noted in Section 6.6. Ultimately then, this
pseudo-labelling method is “based on the manifold assumption to make predictions on
the entire dataset and use these predictions to generate pseudo-labels for the unlabeled
data and train a deep neural network.” (Iscen et al., 2019). The overall system pipeline
is illustrated below in Figure 5.2.

5.2.1 Steps

1. Train a supervised model using the limited training labelled instances available.

2. Generate predictions on the unlabelled training data

3. Calculate the confidence scores for each of the predictions and thereafter the
Q3 confidence threshold to be set; the confidently scored predictions act as the
pseudo-labels
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Figure 5.1: Bar Plot illustrating the Distribution of Occupational Classes across each
of the labelled subsets

4. Concatenate the pseudo-labelled data with the original training data; generating
a larger labelled corpus for training

5. Repeat steps 1-4 each time increasing the size of the training data until the system
reaches N iterations or until the maximum rest is reached.

6. Train final model using all of the pseudo-labelled and original labelled data; eval-
uate using test data.

5.2.2 Confidence Intervals

One of the core components within this type of pseudo-labelling architecture that has
the ability to heavily impact the performance of a model, is the type of threshold set.
Based on the previous literature, this threshold thus is used to determine whether
the pseudo-labelled instances should be added to the gold dataset or not, based on
the confidence produced by the model. Confidence scores within regards to ML and
classification, can be defined as a “[measurement of] the accuracy of [a] model when
predicting class assignment (rather than the uncertainty inherent in the data” (Man-
delbaum and Weinshall, 2017). Inevitably, if this confidence threshold is set too low, it
will allow for more of the pseudo-labelled instances to be added to the gold data and the
risk of incorporating incorrectly labelled instances to be used during training. On the
other hand however, if the confidence is set too high, fewer instances will be added to
the training data and there is a chance of pseudo-labelling hardly any instances before
the architecture breaks after n iterations.

For each of the models, a float between 0 and 1 is initialised as the threshold. In the
previous outlined literature, a single score is chosen as the confidence threshold to be
used throughout each of the iterations in one given experiment. However, this raises the



5.2. SYSTEM ARCHITECTURE: PSEUDO-LABELLING 67

Figure 5.2: Pseudo-Labelling Classification Pipeline

question of whether the behaviour of the model changes as more labelled data is used
to train it, particularly in terms of its confidence. In my research, it is hypothesised
that the confidence scores will change not only across the different types of ML models
implemented, but also as a result of their dependency on the number of instances that
are used to train a given model. As a result, rather than using the same threshold used
to initialise the model using only the limited labelled training data, the threshold is
adjusted in each of the subsequent iterations as the size of the training subset increases;
rather than using the same threshold throughout all of the remaining models, the system
implemented in this research instead updates this confidence threshold, based on the
current model in training.

In order to do so, I have chosen to use the Upper 75th percentile, otherwise referred to
as the Upper Quartile (Q3) range. The Q3 is calculated by dividing all of the confidence
scores of the current model into quarters before thereafter computing the median of
the upper half of the data; the Q3 is thus is the value between the lower 75th and upper
25th percentile of the scores. Through selecting this interactive threshold based on the
current model, it allows the model to update its parameters and weights according to the
distribution of the current confidence data with the objective of improving the overall
performance of the system. Furthermore, by computing the threshold automatically,
less unconscious bias is also incorporated than what would have been through a manual
selection.
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vacancyTitle Pflegefachperson

vacancyDescription

“Wir suchen motivierte Mitarbeiter mit entsprechender
Qualifikation als Diploma Pflegefachperson DNIII.
Sehr gute Deutschkenntnisse Gute MS Office
Kenntnisse Zuverlaessig, flexibel und belastbar
Aufgabenbereich Individuelle Pflege und Betreuung
der Bewohner Interdisziplinaerer Zusammenarbeit mit
anderen Pflegeteams”

extractedSkills
[ “DNII”, “Deutschkenntnisse”, MS Office”,“Zuverlaessig”,
“Pflege und Betreuung”]

extractedEducation “Diplom”

socLabel 4

Table 5.2: Example of Labelled Job Posting with Extracted Information

5.3 Feature Engineering

Although recently these deep neural networks in Deep Learning (DL) have gained in-
creasing popularity for multiple NLP text classification tasks as a result of not requiring
any particularly for feature engineering, often they rely on extensive amounts of labelled
data in order to perform well. Where these DL models fall short, often it is the tradi-
tional Machine Learning (ML) systems which are still able to consistently achieve high
results through the explicit feature generation and engineering conducted by a human
analyst with world knowledge. Since one of the comparative aspects within this research
is to compare the performance of a deep neural network model with a traditional Ma-
chine Learning (ML) system, this section provides insights into the steps undertaken
during the data analysis and ultimately the feature engineering process, with the aim
of determining which manually crafted features can be discovered to help improve the
performance of the classification model. The exploratory data analysis (EDA) is first
outlined as a whole in the first Section, 5.3.1, illustrating all analyses made regardless
of the significance of their results for the task; even if the analysed feature proves to
not be indicative of a class, this is still useful and integral information to consider as
we deal with a unique dataset at hand. The final list of the ultimate features to be
implemented in the model are shown in Section 5.3.4.

5.3.1 Exploratory Data Analysis (EDA)

In this section, an in-depth exploratory data analysis (EDA) is performed in order to
identify and examine particular patterns in the data. Although this stage was partially
undertaken prior to the preprocessing step itself, here I only focus on the EDA after
the data has been fully cleaned. Through looking into various different statistical
and linguistic patterns in the text data across the classes, the main purpose of this
section is to see whether any of these analyses may be useful for feature engineering
and ultimately help to improve the performance of the classification model.

Four key analyses are explored in this EDA, namely looking into the Length (average
number of sentences), relative Part of Speech (POS) tags, relative Named Entities
(NEs), as well as a more illustrative investigation into the most frequent terms through
N-grams. All of the analyses within the data and the visualisations thereafter produced
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are solely based on the labelled training data.

5.3.1.1 Length Analysis

The first type of analysis undertaken is a length analysis. Although this type of infor-
mation is more indicative as a stylistic feature of the writer itself, due to its simplicity
it is undertaken to see if any insights can be offered; whether a occupational class job
posting tends to have a longer, or shorter, length than others at the token and sentence
level. As illustrated in the violin plot in Figure 5.4, although it appears that the aver-
age number of sentences in class 13 is slightly larger in comparison to the other classes,
this is not great enough to offer any real indicative information.

Figure 5.3: Violin Plot illustrating the Average Number of Sentences per Occupational
Class

5.3.2 Linguistic Features

Here, I look into the specific linguistic features of the job postings, namely the Part of
Speech (POS) tags alongside the Named Entities. The relative count for each of the
occupational classes is computed and visualised for clarity.

However, as shown in Figure 5.5, here is no obvious correlation that can be seen between
the classes in terms of the differing POS, with the relative number of tags across the
classes all appearing to have a similar proportion to each other. As a result, there is
no single POS tag which appears to be indicative of a certain class and this feature is
ruled out.

In Figure 5.6 however, despite the fact that the majority of relative NE tags across
the occupational classes do not show any real insights in terms of comparability, one
tag which does show to have a great impact for one single class is the Locative (LOC)
category. As shown in the figure, the LOC category appears to have a high number
of location-related terms for the “Farming, Fishing, and Forestry” related Occupations
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Figure 5.4: Violin Plot illustrating the Average Length of Tokens per Occupational
Class

at soc label 8, which therefore suggests that it could be an indicative feature to use in
helping the model classify these types of relations.

To determine the extent of how this feature could be indicative of the given class,
a deeper analysis is then performed through examining the top frequent LOC terms
themselves in both the the overall job posting data as a whole, alongside only in the
Farming, Fishing and Forestry category. However, upon observation it is evident that
the main LOC terms included are those relating to cities which are not necessarily
indicative of an occupational class. In addition to this, the number of instances within
this soc label only total to 20 and therefore this is probably the reason for their higher
number in proportion to the other classes. For this reason, despite the falsely promising
result, NE tags also are not incorporated into the final model.

5.3.3 Most Frequent N-grams

Once these statistical linguistic analyses had been undertaken, I then decided to explore
to what extent the frequency of terms in the preprocessed textual data may be useful
for this task. In order to do so, n-grams at the word level are computed and therefore
visualised. A n-gram can be defined as a sequence of n adjacent items in a given piece of
text, whereby these items can represent either characters, tokens or even sentences. For
example, by looking into n-grams at a word level in which n is equal to one, each item
would be taken as a single token from the sequence, otherwise referred to as unigrams.
Using this same example, if n is equal to two, all combinations of adjacent paired tokens
would be computed, referred to as bigrams. This latter case, alongside other variants
whereby n is greater than 1, may be useful to detect collocations; multiple words which
commonly appear together adjacently. N-grams have proved to be a vital feature for
not just text classification tasks, but NLP challenges as a whole, primarily due to the
fact that they look at series of words or characters together in order capture and explicit
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Figure 5.5: Bar Plot illustrating the Relative POS count per each Occupational Class

both syntactical and semantic information, which a single word alone is not able to do.
For the purpose of this section in the EDA, I only visualise the most frequent words
(MFW) for unigrams and bigrams to determine whether certain tokens are indicative
of certain occupational classes.

Figure 5.7 illustrates the top 75 most frequent unigrams for each of the 13 different
occupational classes. In order to ascertain these relevant terms, as undertaken in Chap-
ter 3, English and German stopwords are stripped from the job descriptions from both
NLTK and SpaCy alongside a custom set manually created through an in-depth anal-
ysis of the data. These particular visualisations of the text from the training data
exemplify how each class contains its own set of semantics for each occupational group,
as a result of differing language. Particularly for classes 1, 2, 4, 5, 6, 7, 8 and 13, the
terms are very representative of each of the groups with key words such as “gastro” in
the Service class and terms such as “verteidigung” meaning “defence” in the Military
Specific occupations. It is especially important to note the fact that often the key
words within each of these visualisations relate not only to the skills, but also to the
education. For example, the term “diplom” referring to a phd level education appears
in the Healthcare occupational group whilst “ausbildung”, relating to more vocational
training is shown in the Office and Administrative specific occupations.

After having generated the visualisations for the unigrams, the most frequent collo-
cations within each of the individual classes were further extracted through the com-
putation of bigrams. Although it is evident that there are clear patterns across the
classes using the MFW unigrams, as shown above, inevitably not all information can
be captured by only using the tokens individually. For example, although the words
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Figure 5.6: Bar Plot illustrating the Relative NE count per each Occupational Class

“human” and “resource” appear as MFW unigrams within (7) in Figure 5.7, individu-
ally they may also appear in other classes, such as “resource” in (1) of the same figure;
individually the terms carry a different semantic meaning than when taken as the bi-
gram collocation, “human resource”. Bigrams can therefore be used to help to capture
additional information and ultimately may be useful for leading to a higher performing
model through increased pattern understanding within the data. In order to visualise
the frequency of bigrams, the 20 most frequent word pairs are extracted. Examples of
these most frequent collocations are illustrated below in Figures D.1, D.2 and D.3. The
full list of the figures for all of the classes can be found in Appendix D.

5.3.4 Final Features

After having performed the detailed EDA, although the bigrams do prove to show some
patterns which could be indicative for each of the occupational classes, as a result of
time-constraints they are not implemented within this research. It could be suggested
however in future works to further use this as a comparative feature, based on the
visualisations shown within this Chapter. Nonetheless, the illustrations produced will
also serve as a basis of comparison with the final results in Chapter 6, in order to
determine and visualise to what extent the results vary from the original most frequent
terms.

Despite the fact that neither any specific linguistic features nor statistical features and
explicitly implemented, since the most frequent unigram cloud visualisations created for
each of the occupational groups demonstrated to be highly indicative, it is also decided
to implement Term frequency-inverse document frequency (TF-IDF) as an additional
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text representation feature; this is explained in the subsequent section, Section 5.3.5.
The main source therefore in the Feature comparison will be based on using the results
of the extracted terms from the Term Extraction system as well as comparing the two
text representation types, namely FastText and TF-IDF.

5.3.5 Text Representation

5.3.5.1 FastText

Word embeddings have demonstrated to be very effective for various challenges within
the NLP field, primarily as they can capture additional semantic and syntactic informa-
tion of lexical units, where lexical information may in fact be sparse; “you shall know
a word by the company it keeps” (Firth, 1957). Since German contains a multitude
of compound nouns, it is important to carefully select an embedding model capable of
capturing this type of granularity. One of the most renowned word embeddings models
at present is FastText1. FastText is a set of pre-trained word embeddings, of which
use a continuous bag of words (CBOW) and represent each word as series of character
n-grams, capturing information at the sub-word level. This subword level of granularity
is thus hypothesised will help to ascertain an improved performance of the system than
without them. Since the job postings are ultimately documents, composed of sequences
of sentences and even sequences of tokens, a similar method is performed with regards
to transforming the multi-token terms within the term scoring component of the Term
Extraction system. Here, each single job posting is thus split into a series of sentences
before each single token is then transformed into its respective FastText vector repre-
sentation. Following this, pooling is applied to generate sentence embeddings before
these are then further pooled to generate document embeddings.

5.3.5.2 TF-IDF

Term frequency-inverse document frequency (TF-IDF) measures the weighted frequency
of which a lexical unit is used within a given document (TF) whilst also punishing the
score if the lexical unit occurs very frequently in multiple documents. The most repre-
sentative terms within one single document are thus scored with a higher TF-IDF since
they appear frequently within that single document whilst seldom across the entire cor-
pora. As a result of stopwords being removed from the data as outlined in Chapter 3,
the MFW unigrams presented in the previous section show there is a strong correlation
with the selection of single tokens within each of the occupational classes. Given the
fact that this type of text transformation is specifically designed to take this type of
information into account, whereby each class contains a unique selection of relevant
words, TF-IDF is implemented as a comparative representation.

1https://fasttext.cc/
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(1) Management, Business and (2) Computer, Engineering, and
Financial Science

(3) Education, Legal, Community (4) Healthcare Practitioners
Service, Arts, and Media and Technical

(5) Service (6) Sales and Related

(7) Office and Administrative (8) Farming, Fishing, and
Support Forestry
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(9) Construction and Extraction (10) Installation, Maintenance
and Repair

(11) Production (12) Transportation and Material
Moving

(13) Military Specific

Figure 5.7: Word Cloud visualisations illustrating top 50 key words within each of the
Occupational Classes

Figure 5.8: Bar Plot illustrating top 20 Bi-grams within soc label 8, “Office and Ad-
ministrative”
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Figure 5.9: Bar Plot illustrating top 20 Bi-grams within soc label 5, “Service”

Figure 5.10: Bar Plot illustrating top 20 Bi-grams within soc label 6, “Sales and Re-
lated”
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5.4 The Classification Models

As aforementioned in recent works, the use of manually extracted linguistic features in
combination with traditional ML techniques in comparison to DL architectures have
both proven to ascertain high performing results for multiple NLP and text classification
tasks.

As a result, in order to compare the performance of both ML and DL techniques, a
total of two classifiers are implemented, namely Support Vector Machine (SVM) and a
Convolutional Neural Network (CNN). Regarding the practical implementation of the
models, the python libraries Scikit-learn2 and Keras are selected. The theory behind
each of the models alongside the reason for their implementation within this research
is explored in more detail below.

5.4.1 SVM

Support Vector Machine (SVM) classifiers ultimately uses a supervised learning algo-
rithm to classify data through mapping and separating data points in a high dimensional
space using hyperplanes; distinguishing distinctive boundaries between classes. Unlike
other ML techniques, SVM is capable of understanding and distinguishing patterns
when performing non-linear classification (Colas and Brazdil, 2006), (Zampieri et al.,
2019). For this reason, alongside the fact that it is considered to be one of the most
high performing and efficient ML techniques for this type of task, SVM was selected as
the comparative ML technique for the paper.

5.4.2 CNN

Convolutional Neural Networks (CNN) are specialised deep artificial networks, consist-
ing of many hidden layers, specifically in this case called convolutional layers. Unlike
traditional neural networks, which only are unable to catch contextual information as a
result of a single value used as input, CNNs use a filter which contains a neighbourhood
of values; allowing them to capture this missing contextual information.

The convolutional layers within CNNs aid in detecting specific patterns within the
input data, whether this input entails images or, in this case, sequential data like text.
They are therefore able to automatically extract distinctive feature vectors from the
training data to create sub-samples; assuring the best class separation possible. Global
maxpooling layers can also be implemented in an attempt to reduced the size of the
feature vector into a fixed length vector, thereafter enabling the extraction of long range
dependencies present in the data. Recent studies have illustrated how these deep CNNs
have the ability to attain high scoring performance, even in their simplest forms with
little to no hyper-paramter tuning (Kim, 2014). As a result, a simple CNN model is
implemented in itself; the exact parameters are illustrated in Section 5.5.

In order to input all of the extracted skill and education related alongside the vacancy
title and description into the cnn classification model, the features are concatenated
together as strings before thereafter being converted into the respective text represen-
tations with regards to the embedding models.

2https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
skgpc
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5.5 Experimental Setup

In this final section, I outline the final decisions made during the experimental setup in
terms of any of the final system parameter tuning. As shown below, the specifications
for each of the models differ between each other in order to try and develop the most
optimal solution for each. For example, when applying a confidence of 0.9 to both the
SVM and the CNN, the SVM did not return any pseudo-labelled results throughout
any of the iterations where as nearly all of the unlabelled data was confidently labelled
by the CNN in the same setting.

• Both

– Confidence Threshold: Upper Quartile Range (Q3)

– N-iterations: 10
The model will stop iterating over the data and labelling it once the number
of iterations is greater than 10.

– Minimum Rest: 5% of unlabelled data instances; 27,399.
This means that the model will either stop after the n-iterations or if the
number of unlabelled training instances is equal to or less then the minimum
rest.

• SVM

– Kernel: Radial Basis Function (RBF)
This RBF, otherwise referred to as Gaussian, kernel has an infinite num-
ber of dimensions which means it can compute more complicated decision
boundaries and find a better hyperplane that separates the data. This kernel
is selected as a result of the fact that it is the optimal kernel to use when
the number of features is less than the number of training examples, similar
to this research.

– Calibrated Classifier Cross Validation (CCCV):
Although it is possible to generate the probability scores using the more
traditional SVM with the input of an additional parameter setting, I also
compare training the SVM as a CCCV. This CCCV model is built specifi-
cally to better calibrate the probability predictions of the model and produce
the confidence scores required for the pseudo-labelling architecture. In addi-
tion to this, the CCCV applies a stratified approach and tends to not bias as
much towards majority classes, which may prove to increase the performance
of the model given the fact that there is an imbalanced label distribution
within the dataset. However, it should be noted here that the calibration of
a model can also result in requiring more extensive computational resources
and time, therefore it is unknown exactly how practical the calibration will
be, given the size of the unlabelled training dataset. Both the non-calibrated
and calibrated SVM will be tested firstly in a supervised setting, using the
labelled train and test data, to determine which appears to achieve a bet-
ter performance. The model which does in fact obtain the highest F1 score
will be used as the baseline for the remaining experiments using the SVM.
The aim of doing this is to generate the most confident pseudo-labels across
all classes, including those more under-represented, during the first itera-
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tion which could help the model improve in later iterations. The following
parameters are set within the CCCV.

∗ Method: Isotonic The default function method applied to the CCCV
in calibrating the probability predictions usually is “Platt Scaling” of
which performs “most effective when the output distortion of the predic-
tions is Sigmoid shaped”, and transforms the SVM outputs to posterior
probabilities (Niculescu-Mizil and Caruana, 2005). However, due to the
imbalanced distribution in the dataset, “Isotonic” regression is instead
implemented on the basis of it reportedly having an “overall [better]
performance on imbalanced datasets than parametric and other com-
plex non-parametric methods” (Huang et al., 2020). Isonotnic regression
assumes that the calibrated confidence probabilities are monotonically
increasing and therefore rescales this output by fitting a free-form line.
Isotonic regression is also known to perform better for multi-class classi-
fication, as undertaken in this research, whereas Platt Scalaing is more
commonly applied to binary classification tasks.

• CNN

– Number of Epochs: 30, 15 10
Here, a total of 15 epochs are used within the majority of the training
experiments using the CNN however as the size of the labelled data changes,
this parameter is also adapted accordingly to fit within the limitations of
computational resources whilst also obtaining a good performance. For the
initial models, 30 epochs are implemented in which the labelled data remains
under 100,000 instances. Following this, the default epoch number of 15 set.
Once the labelled data surpasses the threshold of 300,000, the epoch number
is then reduced to just 10 in order; this was the optimal integer for each
before the models appear to begin overfitting.

– Convolution Layers: A total of two Maxpooling layers alongside a single
Global Maxpooling layer are implemented within this CNN. The Max-
pooling layers are used to reduce the number of dimensions and preserve
the context whilst the Global Maxpooling is used to make the output of the
previous layer compatible with the fully connected layer.

– Activation Types: Sigmoid, Rectified Linear Unit (ReLu), Softmax:
Sigmoid is applied initially which transforms the input to an output between
0 and 1. Here, a high value will have a high probability but not necessarily
the highest probability and can also lead to vanishing gradients. Thus, ReLu
is applied to the hidden layers of the Neural Network (NN) with the aim
of helping to avoid and rectify any vanishing gradient problems. Softmax
is applied to the final layer in order to generate the predictions necessary
for determining and evaluating the confidence scores, since it transforms
the output between 0 and 1 for each neuron; as desired for calculating the
probability percentages.

– Cost Function: Categorical Cross Entropy - Decay using Adam - Learn-
ing Rate of 0.0001
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Chapter 6

Evaluation

This chapter presents the final results of the Occupation Classification experiments
undertaken, explicitly comparing the performance of the different combinations of text
representations, ML models and and notwithstanding the extracted term features de-
scribed in Chapter 4. Section 6.1 describes the evaluation metrics used to compute the
final scores, namely Precision, Recall and F1. Following this, section 6.2 presents the
results from each of the experiments in a clear and systematic structure, clearly illus-
trating which models ascertained the best results alongside those where improvement
can be made. In the final section, namely Section 6.3, I perform a detailed exploration
into the results, primarily focussing upon the errors produced by the models. Here, a
sample of the incorrectly predicted samples from a select few of the experiments are
analysed in a way to try and determine any possible causes.

6.1 Evaluation Metrics

The selection of an appropriate evaluation measure is one of the most important things
not only in Natural Language Processing (NLP) but Machine Learning (ML) as a whole
and is particularly important given the fact that both a model and its respective the
results should be explainable. In order to evaluate each of the comparative experiments
within this research, this section thus outlines and describes the three main metrics used
to measure the performance of each model, namely Precision, Recall and F1.

Figure 6.1 illustrates the confusion matrix for evaluating a given model, based on the
number of correctly or incorrectly labelled instances.

6.1.1 Precision

Precision =
TP

TP + FP

Precision is used to ultimately show exactly how precise a given model is, determined
by how many of the instances are predicted correctly. It is the ratio of correctly labelled
instances based on all of the positively predicted instances of the model. It is calculated
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Figure 6.1: 2x2 Confusion Matrix

therefore by dividing the number of True Positives by the sum of the True and False
Positives.

6.1.2 Recall

Recall =
TP

TP + FN

Recall, on the other hand, relates to the number of correctly labelled instances based
on all of the predictions in the given class. There is often a trade-off between recall
and precision, whereby a low precision and a high recall would mean that the model
correctly predicted a large number of instances within a given class correctly, however
other instances not from this class are also predicted the same label. Alternatively,
a high precision and a low recall indicates that although the model does predict the
correct instances of a given class, this happens seldom and therefore not all of the
instances are correctly observed.

6.1.3 F-measure

F1 =
2TP

(2TP + FP + FN

Although both precision and recall are both informative, often there is a trade-off
between them, as seen in the previous subsection. For this reason, the F-measure is
also used to provide a single measurement that combines the two. The F-measure,
otherwise referred to as F1, is the weighted mean of both precision and recall and is
most applicable when there is an imbalance of classes within the dataset, as is used in
this research.

6.2 Results

The F1 scores are selected as the primary scores when comparing the performance of
each of the models, due to the fact that they take into consideration both the False
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Positive (FP) as well as the False Negatives (FN), equally; using the weighted average
of both precision and recall. In order to determine what influence this pseudo-labelling
semi-supervised approach will have on the results, firstly each of the basic models
alongside the text representations are implemented in a supervised setting; using only
the labelled training set and evaluating using the test data. Through initially running
these supervised experiments, both the performance of the models using a smaller
dataset can be observed whilst also serving as a comparative aspect upon obtaining
the semi-supervised results; showing to what degree leveraging the unlabelled in a
semi-supervised pseudo-labelling approach can in fact adapt the decision boundary
and improve the overall performance. As mentioned in the previous chapter, due to the
imbalance of the dataset, it was decided to test the supervised SVM with a Calibrated
SVM. The goal of using this Calibrated classifier is to help stratify the output and try
to avoid the SVM model leading to any bias towards the classes with a higher number
of instances.

Model + Representation + Features F1

SVM + TF-IDF 0.65

SVM + FastText 0.59

SVM + TFIDF + Education + Skill 0.61

SVM + FastText + Education + Skill 0.61

SVM Calibrated + TFIDF 0.68

SVM Calibrated + FastText 0.59

SVM Calibrated + TFIDF + Education + Skill 0.63

SVM Calibrated + FastText + Education + Skill 0.53

CNN + None 0.26

CNN + None + Education + Skills 0.39

CNN + FastText 0.42

CNN + FastText + Education + Skills 0.45

Table 6.1: Results in a Supervised Setting (F1 measures)

The supervised results illustrated in Table 6.1 show that the SVM in both scenarios
appears to ascertain much higher results in all cases against the CNN, with the Cali-
brated SVM with TF-IDF achieving the best F1 score. Upon a further analysis using
the classification reports as shown in Appendix E, we can see that the Calibrated SVM
is able to predict instances for nearly all of the classes, par two of the minority classes;
classes 8 and 13 containing only 8 and 4 instances, respectively. On the other hand,
the CNN without any embeddings only assigns labels to the top 6 majority classes,
disregarding the remaining classes altogether. Since the SVM appears to thus perform
substantially better using the smaller dataset in a completely supervised setting, I de-
cided to further include additional experiments using an ensemble approach. Here, the
ensemble method involves initialising the system using a Calibrated SVM for the first
model, before then training the remaining models using a CNN. The reason for this is
to try to avoid increasing the distribution skew after the first model which is hypothe-
sised could thus lead to an even larger imbalance of classes in the later iterations. The
additional reason for implementing this Ensemble approach using the Calibrated SVM
paired with the CNN is based on my hypothesis that the performance of the CNN
will improve as the number of training examples increases. Regarding the remaining
semi-supervised experiments using the SVM, only the Calibrated SVM is implemented
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since it ascertains the highest result in a supervised setting. This model also applies
a Softmax layer, allowing for more interpretable confidence probabilities between 0
and 1.

Experiment Model Representation Features #Models
#Total
Labelled

F1
Scores

1 SVM TF-IDF None 5 257,853 0.38*

2 SVM FastText None 5 257,854 0.57*

3 SVM TF-IDF Sk + Ed 5 257,855 0.61*

4 SVM FastText Sk + Ed 5 257,854 0.58*

5 CNN None None 10 347,578 0.30

6 CNN FastText None 10 354,558 0.41

7 CNN None Sk + Ed 10 347,579 0.32

8 CNN FastText Sk + Ed 10 347,579 0.52

9 Ensemble TF-IDF + None None 10 347,578 0.53

10 Ensemble FastText None 10 356,541 0.50

11 Ensemble TF-IDF + FastText None 10 347,580 0.60

12 Ensemble TF-IDF + None Sk + Ed 10 347,581 0.58

13 Ensemble FastText Sk + Ed 10 347,579 0.62

14 Ensemble TF-IDF + FastText Sk + Ed 10 347,581 0.61

Table 6.2: Results in a Semi-supervised Setting (F1 measures). Sk = Skill, Ed =
Education

The results for each of the semi-supervised experiments are presented in Table 6.2. In
addition to the Experiment number, F1 score and technical parameters within each
experiment, the final number of models used to train the system alongside the total
number of labelled instances used for testing are also shown in the table. Due to
computational limitations, the SVM models are only able to be both trained for a total
of 5 iterations of the architecture; following this, the resources become exhausted and
and memory errors occur. The models which do not pseudo-label all of the unlabelled
data before either reaching the minimum rest set at 5% or before reaching the threshold
maximum of 10 iterations are marked with an asterisk (*) in the result tables.

This reduced number of models within the SVM experiments inevitably proves prob-
lematic for comparative purposes in that the results cannot be directly compared to
those of the CNN.

Nonetheless, when comparing the SVMs in a supervised and semi-supervised setting,
it is particularly surprising to see that the introduction of additional data has in fact
worsened the overall performance, in nearly all experiments. Particularly in Experiment
1 which obtained the highest result of 0.68 in a supervised setting, we see a drop in 0.30
when using the pseudo-labelling approach. From visualising the classification report
shown in Appendix E, we can see that although the model here in Experiment 1 has
managed to assign labels to even some minority classes, all except SOC Labels 8 and
13, the model does not pseudo-label any instances for one of the majority classes,
namely SOC Label 1. It is suspected that this is as a result of the stratifying approach
used in the calibrated SVM as well as the lack of generalisation power from the TF-
IDF representation. This deterioration in F1 is also seen in Experiment 2, dropping
from 0.59 to 0.57, however the same number of classes are still assigned labels in both
scenarios. Nevertheless, the incorporation of extracted terms within the SVM model
with FastText however, do in fact also improve results, albeit somewhat minimal, with
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Experiments 4 obtaining a final result of 0.58, increasing by 0.05 than that of the
supervised setting. Based on the fact that this latter model does at least appear to
improve using the pseudo-labelling system and the extracted terms, it can be suspected
that with further iterations, the results may still improve further, though this cannot
be certain.

All of the CNNs and Ensemble models, however, do in fact reach the breaking counter
threshold of 10 models, meaning that they could have also continued in further itera-
tions to label all of the data. Each of the experiments here tend to label around 350,000
instances upon reaching the training counter of 10, whereas the SVM models are able
to label around 250,000 instances at just the 5th iteration before testing.

Although it is evident that there is still room for improvement, given the complexity of
the task with a specific and unique set of data which started off completely unlabelled
and that this is a multi-class classification task with 13 different classes, the results are
nonetheless promising. We can see that nearly all of the experiments undertaken in a
supervised setting are in fact improved through the incorporation and leveraging of the
unlabelled data in this pseudo-labelling system. For example, with regards to the CNN
with no representation nor features in Experiment 5 improves its performance compared
with that of it in a supervised setting through the incorporation of the unlabelled data,
albeit minimal at 0.04 difference. It is very evident here through increasing the size of
the training data, the overall performance of the CNN model increases.

It should be noted here that as a result of the probability parameter within the SVM
and the large number of training instances after the first iteration, a single iteration of a
given SVM experiment took up to 4 days. For this reason, the extensive computational
time needed to run these experiments also acts as a disadvantage in comparison to both
the CNN and Ensemble experiments, particularly from an industry point of view.

Nonetheless, the extraction of the skills and education terms combined as features
clearly does positively impact the majority of the experiments in comparison to those
without,with the best model at Experiment 13 achieving a F1 score of 0.62 with their
incorporation alongside the FastText embeddings. It is clear that there is vast room for
improvement, however given that the CNN in a supervised setting with the extracted
terms only achieves 0.45, and yet in this semi-supervised setting achieves 0.52, it is
clear that the pseudo-labelling approach does improve the performance; albeit some-
what small. Both with and without the inclusion of the extracted Skill and Education
terms, the SVM outperforms the CNN with each of the different text representations.
The highest F1 score achieved by the CNN with FastText and the extracted terms is
0.52, whilst the SVM with FastText alone results in a score of 0.57 at just 5 iterative
models. Despite the fact that the Ensemble approach implemented in Experiment 10
does not beat the calibrated SVM implementation with the same features and text
representation in Experiment 2, it does however ascertain a higher final score than
in Experiment 6. This shows that through using the SVM in the first iterations, an
improved distribution of the imbalanced classes are assigned which allows the CNN to
improve its generalisation power using FastText.

From looking at the classification report shown in Figure 6.3 for the best performing
experiment, namely Experiment 13 with FastText and the Skill and Education ex-
tracted features, we can see that although the iterative training, this optimal model
does not manage to predict any instances for three of the classes; SOC Labels 8, 11
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precision recall f1-score support
1 0.71 0.38 0.50 184
2 0.64 0.85 0.73 198
3 0.75 0.31 0.43 49
4 0.70 0.72 0.71 120
5 0.72 0.67 0.69 127
6 0.49 0.65 0.56 85
7 0.64 0.71 0.67 162
8 0.00 0.00 0.00 8
9 0.50 0.61 0.55 92
10 0.53 0.70 0.61 122
11 0.00 0.00 0.00 25
12 0.60 0.49 0.54 55
13 0.00 0.00 0.00 4

accuracy 0.62 1231
macro avg 0.48 0.47 0.46 1232
weighted avg 0.62 0.62 0.60 1231

Table 6.3: Classification Report for Experiment 13

and 13. In addition to this, despite the highest achieving class is unsurprisingly the
majority class, namely SOC Label 2 with F1 of 0.73, it is particularly surprising to see
the second highest achieving class, SOC Label 4, achieves a F1 of 0.71, despite being
the 6th majority class. Furthermore, the classification report shows that although in
general both the precision and recall is relatively high for each of the labels, recall is
also fairly low in some cases, as seen in SOC Labels 1, 3 and 12. This means that even
though the model does not assign instances to these labels often, when it does so, these
are labelled correctly.

Granted that the results in the classification report do offer some insights into the
highest performing model, further analysis is needed to understand them better. As a
result, in order to investigate these results, an in-depth Error Analysis into the possible
causes for hindering the predictions is undertaken in the subsequent section, Subsection
6.3.

6.3 Error Analysis

This sections presents an analysis into the errors generated within the output by each
of the models. Since there are a variety of different comparative aspects to explore and
analyse within each of the experiments undertaken, this section will be split into the
following subsections. Firstly, in Subsection 6.3.1, I take a look into a sample of explicit
errors within the data produced by Experiment 13, the highest performing experiment,
in order to try and see whether any patterns exist between them. Ultimately, this type
of manual exploration is used to determine what the main causes of the errors appear to
be using the human eye and domain knowledge. The subsequent subsections then are
used as a more automatic analysis, through producing statistical visualisations in order
to understand further where exactly the main source of improvement lies. Consequently,
since the dataset itself is imbalanced, Subsection 6.3.2 examines the distribution of
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the classes predicted by each of the models in the results. As characteristic of the
pseudo-labelling architecture, each Experiment is comprised with a multitude of models,
each aiming to pseudo-label the data. Therefore the distribution of predicted labels
here is not only analysed for the final model, but rather compared with any possible
further skews generated throughout each of the iterative models. One of the most
imperative components as part of this semi-supervised pseudo-labelling system is the
confidence threshold set since it determine what percentage of the data is used during
the next iteration of training. For this reason, the final section, Subsection 6.3.3 inspects
and scrutinizes the confidence intervals of each of the models in the best performing
Experiment whilst inevitably comparing these with the number of correct predictions
generated by the model.

6.3.1 Data Analysis

In order to perform the manual inspection of the errors produced from the models, I
analyse a sample of explicit examples from the highest performing experiment. Thus,
I look into the errors produced by Experiment 13 using the ensemble approach of a
SVM and CNN with FastText representation and extracted term features. The results
from Experiment 13 illustrate a total of 764 job postings which were classified correctly
whilst a total of 467 were incorrectly labelled by the model. A random sample of 200
instances of this latter subset is withdrawn for scrutiny, as explored and described
below.

One of the first aspects noticed upon commencing the Data Error Analysis is specifically
regarding the extracted terms related to each respective instance. One of the main
things seen here is the fact that some instances do not have any skills nor education
types extracted for them, which probably has contributed to their false prediction in
this model. This is not particular to one single occupational class, but rather appears
across various classes, mostly within very short job descriptions. For example, one of
the postings advertising a Service-related cleaning position only consisted of 50 words
and did not have any extracted Skill nor Education related terms. Comparing the
number of extracted Skill terms in relation to amount of Education terms, it is clear
that there are far greater missing values for the Education field. Inevitably by having
a large number of missing features across various classes, it introduces confusion into
the model since these may be grouped together as a class; with the lack of information
in the feature becoming a feature in itself.

In addition to this apparent lack of extracted education terms, there is also seemingly
a large overlap of skill-related terms extracted for the incorrectly predicted instances.
Particularly, soft skills such as ”responsible”, ”team-orientated” and ”communicative”
are relevant for nearly all of the occupations advertised therefore this brings noise
into the model. This could therefore blur the boundaries between already some fuzzy
classes, such as those between the Sales (SOC Label 6) and Office and Administrative
(SOC Label 7) related occupations. Here, a large number of not only soft skills overlap
with some including being responsible, flexible and having good communication skills,
but also some more occupation specific such as having specific language skills, having a
good competence in Microsoft Office and being customer-orientated. Given that there
is a large number of soft skills which do appear somewhat generic across all of the
classes, it can be thought that through more cleaning and filtering, it could reduce the
blurred boundaries and improve the model’s performance.
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Nonetheless, it is particularly interesting to see that although some instances are cate-
gorised as incorrect against the gold annotation labels, from further inspection it can be
seen that the model has actually predicted correctly and the fault is at that of the an-
notator. For example, one instance entitled as a “Kunden Berater Supply Chain”, Cus-
tomer Support, ultimately refers to an occupation involving the sales component within
supply chain management; the skill extracted terms here are “Customer-orientated”
and “reliable” whilst the education related terms are just “Further Education” (each
already translated in English). This instance alone is annotated as SOC Label 5, the
Service industry however, predicted by the model as SOC Label 6, the Sales related
occupations; the fault is of the human expert annotators. Similar instances can be
seen with, for example, a job posting advertising for a“Site Production Manager” with
Education terms “University” and “Master” extracted is predicted by the system as
SOC Label 1, however annotated as SOC Label 12. Given further inspection, since
this particular occupation requires a higher level of education, it would in fact be cate-
gorised into SOC Label 1, as according to the annotation guidelines developed through
intermediary analysis.

However, the model does appear at fault for other similar instances whereby a given
instance is predicted seemingly based on key terms rather than the occupation itself.
For example, a job posting with the title “Supply Chain Opportunities Pharmaceutical”
and extracted skills of “Medicine” and “Medical Devices” is predicted as SOC Label 4,
the Healthcare-related occupations group, whereas labelled as SOC Label 1, Business,
Management by the given annotator. Here, the model has clearly detected a pattern
between the medical related terms and associated it with the respective group on that
basis, as even a human without domain experience may do. Another similar pattern
with the model picking up key terms is seen with the following instances “Logistik
Controller” whereby the model has associated the term controller with SOC Label one,
a job title highly associated with that related class. It is clear why there is ambiguity
however there, because even as an expert in the field it is relatively difficult to determine
which group the occupation advertised should be classified into.

The next potential cause of errors seems to partially based on the language of the
data itself. As mentioned in the previous chapters, the data does not only contain
German language instances, but rather is filled with a large number of English postings
despite filtering. From the analysis here, we can see that there are also other languages
included in both the titles and descriptions, with the majority language being French.
Particularly occupations related to Service occupations, job postings seem to have a
French job title yet is followed by a description in the English language. This has also
led to multiple incorrectly predicted instances as a result, with some occupation titles
including “Chef de Partie” and “Chef de Service”. As a potential result of the English
job descriptions, it can also be seen that very few Skill and Education class terms were
extracted from the Term Extraction system. This links back to one of the first points
made in this subsection, in that a lack of information within the features could have
led to the addition of noise. Despite the number of Anglicisms and French borrowings
in German, the extent and variety of different languages also could have hindered text
representation with the FastText embeddings, since these are not multi-lingual but
rather German based.

Finally, the inspection and analysis of the errors highlights that in fact some of the
incorrectly labelled data point could be as a result of the preprocessing and cleaning
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process. For the extracted terms, there is still a high number of terms which are
not related to the respective class and do not contribute any semantic contribution
to the classification of a given occupation. For example, terms related to days of the
week (e.g. Monday), terms related to benefits of the company (e.g. remote and free
breakfast) as well as generic advertisement terms such as contact form and the names
of contact person(s). Through an even more intense cleaning and creation of a tailored
stopword list, this noise would be significantly reduced. The cleaning of the job posting
descriptions themselves, on the other hand, also show that a large number of terms are
in fact lemmatised incorrectly, as a result of the NLP tagging and preprocessing; adding
noise again to the data. This could be as a result of the large number of compound
words within the German language and therefore compound splitting could be used in
future work to avoid this.

We can thus summarise the causes of errors within the subset of 200 instances there-
fore into five main groups: (1) a lack of extracted terms, (2) too similar overlap of
extracted terms, (3) false annotations, (4) language noise with not only German job
postings and finally (5) incorrect NLP tagging leading to false lemmatisation and fur-
ther noise incorporation. After having investigated the language and explicit examples
of the incorrectly predicted instances, the subsequent section now analyses the pseudo-
labelling system itself with regards to any technical causes for the errors, particularly
concentrating on any adaptions in class distribution.

6.3.2 Distribution Analysis

As mentioned in previous chapters, the data at hand is highly imbalanced in that
the majority class, SOC Label 2, entail a total of 595 training instances whilst the
minority class, SOC Label 13, contains a mere 11. In order to determine whether
the incorporation of Education and Skill terms has any impact on the distribution
of the predicted classes, here I present visualisations illustrating any changes in the
skew between classes within each of the iterations in a given model; to see whether
the models bias towards the prevalent classes. For comparative purposes, the models
selected all utilise FastText as the respective text representation and thus a total of 6
illustrations are produced; both with and without the extracted features for the SVM
in Experiments 2 and 8, the CNN in Experiments 4 and 10 and finally the ensemble
methods in Experiments 6 and 12. The first visualisation however, will illustrate the
distributions of the lowest performing model using FastText as the text representation,
namely Experiment 4; the CNN without extracted term features.

As shown here in Figure 6.2, the pure CNN in Experiment 4 only predicts a total of 4
classes out of the entire 13 within the first model of the architecture, with them all being
majority classes. As a result, we can see in the graph that this strongly heightened
imbalance within the data, which inevitably leads to the remaining models mirroring
this bias towards the prevalent classes and assigning labels only to these classes; in a
negative cycle. Even in the second iteration we can see that the model biases even
further to the majority classes of the predicted labels, with the proportion of samples
between SOC Labels 4 and 5 increasing; eventually leading to zero instances predicted
as SOC Label 4 in the last iteration.

We can see, however, that the Calibrated SVM in Figure 6.3 produces an adverse
result in terms of the distribution of classes. As shown in Figure 6.3, despite fewer
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Figure 6.2: Line Graph of the Distribution Skew in the Number of Instances per Class
within each iteration for Experiment 4 (CNN, FastText without the Extracted Skill
and Education Terms)

Figure 6.3: Line Graph Comparison of the Distribution Skew in the Number of In-
stances per Class between SVM Models (FastText) both with and without the Ex-
tracted Skill and Education Terms. (Experiment 2 vs Experiment 4)

iterations due to computational time in generating the predictions itself, the SVM
assigns a stratified approach in labelling the pseudo-test data and does manage to
label instances to the nearly all of labels, despite the small training sample. We can
see in each of the sub-figures that even without the incorporation of the extracted
features, the SVM assigns nearly all of the classes with at least some new instances
after the first iteration. Given that the remaining two classes, SOC Labels 8 and 13,
had less than twenty instances each during the training phase, the fact that both of the
respective models label instances foe the remaining 11 classes is very promising. The
introduction of extracted Skill and Education terms in the bottom sub-figure illustrates
how the model is able to lessen the skew in number of instances per class against SOC
Label 9.

In Figure 6.4, the visualisations further show that with the incorporation of FastText,
the CNN without the extracted terms is able to generate pseudo-labels for at least one
extra occupational class, totalling 5 and out 13 classes in comparison to the model
without, which stands at 4. These visualisations particularly emphasise how integral
the predictions and consequently class distribution is during the first model, since the
remaining iterations replicate a similar proportion; as seen also with the heightened
negative skew in Figure 6.2. The increase in number of labelled instances after the first
model, then causes the CNN to bias towards the majority classes, whilst also lengthen-
ing the difference in instances between that of the minority and majority class.
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Figure 6.4: Line Graph Comparison of the Distribution Skew in the Number of In-
stances per Class between CNN Models (FastText) both with and without the Ex-
tracted Skill and Education Terms. (Experiment 6 vs Experiment 8)

Figure 6.5: Line Graph Comparison of the Distribution Skew in the Number of In-
stances per Class between Ensemble Models (FastText) both with and without the
Extracted Skill and Education Terms. (Experiment 10 vs Experiment 13)

Based on the visualisations produced for both of the SVM and CNN experiments shown,
it seems apparent that the first iterative model of the pseudo-labelling architecture acts
as the key drive for the later models; each remaining model thereafter produces a similar
distribution based on that of the first. To further investigate this assumption and see
whether even the CNN is able to mirror the more stratified distribution after the first
iteration of the SVM, I now look into the distribution of the ensemble approaches.

As mentioned, the ensemble implementation utilises the calibrated SVM for the first
iteration whilst the remaining are ran using a CNN. Figure 6.5 emphasises the statement
in that the distribution of predictions generated by first iterative model does in fact
shape the remaining iterations. Comparing this same figure with the distribution in
6.4, we can evidently see that through generating a more stratified distribution in
the first iteration with the SVM, it leads to the remaining CNN models mirroring a
similar shape. The analysis of the distribution of the classes at each iteration therefore
explicitly demonstrates how the model used in the first iteration of the pseudo-labelling
architecture has the capacity to determine the overall performance. We can see that
it makes a negative impact if the distribution skew increases after the first iteration
as shown in Figure 6.4 as the model will continue to bias towards the majority classes
throughout the remaining iterative models, leading to a lower performance.

The distribution analysis results illustrated for each of the given experiments suggest
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that the combination of the dataset and occupation classification task at hand is highly
sensitive to not only the features implemented, but also the model utilised as well. The
SVM does evidently perform at a much higher standard with the smaller dataset and is
able to label the instances in a stratified way, without biasing towards the main majority
classes. This is adverse for the CNN experiments, whereby only the majority classes
are assigned new instances which thus heightens the imbalance and skew of the data;
leading to similar bias in later models. Regarding the SVM implementations, it has
been reported that there are some issues with uses the probability generating function,
namely predict proba1, as utilised in this thesis, with some noting its instability. This
seems apparent in the first iteration of each of the Ensemble methods in Figure 6.5,
which should mimic the distribution of the first models in the pure SVM experiments,
as shown in Figure 6.3. Instead, despite the fact the same parameters were selected,
we can see that the distribution of classes is slightly different, highlighting that it is
somewhat unstable.

The visualisations clearly depict how in most cases the first model determines the
distribution of the class predictions during the remaining iterations of the pseudo-
labelling architecture. Since the SVM in a supervised setting does still ascertain a
higher F1 score than that of the SVM experiments in a semi-supervised environment
and the difference in the distributions of the same models, it leads us to question the
confidence itself of the models; the supervised model may have not been confident
in some predictions that were in fact correct and vice versa. As a result, this next
section explores the confidence probabilities produced by each of the models to further
determine whether this has a contribution to hindering the model performance.

6.3.3 Confidence Intervals

Confidence probability selection is one of the key components in the pseudo-labelling
classification model, whereby the threshold will ultimately determine exactly how many
predicted instances will be pseudo-labelled and added to the training data. As explained
in Chapter 5, the confidence threshold score is initialised and updated automatically us-
ing the Upper Quartile (Q3) result based on the current model’s predictions throughout
each of the iterations. As mentioned, since the supervised Calibrated SVM still proves
to be the highest performing model, it leads us to questioning the reliability and va-
lidity of not necessarily the semi-supervised architecture implemented in this research,
but rather specifically the confidence scores. This section thus explores and analyses
the confidence thresholds set within each of the models further to see whether there is
a correlation between confidence and correctly predicted instances.

As shown in Figure 6.6, the confidence scores not only vary across the different types
of ML models, however also across each model within a single given experiment. As
hypothesised, the confidence scores of the given models adapt as more training data is
incorporated within them. Particularly however what is interesting, is the fact that as
the size of the training data is increased, in some cases, the models gradually become
less confident in terms of their predictions, particularly regarding the CNN models.
Although at the very second iteration within each of the experiments with the increase
in training data the models all become drastically more confident, predicting, this

1https://scikit-learn.org/stable/modules/generated/sklearn.calibration.

CalibratedClassifierCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
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Experiment 2: SVM Experiment 4: SVM + Extracted Skills

Experiment 6: CNN Experiment 8: CNN + Extracted Skills

Experiment 10: Ensemble Experiment 13: Ensemble + Extracted Terms

Figure 6.6: Box Plot illustrating the all levels of confidence produced by each iterative
model with FastText comparing with and without Extracted Terms
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pattern is not continued throughout all of the remaining iterations. For example, in
Experiment 13 we see a very high confidence spread at the second iteration which
gradually decreases as more training data is increased. Although this was initially
surprising, this could in fact make sense; more data could also mean more noise, further
ambiguities and thus additional uncertainty.

Despite the fact that the CNN appears to be generally a lot more confident in its
predictions across each of the models within the experiment in comparison to the SVM,
the final result shown in Table 6.2 leads us to the questioning the reliability in using
the confidence scores as a whole. Figure 6.6 emphasises this with the low confidence
intervals assigned during the first SVM iteration of Experiment 4 in comparison to those
predicted in the same CNN iteration of Experiment 8, despite the latter achieving a
sufficiently lower F1 result.

As shown in the sub-figures for SVM models, both the pure SVM experiments and
the first iteration of the Ensemble, the confidence varies with no real correlation with
regards to the extracted terms. Even the SVM models with the same parameters at
the first iteration appear to have a very different confidence spread. For example, with
the incorporation of extracted terms in Experiment 4, the highest confidence predicted
is around 0.5 whilst the model with the same parameters in Experiment 13 predicts
instances over 0.6 confidence. Again, this emphasises the instability of the probability
prediction function and thus deems it to be not so reliable, despite the evident more
stratified distribution illustrated in the previous section.

It is ultimately clear that an interactive confidence threshold is ideal when being set,
since a give model’s confidence does in fact vary given the number of training instances
used as input. This same principle should be applied to each given model implemented
in that not one single threshold is representative of a good confidence across all ML
models. However, whether the SVM should be used in this setting is unclear given
the instability of the predictions. Perhaps further research should be undertaken into
different algorithms for calculating the confidence probabilities of the SVM model, but
this is not explored further in this research.

6.3.4 Discussion

As shown in the error analysis, there are several classes that overlap, seemingly intro-
ducing confusion into the model. Even for the human eye, some of these instances prove
to be difficult to assign to one single class, with the Education and Skill requirements
also often appearing to fit into the specifications for the other classes. This can be seen
in Chapter 3 during the annotation process, whereby additional rules and guidelines
had to be implemented after discussions and intermediary analysis. This confusion
within the models is then heightened given the large skew in distribution even from the
starting labelled dataset. As explained by Ber and Haramaty (2020):

“In datasets characterized by overlapping classes, there are significant ’con-
fusion effects’ in which an increase in a certain label’s probability results in
the model estimating an increase in other labels’ probabilities, even when
the best possible models are used. These effects become even more dominant
when classes are imbalanced since, given an overlap between a rare class and
a prevalent class, models will learn to assign most of the probability from
data points associated with the rare class to the prevalent class”.



6.3. ERROR ANALYSIS 95

Using this as a basis alongside the distribution analysis undertaken, it suggests that
both the overlap in classes alongside the imbalanced dataset are some of the main
contributions for the errors produced by the model. Even the highest performing model
in Experiment 13 assigns the instances from the minority classes to those within the
majority and confuses labels with overlapping requirements, such as occupations within
SOC label 9, the Installation, Maintenance and Repair occupations and SOC label 10,
the Construction and Extraction class. Although the same experiments could be ran by
transforming the SOC labels to the higher level of aggregation with only 6 classes, this
level is not practical for industry and for further analyses of occupational classes as there
would be too much overlap between classes. It could be thus said that perhaps a more
fine-grained schema with additional classes may help to delineate the fuzzy, overlapping
boundaries, since they will have more specific and tailored requirements for each, even
if some still overlap. The lower level of aggregation of SOC could thus be used. Of
course, this introduction of more classes would inevitably require an extensively larger
number of labelled instances in order to have a substantial amount within each class.
On the other hand, to avoid these overlapping of classes and avoid further expensive
and time-consuming annotations, it could be better to build a binary one verses all
classifier. This could also potentially help to avoid the overlapping classes with have
fuzzy boundaries and improve the final results as a whole.

Since an unpremeditated number of models were run for the SVM and all experiments
are run using this unique dataset, it must be noted that the results cannot not repre-
sentative of all ML and DL models, nor this semi-supervised pseudo-labelling approach
in general. Nevertheless, from this investigation it can be noted that ultimately the
unlabelled data can be leveraged to some extent to improve the decision boundary of a
model and ultimately heighten its performance, albeit often somewhat minimal.

The compared results of using the extracted terms against those without do confirm the
hypothesis in this semi-supervised setting, despite them in fact worsening the perfor-
mance of the SVMs in a supervised environment. However, despite both the Skill and
Education terms combined improving the results, the error analysis indicates that there
is still a lot of noise incorporated into the models and therefore further filtering and
cleaning of the skills needs to be undertaken, in order for them to have a greater and
more positive impact. A detailed custom made stopword list could thus be composed
to aid with this process. In addition to this, although the TF-IDF representations do
seemingly help improve the final F1 score within each of the SVM models, this type of
representation does not necessarily take into consideration the semantics of the text.
Therefore it is unlikely that results will improve in future works using this representa-
tion in combination with other features. The FastText document embeddings however
do capture the semantics necessary for classifying the occupations with a high accuracy,
despite their sub-word matrix capacities, showing their benefits particularly within the
CNN and Ensemble Experiments. This is not surprising since it uses the embeddings
of subwords and thus works well with the German compound words. Moreover, it also
has the capability to handle out-of-vocabulary (OOV) tokens which may arise due to
the abundance of specific terminology used within each occupational class.

The complexity and specificity of the language used not only being inherent to the
domain of Human Resources (HR), but also with each occupational class having its
own terminology. For example, terms such as “DNI”, “AKP” and “HF” are all related
to the medical domain however without specific domain knowledge, they are not neces-
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sarily recognisable as skills by the human eye let alone with the FastText embeddings;
particularly as a result of not being transformed from the abbreviated forms. Conse-
quently, given the fact that there are in fact a large number of specialised occupations
with their own specific terminology used within each one, it can be noted that poten-
tially results would have further increased if the embeddings had been trained on this
particular corpora.

Through analysis of the predictions, we can also see that further NLP preprocessing is
needed for implementation, particularly with regards to lemmatisation. As a result of
false NLP, or specifically POS, tagging, some words are still not lemmatised correctly.
Mostly, we can see here that these are in fact the common compound words found in
German; it could thus be suggested to perform some type of compound splitting in
future works.

Finally, I do not analyse the extent of the impact with regards to each of the extracted
classes; rather focus on combining the class requirements together and analysis the
models both with and without their incorporation. Although it can be speculated that
there is more noise introduced with the incorporation of skills, given the larger number
of them, it is not certain. The same experiments could also thus be run using the
Education and Skill terms as features individually in order to determine exactly what
impact each of the extracted term classes has on the model in this semi-supervised
setting.
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Chapter 7

Conclusion

The aim of this thesis was to explore to what extent the automatic classification of
occupations in a semi-supervised setting could be improved with the incorporation
of specific occupational requirement classes, namely related to skills and education
types. In order to address this goal, my research was split into three core components
namely an Annotation Framework used to create the entire labelled dataset, a Term
Extraction System for extracting the relevant requirements and finally an Occupation
Classification architecture for specifically classifying the job advertisements into the
occupational classes.

Using the carefully curated guidelines as a basis, both myself and an expert in the field
of HR manually labelled a total of 6,052 instances from the entire dataset of 375,493
job advertisements, to be used as the guidance for the classification system. Follow-
ing this component, I implement a distantly supervised pattern-learning architecture
for extracting the relevant skill and education related terms, using seed lists from the
ontology provided by Greple GmbH. From initialising the Term Extraction system for
the Education class using just 12 seed terms and 10 manually crafted patterns, a total
of 135 new terms are extracted. Regarding the Skill class, the results demonstrate that
the input of 1,910 seed terms and 11 manually crafted patterns manage to extract a
total of 17,902 new terms. Finally, a total of 14 experiments are ran for classifying
the occupations within job advertisements. Here, three main comparisons are under-
taken across each of the experiments: (1) Between two specific machine learning (ML)
models, namely Support Vector Machine (SVM) and a Convolutional Neural Network
(CNN), (2) Between two different text representations, Term Frequency Inverse Docu-
ment Frequency (TF-IDF) and FastText word embeddings and finally (3) Between the
incorporation of the extracted terms as features and without them.

In this research, only the intermediate level of aggregation within the Standard Occu-
pation Classification (SOC) schema at 13 occupational classes is utilised, yet the most
granular level of aggregation has 867 different occupational classes. Given the results
even just using this level alone, it is evident that the classifying of occupations using
job postings proves to be an extremely non-trivial task and certainly one which has
multiple different layers in complexity. Although potentially using a higher level of
aggregation with fewer classes may in fact improve the classification results, this would
lead to more overlap between the categories and thus mean less fine-grain analyses could
be undertaken thereafter. For example, the higher level is SOC groups Management,
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Business, Financial, Computer, Engineering, Science Education, Legal, Community
Service, Arts, Media, Healthcare Practitioners and Technical occupations all into the
very first class. As shown in the results from the Term Extraction, although perhaps
unsurprisingly a large proportion of the same soft skills exist in all classes, there is
still an overlap of technical skills and education levels required for some classes, caus-
ing fuzzy boundaries. Therefore, using a more fine-grained schema could suggestively
improve results.

Using this as a basis, I now address each of the three main research questions:

1. To what extent can the ontology based extracted features aid with the
classification of occupations?

Based on the highest performing experiment, namely Experiment 13 which uses an
Ensemble approach, FastText and the Skill and Education terms as features, it can be
seen that the extracted terms do show improvements and contribute to classifying the
occupations. With the same parameters however without the extracted features in Ex-
periment 10, the model’s performance drops from 0.62 to 0.50, thus confirming the first
hypothesis. However, despite their contribution, it is clear from the Term extraction
system results that a more carefully selected sample of seed data should be selected,
particularly if the system does not have access to the meta-data contained within the
ontology. Despite the ontology inevitably containing information in a structured and
systematic way, some seeds appear misleading without respective knowledge needed for
their contextual semantics. It is evident from the results that even further filtering and
processing of the extracted terms should be undertaken, to avert the incorporation of
noisy terms as well as avoid confusion between overlapping classes.

2. Despite it being used in many state of the art NLP-related tasks, how
does Deep Learning (DL) compare to Machine Learning (ML) for this task?

Regarding the second research question, it is clear that ultimately DL does not neces-
sarily outperform the more traditional ML with regards to this type of text classification
problem, given the unique dataset. That being said, DL does show to have potential
for growth particularly since its performance positively increases with the size of the
data, however it is unknown just how well it would fair in even later iterations with
more data. Traditional ML, on the other hand, evidently is capable of learning and
understanding the relationships between features and patterns within classes within the
smaller datasets, which the CNN in this research is evidently unable to do. With the
incorporation of the FastText text representation, the traditional ML in the form of the
SVM is even able to achieve the second highest result at 0.61 showing it does have the
capability to continue this high level of understanding with the increase of data. How-
ever, given the extensive amount of time needed to run the SVM with the increasing
amount of data, with a single iteration within the architecture taking up to 4 days, it
is not functional enough in an industrial setting. Although distinct comparison cannot
be determined between the two approaches given the number of iterations run, it can
be said that traditional ML does achieve higher results with smaller datasets. For this
reason, it would seem clear why the implementation of the Ensemble approach com-
bining the SVM at the first iteration and the CNN for the remaining iterations obtains
the highest result; with the inclusion of the extracted terms, it should be added.

3. Given the complexity of implementing a semi-supervised approach using
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only a limited number of gold labelled instances, to what degree will the
pseudo-labelled data not only change the decision boundary between classes,
but also improve a given system’s performance.

The final research question can be answered by the results of the Occupation Classifi-
cation system itself, whereby they positively confirm that in utilising a semi-supervised
approach and leveraging a large number of unlabelled data, the overall performance
of a given model does, in most cases, increase, albeit often somewhat minimal. With
regards to the DL model, namely the CNN, the increase in training instances substan-
tially improves the performance of the system, when compared in a supervised setting.
However this is not the case for the traditional ML, whereby the score decreases for the
SVM. Moreover, since the data is highly imbalanced with a skewed number of classes
to instances ratio, it goes without saying that in future works some type of data aug-
mentation should be undertaken. Thus, particular attention should thus be paid to
the distribution of the classes and where highly disproportionate, techniques should be
undertaken to balance it out. The impact of the imbalanced dataset led to the models
often only predicting the majority classes and thus the proportion of the distribution is
spread out further as the iterations increased. At least having a strong first few models
using the more traditional ML, particularly with calibration, proved to ascertain the
most promising results using a smaller dataset. Whether this be Upsampling, or if
using an ensemble method with a ML model at the start, then even a Downsampling
approach may deem more suitable; with the ML model implemented in this research
seemingly performing efficiently with a smaller dataset. Although the confidence prob-
abilities generated by the models do not necessarily become more confident as more
labelled data is used, the model does adapt its confidence accordingly and therefore
the hypothesised better interactive threshold does appear to be most suitable.

For future work, this research could be expanded through the incorporation of training
domain specific embeddings using the entirety of the corpora available, in order to
ascertain a better coverage of the language used in this type of data. Furthermore, the
alternative pseudo-labelling architecture could be implemented given the size of the
dataset, whereby the model from each previous iteration would be re-trained on the
new pseudo-labelled data each time, potentially leading to increased pattern learning
between the classes and an overall improved performance.

Ultimately, it can be concluded that the overall results are very encouraging. Given the
complexity of not only the task of occupation classification itself, but the whole process
in creating specific annotation guidelines, the development of a Term Extraction sys-
tem as well as the implementation of the semi-supervised pseudo-labelling architecture,
the highest result of 0.62 is highly promising. It can be expected that a deeper data
analysis, preprocessing and feature engineering process would however lead to improved
results, given that the performance of the majority of models improved with the intro-
duction of the extracted terms. Whether these be linguistic or statistically derived, is
uncertain.
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Appendix A

Methodology: Annotation
Guidelines

A.1 Overview

The 2018 Standard Occupational Classification (SOC) is a coding system established
to classify all occupations into respective occupational branches. It uses a hierarchical
structure, comprised with a total of 6 tiers: high level (6 branches); intermediate level
(13); major groups (23); Minor groups (98); Broad occupations (459), and Detailed
occupations(867). For the purpose of this thesis and this annotation framework, the
task is to use the intermediate level of aggregation as a basis to classify and label
occupations into the respective 13 branches/classes.

A.2 Annotation Process

Step 1: Familiarisation

Prior to starting the practical annotations, the annotator should ensure they are fa-
miliar with the annotation concepts (both labels and their contents based on the SOC
structure). For further information and clarity about the SOC structure, the SOC User
Guide may be used as a reference 1 (particularly pages 10 through to 17)

Step 2: Labelling of the Data

Once familiarity is established, the annotator can begin practical work. Further infor-
mation regarding the data for annotation is described in section A.4.

It is recommended to use the O*Net SOC Crosswalk 2, Occupation Quick Search to
aid the annotation process, which groups occupations in the Occupational Information
Network (O*Net) database to the SOC structure. As a result of using this Crosswalk
tool, specific vacancy titles can be searched for and suggested classification branches
will be shown.

1https://www.bls.gov/soc/2018/soc_2018_user_guide.pdf
2https://www.onetonline.org/crosswalk/SOC/
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Step 3: Agreement

There will be multiple intermediary discussions and analyses throughout the annota-
tion process between the annotators. The precise deadlines and time constraints will
be finalised between the annotators together. Once all of the annotations have been
undertaken by both annotators, the “inter-annotator” agreement will be calculated;
measuring the degree in which the annotations across experts align.

A.3 Annotation Types

For the purpose of this framework, there are two annotation types which should be
inputted for each instance; both a label and confidence score.

A.3.1 Label

The 13 annotation labels used in this project are listed in Table 1 in the “soc label”
column, alongside both an “included groups” and “name” column. A short description
of each of the three columns is given below:

1. soc label: used as a reference to the branch name and should be used as the
annotation labels.

2. Included Groups: refer to the SOC occupation codes included within each
branch; each occupation in SOC is assigned a 6 digit code, with the first two
digits referring to it’s respective major group branch number (see Figure A.1).
For examples see Section A.3.1.1.

3. Name: Formal title of branch, as assigned by SOC for this level of aggregation.

soc label Included Groups Name ( + “Occupations”)

1 11-13 Management, Business, and Financial

2 15-19 Computer, Engineering, and Science

3 21-27 Education, Legal, Community Service, Arts, and Media

4 29 Healthcare Practitioners and Technical

5 31-39 Service

6 41 Sales and Related

7 43 Office and Administrative Support

8 45 Farming, Fishing, and Forestry

9 47 Construction and Extraction

10 49 Installation, Maintenance, and Repair

11 51 Production

12 53 Transportation and Material Moving

13 55 Military Specific

Table A.1: Overview of SOC category names, the included SOC group numbers for
each branch alongside label reference to be used for annotations.
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Figure A.1: SOC Occupation Code: Structure Breakdown

A.3.1.1 Determining SOC label: O*Net SOC Crosswalk

As mentioned in step 2 of section A.2, the O*Net SOC Crosswalk Quick Search should
be used to aid the annotation process (https://www.onetonline.org/crosswalk/
SOC/). Each occupation in this system is assigned a 6 digit code, with an exemplar
breakdown shown in Figure A.1. The annotator should focus only on the first two digits,
representing the major group, to determine which soc label the occupation should fall
into, based on it’s included groups. It should be noted that the O*Net SOC Crosswalk
can only be used in English, therefore the appropriate English equivalent should be
searched.

A.3.1.2 Example

1. Occupation: Klempner (Plumber)
SOC 6-digit code: 47-2152.02
Group: 47
soc label: 9
soc name: Construction and Extraction Occupations
O*Net Soc Crosswalk reference link: https://www.onetonline.org/link/summary/
47-2152.02

A.3.2 Confidence

In order to measure the scale of certainty, a confidence scale is established for labelling
the instances. For each annotated item, a confidence score should also always be
assigned, in the respective column. The score should correlate to an integer on the
scale, ranging from 1-3, as shown in Figure A.2 below. A brief description for each
label is given below, however it should be noted that full guidelines here have been
purposefully omitted, to allow for a certain level of subjectivity.

Figure A.2: Confidence Scale

(1) Unsure: The annotator is somewhat sure however also somewhat doubtful. Both
levels of confidence and doubt are equal.

https://www.onetonline.org/crosswalk/SOC/
https://www.onetonline.org/crosswalk/SOC/
https://www.onetonline.org/link/summary/47-2152.02
https://www.onetonline.org/link/summary/47-2152.02
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(2) Confident: The annotator is somewhat doubtful, however confidence exceeds
doubt.

(3) Highly Confident: The annotator is sure that the instance should be classified to
the
assigned label and has no form of doubt.

If there is too little information for the instance to be annotated at all, potentially
because of a lack of information in the vacancy description, a score of nv should be
assigned to both the label and confidence columns.

A.4 The Data

The data for annotation is comprised of 4526 instances, based on job vacancy data
provided by Greple GmbH. The data is represented in a csv file format, with a total
of 6 columns; (1) id, (2) vacancy title, (3)soc label, (4)confidence, (5) soc name and
(6) vacancy description (see Table A.4).

The ID refers to the unique identifier assigned to the given occupation vacancy as
according to ElasticSearch (the database) with an additional prefix of two letters, re-
ferring to its data source (e.g. ”st” refers to “stepstone”). Whilst the ID can be used
as a reference, the vacancy title and vacancy description should be used as the core
references for annotation.

As mentioned in the previous section, the two columns for annotation are the soc label
and confidence; the soc name will automatically populate itself once the label has
been inputted and can be used as an additional checking point to avoid mix-ups. Note:
for further clarity, only column titles that do not begin with “ ”, should be
directly filled in by the annotator.

Figure A.3: Format of Annotation Data Template with instance empty

Figure A.4: Format of Annotation Data with instance complete

A.4.1 Vacancy title

The vacancy title refers to the title as assigned by the vacancy job poster. The vacancy
title alone can, in some cases, be enough information to be able to annotate the instance
into one of the given branches.

A.4.1.1 Examples

1. vacancy title: Softwareentwickler, soc label:2
- soc name: Computer, Engineering, and Science Occupations
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-O*Net Soc Crosswalk: https://www.onetonline.org/link/summary/15-1133.
00

2. vacancy title: Geschaeftsfuehrer, soc label:1
- soc name: Management, Business, and Financial
-O*Net Soc Crosswalk: https://www.onetonline.org/link/summary/11-1011.
00

3. vacancy title: Koch, soc label:5
- soc name: Service Occupations
-O*Net Soc Crosswalk: https://www.onetonline.org/link/summary/35-2014.
00

A.4.2 Vacancy Description

In cases where the vacancy title alone is not enough information for the instance to be
labelled, perhaps because of ambiguity or lack of detail, the vacancy description itself
should be used as further reference for information.

A.4.2.1 Examples

1. vacancy title: Projektmanager
VacancyDescription: ”Wir suchen eine IT-Projektmanagerin / IT-Projektmanager
Infrastruktur- und Digitalisierungsprojekte. Qualifikationen: abgeschlossenes Hochschul-
studium vorzugsweise in einem IT- oder IT-nahen Studiengang (Diplom / Mas-
ter), nachweisbare mehrjaehrige Berufserfahrung als Projektleiterin / Projek-
tleiter im IT-Umfeld”
soc label:2
- soc name: Computer, Engineering, and Science Occupations
-O*Net Soc Crosswalk: https://www.onetonline.org/link/summary/15-1199.
09

2. vacancy title: Projektmanager
VacancyDescription: ”Dafür brauchen wir einen Kundenberater(in) / Projekt-
manager(in). Aufgaben: Verwaltung der Kundenkonten. Qualifikationen: Kun-
denorientierung und betriebswirtschaftliches Denken, Erfahrung im Kundenser-
vice, Kommunikatives und freundliches Wesen
soc label:7
- soc name: Office and Administrative Support Occupations
-O*Net Soc Crosswalk: https://www.onetonline.org/link/summary/43-4051.
00

3. vacancy title: Mitarbeiter Hotspot Wildfluesse
VacancyDescription: ”Aufgaben: Unterstuetzung in der administrativen Projek-
tverwaltung, Mitwirkung bei der Planung, Organisation und Bewerbung von Pub-
likumsveranstaltungen, wie Flussfilmfest und Exkursionen. Qualifikationen: ver-
sierte MS-Office Kenntnisse”
soc label:7
- soc name: Office and Administrative Support Occupations
-O*Net Soc Crosswalk: https://www.onetonline.org/link/summary/43-6014.
00

https://www.onetonline.org/link/summary/15-1133.00
https://www.onetonline.org/link/summary/15-1133.00
https://www.onetonline.org/link/summary/11-1011.00
https://www.onetonline.org/link/summary/11-1011.00
https://www.onetonline.org/link/summary/35-2014.00
https://www.onetonline.org/link/summary/35-2014.00
https://www.onetonline.org/link/summary/15-1199.09
https://www.onetonline.org/link/summary/15-1199.09
https://www.onetonline.org/link/summary/43-4051.00
https://www.onetonline.org/link/summary/43-4051.00
https://www.onetonline.org/link/summary/43-6014.00
https://www.onetonline.org/link/summary/43-6014.00
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In the case where both the vacancy title and vacancy description cannot be
classified into any of the branches due to a lack of information in either
fields, a label of nv (nicht verfuegbar / not available) should be assigned.

A.5 Important Coding Guidelines offered by SOC

”The following SOC coding guidelines are intended to assist users in
consistently assigning SOC codes and titles to survey responses and in other
coding activities.

1. A worker should be assigned to an SOC occupation code based on work
performed.

2. When workers in a single job could be coded in more than one occupa-
tion, they should be coded in the occupation that requires the highest
level of skill. If there is no measurable difference in skill requirements,
workers should be coded in the occupation in which they spend the
most time. Workers whose job is to teach at different levels (e.g.,
elementary,middle, or secondary) should be coded in the occupation
corresponding to the highest educational level they teach.

3. Data collection and reporting agencies should assign workers to the
most detailed occupation possible. Different agencies may use different
levels of aggregation, depending on their ability to collect data.

4. Workers who perform activities not described in any distinct detailed
occupation in the SOC structure should be coded in an appropriate
“All Other” occupation. These occupations appear as the last occupa-
tion in a group with a code ending in “9” and are identified by having
the words “All Other” appear at the end of the title.

5. Workers in Major Groups 33–0000 through 53–0000 who spend 80
percent or more of their time performing supervisory activities are
coded in the appropriate first-line supervisor category in the SOC.
In these same Major Groups (33–0000 through 53– 0000), persons
with supervisory duties who spend less than 80 percent of their time
supervising are coded with the workers they supervise.

6. Licensed and non-licensed workers performing the same work should be
coded together in the same detailed occupation, except where specified
otherwise in the SOC definition. “ 3

3https://www.bls.gov/soc/2018/soc_2018_user_guide.pdf

https://www.bls.gov/soc/2018/soc_2018_user_guide.pdf


Appendix B

Methodology: Preprocessing
Gazetteers

1 (m/w/d)

2 (m/d/w)

3 (w/m/d)

4 (w/d/m)

5 (d/m/w)

6 (d/w/m)

7 (d/f/m)

8 (d/m/f)

9 (f/d/m)

10 (f/m/d)

11 (m/f/d)

12 (m/d/f)

13 (m/w)

14 (w/m)

15 (m/f)

16 (f/m)

17 (m/w/x)

18 (m/x/w)

19 (x/m/w)

20 (x/w/m)

21 (w/x/m)

22 (w/m/x)

23 (m/d)

Listing 4: Gazetter of Gender forms to be stripped
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1 {

2 "ms":"Microsoft",

3 "js":"Javascript",

4 "r&d": "Research and Development",

5 "paed": "paedagogiae",

6 "edv": "Elektronische Daten Verarbeitung",

7 "eva": "Eingabe Verarbeitung Ausgabe"

8 }

Listing 5: Gazetter of Skill related Abbreviations
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1 {

2 "sr":"senior",

3 "sr.": "senior",

4 "jr":"junior",

5 "jr.": "junior",

6 "dipl": "diploma",

7 "dipl.": "diploma",

8 "dipl.-ing": "Diplom-Ingenieur",

9 "dr": "doktor",

10 "prof": "Professor",

11 "prakt": "Praktikant",

12 "intern": "Intern",

13 "ceo": "Chief Executive Officer",

14 "cfo": "Chief Financial Officer",

15 "coo": "Chief Operating Officer",

16 "cio": "Chief Information Officer",

17 "cmo": "Chief Marketing Officer",

18 "cto": "Chief Technical Officer",

19 "cta": "Chief Technical Architect",

20 "svp": "Senior Vice President",

21 "vp": "Vice President",

22 "admin": "Administrator",

23 "hr": "Human Resources",

24 "pr": "Public Relations",

25 "md": "Managing Director",

26 "pdms": "Plant Design Management System",

27 "bta": "Business Technology Administrator",

28 "r&d": "Research and Development",

29 "bdo": "Business Development Officer",

30 "cra": "Clinical Research Associate",

31 "pm": "Projekt Management",

32 "pmo": "Projekt Management Office",

33 "pmp": "Project Management Professional",

34 "qa": "Quality Assurance",

35 "qsc": "Quality Service Certificate",

36 "cso": "Chief Strategy Officer",

37 "mvo": "Motor Vehicle Operator",

38 "qm": "Qualit~Atsmanagement",

39 "kfm": "Kaufmann",

40 "erp": "Enterprise Resource Planning",

41 "dcs": "Deputy Chief of Staff",

42 "cse": "Computer Science Engineer",

43 "lmt": "Licensed Massage Therapist",

44 "tcms": "Train Control Monitoring System",

45 "ipm": "Integrated Pest Management",

46 "seo": "Search Engine Optimization",

47 "ddd": "Domain Driven Design",

48 "cpa": "Certified Public Accountant",

49 "eto": "Electro Technological Officer",

50 "ksk": "Kommando Spezialkraefte",

51 "kam": "Key Account Manager",

52 "IT": "Informatik"

53 }

Listing 6: Gazetter of Job Title related Abbreviations
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1 {

2 "uni": "Universität",

3 "tu": "Technische Universität",

4 "th": "Technische Hochschule",

5 "ph": "Pädagogische Hochschule",

6 "fh": "Fachhochschule",

7 "ba": "Bachelor of Arts",

8 "ba.": "Bachelor of Arts",

9 "b.a": "Bachelor of Arts",

10 "b.a.": "Bachelor of Arts",

11 "ba.": "Bachelor of Arts",

12 "bsc": "Bachelor of Science",

13 "b.s.c": "Bachelor of Science",

14 "b.s.c.": "Bachelor of Science",

15 "bsc.": "Bachelor of Science",

16 "beng": "Bachelor of Engineering",

17 "beng.": "Bachelor of Engineering",

18 "b.eng.": "Bachelor of Engineering",

19 "llm": "Master of Laws",

20 "llm.": "Master of Laws",

21 "l.l.m": "Master of Laws",

22 "ma": "Master of Arts",

23 "m.a": "Master of Arts",

24 "ma.": "Master of Arts",

25 "msc": "Master of Science",

26 "msc.": "Master of Science",

27 "m.s.c": "Master of Science",

28 "m.s.c.": "Master of Science",

29 "mba": "Master of Business Administration",

30 "m.b.a.": "Master of Business Administration",

31 "mba.": "Master of Business Administration",

32 "m.b.a": "Master of Business Administration",

33 "hd": "Hochschuldozent",

34 "hd.": "Hochschuldozent",

35 "h.d.": "Hochschuldozent",

36 "phd": "Doctor of Philosophy",

37 "phd.": "Doctor of Philosophy",

38 "p.h.d.": "Doctor of Philosophy",

39 "p.h.d": "Doctor of Philosophy",

40 "diplom": "diploma",

41 "diplom.": "diploma"

42 }

Listing 7: Gazetter of Education related Abbreviations
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1 {

2 "bzw": "beziehungsweise",

3 "bzw.": "beziehungsweise",

4 "b.z.w": "beziehungsweise",

5 "zb": "zum Beispiel",

6 "zb.": "zum Beispiel",

7 "z.b": "zum Beispiel",

8 "etw": "etwas",

9 "etw.": "etwas",

10 "beisp": "beispielsweise",

11 "beisp.": "beispielsweise",

12 "dazw": "dazwischen",

13 "dazw.": "dazwischen",

14 "kompl": "komplett",

15 "kompl.": "komplett",

16 "tel": "Telefon",

17 "tel.": "Telefon",

18 "usw": "und so weiter",

19 "usw.": "und so weiter",

20 "u.s.w": "und so weiter",

21 "inkl": "inklusiv",

22 "inkl.": "inklusiv",

23 "zhd": "zuhanden",

24 "z.hd": "zuhanden",

25 "z.h.d": "zuhanden",

26 "zhd.": "zuhanden",

27 "nr": "Nummer",

28 "nr.": "Nummer",

29 "pkw": "Personenkraftwagen",

30 "p.k.w": "Personenkraftwagen",

31 "pkw.": "Personenkraftwagen",

32 "b2b": "Business to Business",

33 "eidg": "Emissions Inventory Database Group",

34 "R&D": "Research and Development",

35 "1st": "First",

36 "2nd": "Second"

37 }

Listing 8: Gazetter of Miscellaneous Abbreviations
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Appendix C

Term Extraction Results:
Education
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Appendix D

EDA: Most Frequent Bigram
Barplots

Figure D.1: Bar Plot illustrating top 20 Bi-grams within soc label 1, ”Office and
Administrative”

Figure D.2: Bar Plot illustrating top 20 Bi-grams within soc label 2, ”Office and
Administrative”

Figure D.3: Bar Plot illustrating top 20 Bi-grams within soc label 3, ”Office and
Administrative”
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Figure D.4: Bar Plot illustrating top 20 Bi-grams within soc label 4, ”Office and
Administrative”

Figure D.5: Bar Plot illustrating top 20 Bi-grams within soc label 5, ”Office and
Administrative”

Figure D.6: Bar Plot illustrating top 20 Bi-grams within soc label 6, ”Office and
Administrative”

Figure D.7: Bar Plot illustrating top 20 Bi-grams within soc label 7, ”Office and
Administrative”
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Figure D.8: Bar Plot illustrating top 20 Bi-grams within soc label 8, ”Office and
Administrative”

Figure D.9: Bar Plot illustrating top 20 Bi-grams within soc label 9, ”Office and
Administrative”

Figure D.10: Bar Plot illustrating top 20 Bi-grams within soc label 10, ”Office and
Administrative”

Figure D.11: Bar Plot illustrating top 20 Bi-grams within soc label 11, ”Office and
Administrative”
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Figure D.12: Bar Plot illustrating top 20 Bi-grams within soc label 12, ”Office and
Administrative”

Figure D.13: Bar Plot illustrating top 20 Bi-grams within soc label 13, ”Office and
Administrative”



Appendix E

Results: Classification Reports

E.1 Supervised Results

Calib SVM + TF-IDF CNN Raw

Non-calib SVM + TF-IDF Non-calib SVM + FastText
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Calib SVM + FastText CNN + FastText
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E.2 Semi-supervised Results

(1) Experiment One (2) Experiment Two
SVM + TF-IDF SVM + FastText

(3) Experiment Three (4) Experiment Four
SVM + TF-IDF + Terms SVM + FastText + Terms
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(5) Experiment Five (6) Experiment Six
CNN Raw CNN + FastText

(7) Experiment Seven (8) Experiment Eight
CNN Raw + Terms CNN + FastText + Terms
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(9) Experiment Nine (10) Experiment Ten
Ensemble + TF-IDF Ensemble + FastText

(11) Experiment Eleven (12) Experiment Twelve
Ensemble + TF-IDF + FastText Ensemble + TF-IDF + Terms
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(13) Experiment Thirteen (14) Experiment Fourteen
Ensemble + FastText + Terms Ensemble + TF-IDF + FastText + Terms



Appendix F

Results: Confidence Intervals

(1) Experiment One (2) Experiment Two
SVM Raw CNN Raw

(3) Experiment Three (4) Experiment Four
SVM + FastText and CNN + FastText

(5) Service (6) Sales and Related
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126 APPENDIX F. RESULTS: CONFIDENCE INTERVALS

(1) Management, Business and (2) Computer, Engineering, and
Financial Science

(3) Education, Legal, Community (4) Healthcare Practitioners
Service, Arts, and Media and Technical

(5) Service (6) Sales and Related

(7) Office and Administrative (8) Farming, Fishing, and
Support Forestry
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