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Abstract

This thesis addresses the improvement of medical text classifiers by enhancing the qual-
ity and balance of both training and test datasets. Imbalanced data poses significant
challenges to the accuracy and reliability of Natural Language Processing (NLP) mod-
els, particularly in the medical domain where rare conditions and minority classes are
often underrepresented. To tackle these issues, this research explores targeted data aug-
mentation techniques, specifically through active learning, to iteratively improve the
training data. The study integrates multiple datasets from different medical special-
ties to create a more balanced and comprehensive test set. Key interventions include
re-annotating mislabeled data and incorporating a negative category to better manage
false positives and negatives. Experimental results demonstrate that these strategies
noticeably enhance the model’s performance, providing more accurate and reliable clas-
sifications of medical texts. This work contributes to the field by proposing practical
methods for dataset balancing and model optimization, ultimately supporting health-
care professionals with more precise NLP tools.
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Chapter 1

Introduction

Medical text classifiers are Natural Language Processing (NLP) tools designed to under-
stand and categorize pieces of text within a medical context. The quality and balance
of datasets play a crucial role in the performance of text classifiers. Models created
with imbalanced datasets can be biased towards their dominant categories and if they
contain inconsistencies in their data they can they can yield inaccurate or unreliable
predictions.

This thesis is written in collaboration with A-PROOF project which aims to de-
velop medical text classifiers capable of determining a patient’s functioning level from
free-text clinical notes written in Dutch. These models can be utilized to analyze ex-
tensive clinical data, providing insights into recovery patterns within specific patient
populations.

This thesis aims to improve a medical text classifier used by A-PROOF project
focusing on these three questions:

1. How can the quality and balance of test datasets be enhanced to improve mea-
suring the performance of medical text classifiers?

2. What strategies can be employed to improve the quality and balance of training
datasets for medical text classifiers?

3. How can the model’s ability to handle false negatives (FN) and false positives
(FP) be optimized?

1.1 Thesis Overview and Objective

The primary goal of this thesis is to improve the effectiveness and reliability of the
medical text classifier created by Kim (2021). The research addresses three key issues:

1. Improving Test Data Quality: This involves correcting misannotations (Schramm,
2023), particularly for one category that has been annotated incorrectly, and ad-
dressing observed false-false positives by re-validating their gold standard values.

(a) INS Category Re-annotation: Correcting annotation mistakes in INS
category.

(b) False-false positives Re-validation: Addressing false false positive errors
in the evaluation as some of them were misannotated and supposed to be
true positives. The gold value of these instances are re-validated.

1



2 CHAPTER 1. INTRODUCTION

2. Improving Test Balancedness: The performance evaluation of a text clas-
sifier is heavily influenced by the composition of its test data. An imbalanced
test set can lead to misleading performance metrics, skewing the perceived ef-
fectiveness of the model. To address this, I aim to create a more balanced and
representative test dataset. This involves combining separate datasets to ensure
a more balanced distribution of classes, which will provide a clearer picture of
the model’s performance across different categories. The approach involves com-
bining three smaller, separate datasets from similar domains (medical notes from
different medical specializations) to create a more balanced and representative
test dataset.

3. Improving Model Balancedness to Address FN and FP: To improve the
model’s ability to handle false negatives and false positives, targeted data augmen-
tation through active learning will be adopted. This method focuses on iteratively
selecting the most informative data points to improve the model’s performance.
Active learning is employed to selectively augment the training data. By itera-
tively selecting the most informative samples for annotation, the training set can
be enhanced with instances that are likely to improve the model’s performance,
particularly on rare or difficult cases. This strategy ensures efficient use of anno-
tation resources and focuses effort on data points that are expected to have the
most significant impact on the model’s accuracy and robustness.

1.2 Thesis Outline

The thesis will follow a structured approach, starting with an introduction to the prob-
lem and objectives, followed by detailed sections on methodology, experiments, results,
and discussion. Each section will build upon the previous one, leading to a comprehen-
sive understanding of the improvements made to the medical text classifier.

The thesis begins with the present chapter which is the introduction of overall
project and goals of the research, followed by the background chapter (Chapter 2)
where I provide a glimpse of relevant literature to the research. In Chapter 3 (Data
and Annotations), I will demonstrate previous and recent data that is relevant to this
research. Following this, in Chapter 4 (Methodology), I will describe my method-
ological choices by relying on the literature provided earlier. Then, I will move on to
Experiments and Results (Chapter 5, where I implement the methodological prefer-
ences in various set of experiments. In this chapter I demonstrate the results of my
hypothesized experiments. Following this, I will discuss the output of this research in
a broader perpective in the Discussion (Chapter 6). In this chapter I will also provide
a general analysis of the output and discuss the possible future work that this thesis
may expand into.

1.3 Research Contributions

This research contributes to the field by:

1. Demonstrating effective targeted data augmentation techniques for medical text
classification.

2. Providing methods for balancing test and training datasets.
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3. Improving the overall performance of Medical Text Classifiers, particularly in
handling false negatives and false positives.

These contributions aim to enhance the reliability and accuracy of NLP tools in the
medical domain, ultimately benefiting healthcare professionals by providing more pre-
cise and useful text classifications.
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Chapter 2

Background and Related Work

This chapter provides a brief literature review about the subject matter of this thesis.
Subsequently, it describes the Clinical NLP, Transformer based models, inbalanced
data phenomenon, and Active Learning framework. Finally, it summarizes the related
previous work that has been done in A-PROOF project. The literature review provided
in this chapter will constitute the theoretical foundation of my methodology and my
experiments where I implement my methodology.

2.1 Clinical NLP and Clinical Data

The field of Natural Language Processing (NLP) has witnessed significant advance-
ments in recent years, particularly within the realm of clinical applications. For in-
stance, a survey by Laparra et al. (2021) highlights the interest and progress in utiliz-
ing NLP to unlock the wealth of information contained in Electronic Health Records
(EHRs). EHRs are a rich source of patient data, capturing detailed narratives about
patient conditions, treatments, and outcomes that are not systematically documented
elsewhere.

There are many public medical datasets that have been released, focused on various
standard NLP tasks. These include named entity recognition (NER) (Elhadad et al.,
2015) and relation extraction (Uzuner et al., 2011), temporal information extraction
(Styler IV et al., 2014), and coreference resolution (Uzuner et al., 2011). There are also
datasets specifically designed for clinical tasks such as disease classification (Uzuner,
2009).

One of the primary challenges in clinical NLP is the requirement for annotated
datasets. Supervised machine learning, which underpins most modern NLP methods,
relies heavily on these annotated datasets. Annotating clinical text is a labor-intensive
process that demands significant expertise and resources. The process involves labeling
clinical narratives with medico-linguistic annotations to train NLP systems to recognize
and interpret medical terminology accurately.

The survey of Laparra et al. (2021) emphasizes two critical aspects of clinical NLP:
generalizability and adaptability. Generalizability refers to the ability of an NLP method
to perform well on diverse test data that may differ significantly from the training data.
This is crucial because clinical data can vary widely between different hospitals, regions,
and patient populations. Adaptability, on the other hand, involves tailoring an initially
trained model to better suit the specific characteristics of the data it will encounter at
the test time. While these concepts are not mutually exclusive, they often represent

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

different priorities in NLP research.

Transfer learning or fine-tuning has emerged as a key strategy in enhancing both
generalizability and adaptability. In transfer learning, knowledge from tasks, domains,
or languages with abundant data is leveraged to improve performance in contexts where
data is scarce. This approach is particularly relevant in clinical NLP, where annotated
data is often limited.

As it will be be discussed in more detailed in Section 2.2 below, pre-trained trans-
formers, such as BERT (Bidirectional Encoder Representations from Transformers) and
its variants, have revolutionized NLP by achieving unprecedented performance across
a range of tasks. These models are initially trained to solve general language problems
using vast amounts of unlabeled data and are subsequently fine-tuned for specific down-
stream tasks. Despite their success, these models are not fully optimized for biomedical
data. While they provide a strong foundation, there is still a need for domain adap-
tation techniques to tailor these models to the unique characteristics of clinical text
(Laparra et al., 2021).

2.2 Transformer Models and Transfer Learning

Transformer models have revolutionized the field of natural language processing (NLP)
with their ability to understand and generate human language. The transformer archi-
tecture, introduced by Vaswani et al. (2017), uses a mechanism called self-attention,
which allows the model to weigh the importance of different words in a sentence when
making predictions. This is a significant departure from previous models that relied
heavily on sequential processing, making transformers more efficient and capable of
handling long-range dependencies in text.

One of the most notable transformer models is BERT, developed by Google (Devlin
et al., 2019). BERT is designed to pre-train bidirectional representations by condi-
tioning on both left and right context in all layers, which enables it to understand
the context of a word based on its surroundings. This pre-training involves two tasks:
masked language modeling (predicting masked words in a sentence) and next sentence
prediction (determining if one sentence follows another). BERT’s ability to capture the
nuances of context has set new benchmarks across various NLP tasks (Rogers et al.,
2020).

RoBERTa (Robustly Optimized BERT Approach) builds upon BERT by modifying
the pre-training approach. Developed by Facebook, RoBERTa uses dynamic masking
instead of static masking and removes the next sentence prediction task. It also in-
creases the amount of training data and the size of the training batches. These changes
lead to significant improvements in performance over the original BERT model (Liu
et al., 2019). RoBERTa has shown to be particularly effective in tasks requiring deep
understanding of context and has outperformed many existing models on a variety of
benchmarks (Rawat and Singh Samant, 2022).

Transfer learning, which involves fine-tuning a model pre-trained on a large dataset
on a smaller task-specific dataset, is a crucial component of the success of transformer
models like BERT and RoBERTa. This approach allows models to leverage knowledge
from the pre-training phase, making them highly effective even with limited task-specific
data. Studies have shown that fine-tuning with transformers can achieve high accuracy
with relatively small annotated datasets, making it a powerful tool for tasks where data
is scarce (Wankmüller, 2022).
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The effectiveness of transformers in transfer learning is evident across various do-
mains. For instance, in clinical text analysis, models like BERT and RoBERTa have
been fine-tuned to identify medical conditions and annotate clinical notes with high
accuracy (Yang et al., 2020).

In conclusion, transformer models such as BERT and RoBERTa have significantly
advanced the capabilities of NLP through their sophisticated use of self-attention mech-
anisms and bidirectional context understanding. Their success is further amplified by
the application of transfer learning, which allows these models to perform exceptionally
well across various tasks with limited data. The continuous evolution and optimization
of these models promise even greater advancements in the field of natural language
processing.

2.3 Imbalanced Data

Class imbalance is defined as classification setting in which one or multiple classes
(minority classes) are considerably less frequent than others (majority classes) (Henning
et al., 2023). Class imbalance is a significant challenge in NLP, particularly in clinical
data. This issue arises when some classes are much less frequent than others, leading to
biased model performance. Transformer-based models, such as BERT and RoBERTa,
although powerful, are not immune to the challenges posed by imbalanced datasets
(Zhang et al., 2020).

Class imbalance often leads to models that are biased towards the majority class.
This bias results in poor performance on the minority classes, which are often the most
critical in clinical contexts, such as rare diseases or specific patient conditions. Studies
have shown that imbalance in data can cause high false-negative rates, where the model
fails to identify the minority class, leading to potentially severe consequences in clinical
applications (Zhang et al., 2020).

In datasets where the negative class is much larger, models often become biased to-
wards this majority class. This imbalance causes models to focus more on the majority
class, leading to poor performance on the minority class. The learning algorithms end
up primarily recognizing patterns in the majority class, increasing the chances of mis-
classifying the minority class, which is usually the one we are most interested in. This
bias makes it harder for the model to accurately predict the minority class, resulting
in higher error rates and lower overall effectiveness (Elyan et al., 2020).

In the current state of research, several typical approaches are employed to handle
class imbalance in datasets. Among these, resampling techniques are the most popular
and well-researched strategies. Resampling can involve either oversampling the under-
represented category or undersampling the dominant category. Oversampling strategies
typically focus on generating synthetic data based on the characteristics of the under-
represented category to balance its representation in the model. For example, Khushi
et al. (2021) analyzed various resampling methods and achieved promising results with
certain oversampling techniques in the context of clinical data.

Oversampling with synthetic data is not the only data augmentation strategy to
address imbalanced data. Henning et al. (2023) argue that increasing the amount of
data for the minority class during dataset construction, such as by creating additional
examples or using Active Learning to select which examples to label, can also help
mitigate the class imbalance problem to some extent (Ein-Dor et al., 2020). However,
this approach can be particularly labor-intensive in imbalanced settings, as it often
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Figure 2.1: Pool Based Active Learning Setup (Settles, 2009)

requires identifying rare examples and may result in biased examples for the minority
class. This will be discussed in more detailed in the Section 2.4 below.

2.4 Active Learning

Data is essential for machine learning applications and has become more valuable over
time. In many cases, a large amount of unlabeled data is generated, but to use this data
in supervised machine learning, it must be labeled. This often requires manual labeling,
which can be complicated and might need a specialist, like in patent classification or
clinical text classification. This process is time-consuming and expensive, making it
impractical. Even with available experts, labeling every piece of data is often impossible
due to the vast size of modern datasets. This issue is particularly significant in NLP,
where both the datasets and the amount of text in each document can be enormous,
leading to overwhelming annotation tasks for human experts (Schröder et al., 2022).

Active Learning (AL), is a subfield of machine learning that focuses on improving
learning efficiency. The core idea is that by allowing the learning algorithm to select
the data from which it learns, it can achieve better performance with fewer training
instances. This property is particularly valuable because many supervised learning
systems require large amounts of labeled data to perform well. While some labels, like
those for spam emails or movie ratings, are easy to obtain, others can be time-consuming
and costly to acquire. Active Learning addresses this challenge by querying an oracle,
such as a human annotator, to label the most informative unlabeled instances. (Figure
2.1) This approach aims to maximize accuracy while minimizing the labeling effort,
making it highly relevant for modern machine learning problems where data is plentiful
but labels are scarce or expensive to obtain (Settles, 2009).

Active Learning reduces the amount of data that needs to be labeled by human
experts. It is an iterative process between an oracle (usually a human annotator)
and an active learner. Unlike passive learning, where the data is simply fed into the
algorithm, the active learner decides which samples should be labeled next. The actual
labeling is done by a human expert, referred to as the human in the loop. After
getting new labels, the active learner trains a new model and the process starts again.
The term active learner refers to the combination of a model, a query strategy, and
a stopping criterion. The model is the machine learning algorithm being trained, the
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query strategy determines which data points to label next, and the stopping criterion
decides when to stop the labeling process (Schröder et al., 2022).

Recent advancements in NLP using AL, particularly with pre-trained models like
BERT, have demonstrated remarkable performance improvements across various tasks.
Ein-Dor et al. (2020) conducted a comprehensive empirical study on combining AL with
BERT for text classification. Their research revealed that AL enhances BERT’s perfor-
mance, especially in scenarios where the data is highly imbalanced, and the annotation
budget is minimal. The study examined several AL strategies: Least Confidence, which
selects instances for which the model is least certain; Monte Carlo Dropout, which uses
multiple inference cycles to estimate uncertainty; Perceptron Ensemble, which averages
uncertainty over an ensemble of models; Expected Gradient Length, which selects in-
stances based on the largest expected model change; Core-Set, which aims to cover the
dataset space effectively; and Discriminative Active Learning, which focuses on making
the labeled set representative of the entire dataset. The findings indicated that AL
strategies could improve BERT’s classification accuracy and F1 scores, particularly in
real-world settings where initial labeled data might be biased or insufficient (Ein-Dor
et al., 2020).

In this research, I will specifically use the Least Confidence strategy, which selects
the most informative instances for the model from its least confident predictions. The
idea behind this approach is that by validating these uncertain instances through an
oracle, the model can improve its ability to generalize by learning more about unfamil-
iar data points. Studies by Schröder et al. (2022) and Ein-Dor et al. (2020) evaluated
this basic uncertainty-based query strategy in various binary and multi-class text clas-
sification experiments, demonstrating its effectiveness for pre-trained language models
such as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019).

Another critical aspect of Active Learning is redundancy elimination with the aim
of avoiding the inefficiency of labeling similar or redundant data points. When a model
queries for labels, it might select multiple instances that are very similar, leading to
wasted labeling effort and slower improvement in model performance. By eliminating
redundant data, Active Learning ensures that each queried instance provides unique
and valuable information, maximizing the efficiency of the labeling process (Jacobs
et al., 2021).

Jacobs et al. (2021) explored two heuristics for redundancy elimination: Redun-
dancy Elimination by Training (RET) and Redundancy Elimination by Cosine Simi-
larity (RECS).

Redundancy Elimination by Training (RET) involves creating a redundancy pool
(RP) from which a subset, the query pool (QP), is selected for labeling. The process
begins by identifying the most uncertain instances in the RP. These instances are then
incrementally retrained on, and their uncertainties are recalculated after each training
iteration. This iterative retraining continues until the QP reaches the desired size,
ensuring that the selected instances are diverse and informative. RET helps to ensure
that the labeled set is varied and reduces the chances of repeatedly labeling similar
instances, which can be computationally expensive and less informative for the model’s
learning process (Jacobs et al., 2021).

As for Redundancy Elimination by Cosine Similarity (RECS), unlike RET, RECS
uses sentence embeddings to measure the semantic similarity between instances. By
computing the cosine similarity of the sentence embeddings, RECS ensures that only
those instances that are sufficiently dissimilar from each other are included in the QP.
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If an instance is too similar to any already selected instance, it is excluded from the QP.
This method leverages the capabilities of pre-trained models to generate embeddings
that reflect the semantic content of the text, ensuring a diverse and representative set of
labeled data. RECS is computationally less intensive than RET, as it does not require
repeated retraining and uncertainty recalculations (Jacobs et al., 2021).

Redundancy elimination through these heuristics helps in optimizing the labeling
process by ensuring that the model learns from a diverse set of instances, thereby
improving its generalization ability and reducing the overall labeling cost (Jacobs et al.,
2021).

In conclusion, the Active Learning framework focuses on selecting the most infor-
mative data points to label, thus improving model performance with fewer labeled in-
stances. The AL cycle involves iteratively training the model with strategically queried,
newly labeled informative data from each iteration, enhancing its learning process. Any
model used in an AL setting can be trained in two ways: by updating it after each step
or by re-initializing it and training it on all available annotated data (Schröder et al.,
2022; Ein-Dor et al., 2020; Hu et al., 2019; Shen et al., 2018). Dodge et al. (2020)
argue that the language models tend to be unstable when incrementally fine-tuned on
small data sets, resulting in lower performance and higher variability. The distinc-
tion between updating and re-initialization will be quite relevant to the subject matter
of this research throughout the thesis and will be discussed further in Methodology
chapter (Chapter 4). However, it should still be noted that the effect of re-initializing
versus updating language models during AL still remains understudied (Lemmens and
Daelemans, 2023).

2.5 Previous A-PROOF Research

This section describes the previous research that has been done within the A-PROOF
project. It includes the development of pre-trained MedRoBERTa.nl, the legacy fine-
tuned COVID-19 model of Kim (2021), and the master theses of Badloe (2022), Gal-
jaard (2022), Kuan (2023), and Schramm (2023). These master theses are predecessors
of this research in this project and source of most of the insights incorporated here.
The previous research described here can be presented successively as they all built
upon each other, each contributing to the development of the project by providing new
insights.

All of the master theses mentioned above built upon Jenia dataset and model that
has been created through the research of (Kim, 2021). They either applied domain
adaptation to Jenia model to specialize it on a specific domain, or they applied data
augmentation to test the limits of the model. However, if we need to go back where
everything has started, Kim’s model (2021) is the first fine-tuned model based on the
pre-trained transformer model MedRoBERTa.nl that has been created by Verkijk and
Vossen (2021) and it has the largest annotated dataset that has been created so far.

2.5.1 MedRoBERTa.nl

The MedRoBERTa.nl is a Transformer based pre-trained large language model trained
with Dutch medical notes (Verkijk and Vossen, 2021). The main motivation for devel-
oping MedRoBERTa.nl is the unique linguistic characteristics of Dutch clinical notes,
which differs significantly from generic Dutch text data. These notes often include a
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mix of general and specialized language, shorter sentence structures, and numerous
medical terms not typically found in standard Dutch corpora like Wikipedia or news
articles. The existing Dutch language models such as BERTje and RobBERT, which
were trained on general data sources, were not adequately equipped to handle the intri-
cacies of medical language, necessitating a domain-specific model (Verkijk and Vossen,
2021).

The pre-training of MedRoBERTa.nl included 13GB of text data sourced from
Dutch Electronic Health Records (EHRs), specifically from hospital notes. This data
was chosen to ensure the model could learn the specific patterns and vocabulary used in
medical contexts. The RoBERTa architecture was chosen over the more typical alter-
native BERT due to several advantages, including the exclusion of the Next Sentence
Prediction (NSP) objective, which was considered unnecessary for the tasks at hand.
RoBERTa also allows for larger input sequences and utilizes a byte-level BPE tokenizer,
which is beneficial for handling the varied and complex medical vocabulary (Verkijk
and Vossen, 2021).

Fine-tuning the model for specific tasks, such as ICF classification, and comparing
its performance to general Dutch models demonstrated that MedRoBERTa.nl excels
in these tasks. This highlights the effectiveness of the domain-specific pre-training
approach, as MedRoBERTa.nl showed superior performance compared to the general
models (Verkijk and Vossen, 2021).

2.5.2 Jenia Model - COVID-19 Dataset

Jenia Kim’s technical report, ”Automated Assignment of ICF Functioning Levels to
Clinical Notes in Dutch,” outlines the methodologies employed in the A-PROOF project.
The primary goal of this project is to develop AI models capable of identifying the func-
tional status of patients from free-text clinical notes in Dutch. These models aim to
analyze large volumes of clinical data to extract valuable insights, such as recovery
patterns within specific patient populations (Kim, 2021).

ICF code Domain Abbrev. Functioning level

b1300 Energy level ENR 0-4
b140 Attention functions ATT 0-4
b152 Emotional functions STM 0-4
b440 Respiration functions ADM 0-4
b455 Exercise tolerance functions INS 0-5
b530 Weight maintenance functions MBW 0-4
d450 Walking FAC 0-5
d550 Eating ETN 0-4
d840-d859 Work and employment BER 0-4

Table 2.1: Overview of the ICF domains in the project

In collaboration with medical experts from the A-PROOF project, electronic health
records from the Amsterdam University Medical Centers (UMC), were selected and an-
notated. The annotation process focused on nine International Classification of Func-
tioning, Disability and Health (ICF)1 categories shown in Table2.1. This framework

1https://www.who.int/standards/classifications/international-classification-of-functioning-
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was established by the World Health Organization (WHO) to describe and measure
health and disability in a standardized fashion.

From the 5,554 selected clinical notes, a total of approximately 286,000 sentences
were annotated, with about 15,000 sentences containing at least one domain label (Kim,
2021).

The classifier was developed using a state-of-the-art NLP approach, specifically fine-
tuning a pre-trained large language model. The MedRoBERTa.nl, was utilized as the
base model. Fine-tuning was conducted using the Python library Simple Transform-
ers2, which facilitated the adaptation of the pre-trained MedRoBERTa.nl model to the
specific task of ICF classification. This approach leveraged the robust language under-
standing capabilities of MedRoBERTa.nl, refined through training on extensive Dutch
hospital notes, to accurately classify the functional status of patients based on their
clinical records (Verkijk and Vossen, 2021). Kim’s work thus contributes significantly
to the field of medical NLP by providing a practical application of advanced language
models in extracting meaningful health information from unstructured clinical texts
(Kim, 2021).

2.5.3 Domain Adaptation Research

Domain adaptation is a technique in machine learning where a model trained on data
from one domain is adapted to perform well on data from a different but related domain.
This approach helps improve the model’s performance in new, unseen environments by
leveraging the knowledge gained from the original domain.

Oncology Data

Sharona Badloe’s master thesis aimed to adapt Kim’s model which was thematically
partially focused on COVID-19 clinical data specifically to oncology data. For this
purpose, a specialized dataset consisting of oncology notes was created, and the Jenia
model was fine-tuned using this data (Badloe, 2022). Although the research provided
relatively good performance on its target data, the total size of the dataset was not
large enough to provide a representative test split in the end.

Primary Care Data

Ellemijn Galjaard’s master thesis (2022) applied transfer learning strategy to create a
classifier specialized on primary care clinical data. The data grounding the Jenia model
is mainly medical notes coming from the secondary line of medical service, which is
specialized clinics that patients are mostly directed to via referrals.
Galjaard’s master thesis aims to adapt this model which mainly trained with secondary
care data to newly curated primary care data sourced from physiotherapy, occupational
therapy, and dietetics (Galjaard, 2022). The adaptation gave promising results albeit
suffering from the same setbacks as Badloe’s thesis (Badloe, 2022). The overall size
of the dataset was not large enough to have a representative test split to evaluate the
generalization performance of the model on this new domain reliably.

disability-and-health
2https://simpletransformers.ai/
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2.5.4 Data Augmentation Research

Data augmentation involves expanding a dataset by creating modified versions of ex-
isting data or generating new synthetic data, which helps improve the robustness and
performance of machine learning models. Kuan (2023) and Schramm (2023) both ap-
plied certain data augmentation techniques to improve the generalization capacity of
the available models.

Synthetic Data via Generative LLM’s

Kuan’s master thesis (2023) explores the use of synthetic data generated through a
generative approach to address class imbalance issues in clinical NLP. The hypothesis
posits that synthetic data, when used alongside existing real data, can create a bal-
anced training set for fine-tuning, depending on the quality of the synthetic data. By
including synthetic data in the training set, Kuan aims to improve the generalizabil-
ity of the classifier, thus enhancing its overall performance. The study suggests that
synthetic data can mitigate the shortage of clinical data, which often arises due to pri-
vacy concerns, while also addressing class imbalance issues within datasets. This dual
benefit could significantly improve the classifier’s effectiveness (Kuan, 2023).

Furthermore, Kuan’s work implies that synthetic data can be used to represent
various medical domains during the fine-tuning phase, enabling the classifier to handle
multiple tasks and thus increasing its generalizability. Presuming a positive outcome,
this approach offers a promising solution to the data scarcity problem in clinical NLP.
The synthetic data can complement existing real data, providing a more robust and
representative training set for fine-tuning and training classifiers across different medi-
cal domains (Kuan, 2023).

Semi-Supervised Training

Cecilia Schramm’s master thesis (2023) also explored innovative data augmentation
techniques to enhance model performance. Schramm, specifically investigated the use
of pseudo labeling, a method within semi-supervised learning, aimed at improving the
model’s ability to generalize (Schramm, 2023). Pseudo labeling involves the model
using its own predictions as part of the training data, with the goal of uncovering new
patterns that could lead to improved overall generalization and model accuracy (Xu
et al., 2021).

The research of Schramm (2023) involved two main experimental setups with pseudo
labeling: high-quality data and high-quantity data. In the first setup, she used high-
quality pseudo-labeled data, based on targeted keywords per category. In the second
setup, she employed a larger quantity of pseudo-labeled data, focusing on the volume
rather than the precision of the labels. Despite the innovative approach and thorough
experimentation, Schramm (2023) found that neither high-quality nor high-quantity
pseudo labeling resulted in a significant improvement in the model’s generalization
capacity. This suggests that while pseudo labeling holds potential, its effectiveness
may be limited by factors such as the inherent quality of the initial model predictions
and the specific characteristics of the dataset used (Schramm, 2023).
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Chapter 3

Data and Annotations

In this chapter I describe the datasets that have been used in earlier research and
datasets that I curated. These datasets will be used and mentioned in the methodology
(Chapter 4) and experiments (5) motivated by these methodological analyses.

3.1 Medical Notes

The medical notes data used in this study is derived from the Electronic Health Records
(EHR) of patients at AUMC and VUMC. This data is rich in clinical information and
encompasses a wide range of medical specializations and patient interactions. The data
includes various types of clinical notes such as admission notes, discharge summaries,
progress notes, and diagnostic reports.

For this particular research, I used the ’Notes’ data from VUMC dated 2023. The
data is presented in an unstructured format as a CSV file, with each row corresponding
to one medical note and containing multiple columns with various identification details.
My primary focus was on the text column, which contains the note itself, and the note
ID, which assigns a unique identifier to each note. This unique ID was particularly
useful when segmenting long notes into individual sentences.

Different from previous research, this thesis takes only sentences in terms of evalu-
ation unit. All data and models are compared with respect to their sentence amounts
and performance over sentences.

3.1.1 Data preprocessing

The dataset consisted of a CSV file with numerous columns containing various types
of information. For this study, I focused on two columns: one containing the medical
notes text and the other the note ID.

Initially, the text column underwent anonymization using SpaCy1, where location
names and person names were replaced with Named Entity Tags (i.e. PERSON, GPE).
After anonymization, the text was segmented into sentences with SpaCy.

Here are the details of the data statistics for 2023 Medical Notes data:

• Total Notes: 850,000

1https://spacy.io/
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• Total Sentences : 23 million

• Preprocessed Sentences : 7.5 million

The preprocessed sentences (7.5 million) were divided into batches of 750,000 sen-
tences each, resulting in 7 splits of 750,000 sentences after deduplication. This division
into smaller batches facilitated their separate use in different steps of the Active Learn-
ing Cycle.

For instance, in the first batch, only the first 750,000 sentences were queried for the
categories ATT (attention), BER (work/employment), INS (exercise tolerance), and
MBW (weight maintenance) (Figure 2.1). For the category ATT, which is more scarcely
found, the first and second batches (totaling 1.5 million sentences) were queried.

This approach ensured efficient and targeted querying of the dataset during the
Active Learning Cycle.

3.2 Data from Previous Research

In this section I describe the datasets that have been curated and used in previous
A-PROOF research.

3.2.1 Jenia Dataset - COVID-19 Data

The dataset used in the project of Kim (2021) includes electronic health records from
AUMC2 and VUMC3 locations. Specifically, the dataset contains approximately 4
million notes from 2017 across both locations, about 2 million notes from 2018 from
the AUMC location, and another 2 million notes from the first three quarters of 2020
from both locations. Given the project’s interest in COVID-19, the 2020 data is divided
into two subsets: notes from patients diagnosed with COVID-19 (cov-2020) and notes
from those without a COVID-19 diagnosis (non-cov-2020). The selection of a subset of
these notes for annotation was critical to ensure a manageable and relevant dataset for
training and evaluating the machine learning models.

Figure 3.1: Jenia Train Split Category Distribution in Sentence Amount

2https://www.amsterdamumc.org/en.htm
3https://www.vumc.nl/
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For annotation, the selected subset of data was chosen to meet several criteria to
ensure quality and relevance. The annotation aimed to gather approximately 15,000
sentences with domain and level labels, ensuring a sufficient number of positive ex-
amples. The labels needed to be well-distributed across all nine domains of interest,
and the sentences selected had to be diverse, encompassing various phrasings relevant
to each domain. To achieve these goals, a keyword-based search was employed. This
search used domain-specific keywords compiled by the core team, balancing keyword-
rich and randomly selected notes to avoid bias and ensure diversity. Adjustments were
made throughout the project to address imbalances in domain representation, such as
varying the proportion of COVID-related notes and focusing on specific types of clinical
notes to capture underrepresented domains (Kim, 2021). The category distribution in
test split can be seen in Table 4.3a. Since the data is annotated for a multi-label clas-
sification task, sentences could get multiple positive values. While most sentences have
one or two labels, there are a total of 65 unique label patterns, with some containing
more than two labels.The pattern distribution can be seen in Table A.1.

Inter-annotator agreement (IAA)

IAA is a crucial metric for evaluating the reliability of annotated data, as it measures
the consistency among different annotators. Low IAA scores indicate that there is con-
siderable variation in how different annotators interpret and label the same data, which
can undermine the quality of the dataset and subsequently affect model performance.
In the given table, domains like BER, ETN, and INS exhibit particularly low IAA scores
(0.42, 0.45, and 0.34, respectively), highlighting the difficulty and subjective nature of
annotating these categories. This inconsistency poses a challenge for training machine
learning models, as the models rely on the annotated data to learn and generalize.
Therefore, when the ground truth labels are not consistently applied, the model may
struggle to learn accurate representations, leading to lower performance metrics Kim
(2021).

ADM ATT BER ENR ETN FAC INS MBW STM

IAA 0.64 0.58 0.42 0.66 0.45 0.78 0.34 0.62 0.57
model 0.66 0.58 0.35 0.72 0.63 0.76 0.41 0.70 0.72

Table 3.1: F1-score: inter-annotator agreement vs. model performance (Kim, 2021)

From this point forwards, the Jenia Model and Datasets have been taken as source
model to adapt and build upon in all the remaining research. When assessing the
performance of any model built with this dataset, the IAA scores(Table 3.1) should
be taken into account as it is a cruicial information about generalizibility capacity and
potential of the models.

Jenia Test Data

The curated Jenia Dataset has been randomly split into Train/Dev/Test Splits of
80/10/10. Consequently the test split (Figure 3.2) reflects the category distribution
of the whole dataset with some quite low support numbers for some underrepresented
categories.
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Figure 3.2: Jenia Test Split (fixed) Category Distribution in Sentence Amount

This test split is updated version with annotation fixes that have been mentioned
in Data Improvements section 5.1.

3.2.2 Primary Care Dataset - Ellemijn Data

The primary care dataset of Galjaard (2022) is sourced from three medical special-
izations: dietetiek (dietician), fysiotherapie (physiotherapy), and ergotherapy (occupa-
tional therapy).

The first graph (3.3a) shows the category distribution within the dataset. The
negative ’O’ category dominates with 7351 instances, indicating a significant portion
of data not fitting into specific predefined categories. Other notable categories include
BER and ENR, with 181 and 180 instances respectively, suggesting these categories
are relatively well-represented compared to others like INS and STM, which have fewer
instances.

(a) Category Distribution in Sentence Amount

(b) Heatmap for Medical Data Source
Distribution per Category in Sen-
tences

Figure 3.3: Primary Care Data Category and Source Distribution (Galjaard, 2022)

The second graph (3.3b) is a heatmap illustrating the distribution of data sources
across categories. Categories are distributed thematically. Physiotherapy (fysiothera-
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pie) contributes the most across several categories, particularly BER (working status),
INS (effort) and ENR (energy), highlighting its significant presence in most physiother-
apy related categories in the dataset. Occupational Therapy (ergotherapie) shows an
emphasis in BER and ENR also in its category distribution as they are the most the-
matically related categories to the medical practice. Dietician (dietetiek), on the other
hand, shows a higher number of instances in the ENR and ETN category. This distri-
bution indicates the varying emphasis each medical specialization places on different
categories within primary care documentation.

3.2.3 Oncology Dataset - Sharona Data

The Oncology Dataset curated by Badloe (2022) contains data from two primary spe-
cializations: Gastrointestinal Oncology, labeled under the batch ’gastro patients,’ and
Thoracic Oncology, labeled as ’lung patients’ in the heatmap below (Figure 3.4b). The
overall category distribution is consistent with the findings of Galjaard (2022), with
positive categories being notably underrepresented. However, within these positive
categories, there is a nuanced distribution that aligns with the thematic focus of each
data source.

(a) Category Distribution in Sentence Amount

(b) Heatmap for Medical Data Source
Distribution per Category in Sen-
tences

Figure 3.4: Oncology Dataset Category and Source Distribution Badloe (2022)

Specifically, the gastrointestinal oncology data exhibits a predominant focus on
categories related to eating (ETN) and weight maintenance (MBW). Conversely, the
oncology data pertaining to lung cancer patients emphasizes the ADM (breathing)
category. This differentiation underscores the distinct thematic concerns of each spe-
cialization, reflecting the varied clinical priorities and patient management strategies
within gastrointestinal and thoracic oncology.
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Chapter 4

Methodology

In this chapter, I describe the methodological aspects of my research and experiments.
Initially, I briefly explain the motivations behind the data improvements implemented
in this study (Section 4.1). Following that, I discuss the methodology of Fine-Tuning
and its application (Section 4.2), as well as the Active Learning pipeline utilized in the
experiments (Section 4.3).

4.1 Data Improvements

This section outlines the specific improvements made to the dataset to enhance the
model’s performance measurement as shown in Figure 4.1. It includes re-annotation of
the INS(exercise) category and the correction of false-false positives, ultimately leading
to a more accurate and reliable test set.

Figure 4.1: Test Data Content Improvements

4.1.1 INS Category Re-Annotation

In her master thesis, Galjaard (2022) observed certain inconsistencies in the annotation
of the INS category. These inconsistencies arose either due to misunderstandings or
ambiguities in the annotation guidelines, leading to some instances being incorrectly
annotated as INS. Consequently, the whole INS category in both the train and the test
sets were re-annotated. While this resulted in a drop in the support numbers for the
category, it ultimately led to a more accurate and realistic evaluation of the classifier
(Table 4.1).

21
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Sentence New INS Value

Heeft een nieuwe fiets, kijkt er naar uit om hierop rond te rijden, maar
dit gaat helaas nog niet. 0
Has a new bike, looks forward to riding it, but this is not possible yet.

Wel het idee dat zijn conditie achteruit is gegaan sinds de laatste
embolisatie. 1
Has the idea that his condition has deteriorated since the last
embolization.

Table 4.1: INS sentences from train set, their translations, and their validated INS
values

4.1.2 False-False Positives Re-Annotation

In the error analysis of her master thesis, Schramm (2023) found that some of the false
positive instances did not appear to be false positives but rather true positives in the
test data. In light of this finding, I decided to re-evaluate the alleged false positive
instances with the medical experts in the A-Proof team. This re-evaluation led to
updating the gold labels of a total of 305 instances from negative category to their
respective positive category within the test data of the Jenia dataset. (Table 4.2, 5.3)

Sentence and Translation Old Value Updated Value
Gezien de lage belastbaarheid (zuurstofbehoefte en energiebelast-
ing (oa zitduur)) is dit nog niet mogelijk.

O ADM

Considering the low load capacity (oxygen requirement and energy
load (including sitting duration)), this is not yet possible.
snackbar 7 dagen/week, werkt alleen O BER
snackbar works alone 7 days a week
PERSON kan zelfstandig schuiven over bed naar hoofdeinde. O INS
PERSON can independently slide over the bed to the headboard.

Table 4.2: Sentences with translations, old-gold values, and updated-gold values

4.1.3 Combined Test Set

Combining separate test sets to create a balanced and more representative test set is a
crucial step in ensuring the validity and generalizability of the models developed and
used in the A-PROOF project. Imbalanced test sets can lead to biased performance
metrics, where the model may seem to perform well on overrepresented classes but
poorly on underrepresented ones. This imbalance can obscure the true capabilities of
the model and potentially lead to misleading conclusions about its effectiveness.

To address this issue, I integrated the Jenia Test Split, which focuses partially
on medical notes from COVID-19 patients, with the full Oncology Badloe (2022) and
Primary Care datasets Galjaard (2022). The Primary Care dataset includes diverse cat-
egories such as dietician, occupational therapy, and physiotherapy, while the Oncology
dataset encompasses Thoracic and Gastrointestinal Oncology patients. By combining
these datasets, the resulting test set offers a more comprehensive and balanced repre-
sentation of various medical conditions and specialties. This method enables the test
set to assess different aspects of the healthcare data, including primary care, secondary
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Figure 4.2: Combined Test Set composition

care, and specialized medical data such as oncology.

Moreover, the combination of datasets ensures that the test set includes a variety of
conditions, making the evaluation process robust and reflective of real-world scenarios.
This methodology helps in identifying potential weaknesses of the model when dealing
with less common conditions, thereby guiding further refinement and training of the
model for better overall performance. The inclusion of diverse medical data allows the
model to be evaluated on multiple dimensions, encompassing various facets of patient
care from primary and secondary care to specialized areas like oncology.

In conclusion, the motivation behind combining separate test sets is to create a
balanced and more representative test set that accurately reflects the diverse conditions
encountered in medical practice. This approach ensures that the model’s performance
is evaluated fairly across all classes, leading to more reliable and generalizable results.
Additionally, it enhances the evaluation process by incorporating different aspects of
medical data, thereby adding more dimensions for assessing the model’s efficacy across
various healthcare scenarios.

Combined Test Set Analysis

The category distribution in the combined test set varies significantly, as illustrated
in Figure 4.3. The ’None’ category (O) has the highest count with 33,769 instances,
indicating a substantial amount of data labeled as ’None’. ADM(breathing) is the
second most frequent category with 1,063 instances. Categories like ETN(eating)
and ENR(eating) follow with 640 and 413 instances, respectively. ATT(attention)
is the least represented category with only 82 instances. Other categories such as
BER(working), FAC(walking), INS(exercise), MBW(weight maintenance ), and STM(emotion)
have moderate representation, ranging from 331 to 382 instances each.

The source dataset distribution is depicted in Figure 4.3b, showing the contributions
from each dataset. The Jenia Test split is the largest contributor, with 22,082 instances
(59.1% of the total combined set). Primary care and oncology datasets contribute 7,950
(21.3%) and 7,323 (19.6%) sentences, respectively. This distribution ensures that the
combined test set benefits from a balanced mix of data from different sources in which
categories are more fairly represented.
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(a) Sentence Amount per Category
(b) Sentence Amount per Data
Source

Figure 4.3: Combined Test Set Source and Category Distribution

A detailed breakdown of category distribution within each source dataset is pro-
vided by the heatmap in Figure 4.4. The Jenia test split predominantly contributes
across all categories, particularly in ADM(breathing), ETN(eating). The primary care
data Galjaard (2022) shows notable contributions in categories such as BER(working),
ENR(energy), and INS(exercise). The oncology data of Badloe (2022), on the other
hand, significantly contributes to ETN(eating) and MBW(weight maintenance).

Figure 4.4: Heatmap of Category Distribution per Data Source (Sentence Amount)

In summary, the combined test set presents a well-rounded evaluation dataset with a
diverse category distribution and balanced contributions from the three source datasets.
This ensures that the model is tested on a variety of data types, enhancing the reliability
and validity of the performance evaluation.

4.2 Trasnsfer Learning - Fine Tuning

Fine-tuning in transformer models involves adapting a pre-trained model to a specific
task by training it further on a smaller, task-specific dataset. This process leverages
the general language understanding developed during the initial pre-training phase and
tailors it to the nuances of the new task.

4.2.1 Fine Tuning Setup

For this project, I used the MedRoBERTa.nl as the base pre-trained language model
which is specifically designed for Dutch medical texts. It is pre-trained on a large corpus
of Dutch hospital notes, and it provides a robust foundation for understanding and
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processing medical language. MedRoBERTa.nl utilizes a byte-level Byte Pair Encoding
(BPE) tokenizer, which is particularly effective for handling the unique and complex
vocabulary found in medical texts (Verkijk and Vossen, 2021).

In some experiments I fine-tuned an already fine-tuned MedRoBERTa.nl model (e.g.
Jenia-10), while in some of them I directly fine-tuned the base MedRoBERTa.nl. The
fine-tuning process is conducted using the SimpleTransformers library1, which simplifies
the implementation of fine-tuning transformer models in Python. The key parameters
for fine-tuning are empirically set as batch size 8 and learning rate 4e-5 based on
hyperparameter tuning (Table 4.3).

During fine-tuning, the model was trained to classify sentences into 9 ICF categories,
plus a ”None” category for sentences that do not fit into any of the ICF categories.

The steps for fine-tuning involved:

• Data Preparation: The annotated data is formatted into the required input
format for the model, with each sentence paired with its corresponding binary
10-digit category vector such as [0,0,0,0,0,0,0,0,0,1].

• Model Configuration: The MedRoBERTa.nl pre-trained model or any of its
fine tuned versions (e.g. Jenia-10) is loaded and configured with the specified
batch size and learning rate.

• Training: The model is fine-tuned with the new prepared training data using
simpletransformers python library, with the training process optimized to mini-
mize classification errors.

• Evaluation: The model’s performance was evaluated on a validation set to en-
sure it accurately classified the sentences into the correct categories.

Hyperparameter Tuning

Hyperparameters were assessed empirically by testing on validation data. Based on
macro F1 scores, the optimal parameters were determined to be a batch size of 8 and
a learning rate of 4e-5, as shown in Table 4.3.

Learning Rates
Train

Batch Size
1e-4 4e-5 1e-5

8 0.1 0.61 0.59

16 X X 0.55

24 0.1 X 0.52

Table 4.3: Hyperparameter Tuning Matrix - Macro F1 scores of Jenia-10 over dev data

In this table, ’X’ indicates that the combination was not tested. From the results,
it is clear that a batch size of 8 and a learning rate of 4e-5 yield the highest macro F1
score of 0.61, making this the optimal setting for the model. I also experimented with
multiple epochs, yet there was no significant difference in performance. Therefore, I
decided to keep all further experiments with a single epoch.

1https://simpletransformers.ai/
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4.3 Active Learning Pipeline

The Active Learning (AL) pipeline starts with an initial model of choice, which is
employed to predict over the unlabeled data. Following this, a data selection process
is conducted to identify the most informative samples. These selected samples are
then annotated by experts. Once annotated, the newly acquired gold-standard data is
used to augment the initial dataset and subsequently to create the augmented models
(Figure 4.6).

4.3.1 Classifying the Unlabeled Data

The unlabeled data is classified by taking an initial model and using it to predict
over unlabeled data. I used Jenia-10 as the initial model. Jenia-10 is an updated
version of the legacy model (Jenia-9), re-trained with the same training data but with
10 categories, including ’none’ as a separate 10th category. This model serves as the
initial model against which the performance of each iteration is compared (Section 4.4).
After the first iteration, the initial Jenia train split is combined with the newly acquired
AL batch, and MedRoBERTa.nl is fine-tuned with this increased training data to create
the model Jenia-M1. The other intermediary model Jenia-M2 is also created with the
same approach.

4.3.2 Re-training the model: Update vs. Re-initialization

As discussed in the Active Learning Section of the Background chapter above, this
new gold data acquired via AL iterations can be implemented to the model in two
ways (Section 2.4). They can either be created by updating the classification layer
of an already fine-tuned model, or re-initializing the weights by fine-tuning the base
pre-trained model with the whole data from scratch. Through 3 iterations of AL cycle I
created the augmented model Jenia-M3 via re-initialization, and its alternatives Jenia-
M3.1 and Jenia-M3.2 via updating as it is displayed in the figures 4.6 and 4.5.

Figure 4.5: Different fine-tuning strategies behind models Jenia-10, Jenia-M3, Jenia-
M3.1, and Jenia-M3.2

Re-initialization - Jenia-M3

Re-initialization is one of the fine tuning approaches where I reset the weights of the
model by fine-tuning the pre-trained model with the complete augmented dataset from
scratch. Specifically, I use an already fine-tuned Jenia model (Jenia-10) to retrieve
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new data batches. These batches are queried and validated by experts, then they
are saved as AL batches 1,2, and 3. Then I combine these newly acquired gold data
batches with the original Jenia training split. Then I fine-tune the MedRoBERTa.nl
pre-trained model with this new augmented training data. This process is repeated
for each iteration, accumulating data progressively. The final model created using this
method is referred to as Jenia-M3, as it results from the third iteration.

The strategy for creating iteration data batches follows this approach. The mo-
tivation for this choice is discussed in the background section above(2.4), drawing on
observations by Lemmens and Daelemans (2023); Dodge et al. (2020), and Ein-Dor
et al. (2020). Although the re-initialization method has not been extensively studied,
the consensus suggests that continuous updating can lead to overfitting and biased
results (Lemmens and Daelemans, 2023). Therefore, I have opted for re-initialization
in the Active Learning cycle. Due to concerns about annotation costs, I could not
experiment with continuous updating for AL iterations.

Updating - Jenia-M3.1

In this alternative approach, I fine-tuned the Jenia-10 model instead ofMedRoBERTa.nl
pre-trained model using only the combined AL batches Batch 1,2, and 3. I call this
model Jenia-M3.1 as it stands as a fork of Jenia-M3. In this approach I only update
the weights of a model that has already been fine-tuned. In other words, instead of
re-initializing the weights of all layers of the pre-trained base model via fine-tuning with
the complete training data, I update the weights from the previous fine-tuning process
via further fine-tuning.

Continuous Updating - Jenia-M3.2

In this alternative version to updating, I fine-tuned the Jenia-10 model in a similar
fashion to Jenia-M3.1. However, on this model, instead of fine tuning the Jenia-10 with
the combination of all AL batches, I fine-tuned it successively after each iteration with
their respective AL batch.

4.3.3 Querying (Data Selection) Strategies

One of the essential steps in the Active Learning cycle is querying or data selection. As
discussed in the section (2.4) above, the primary motivation behind Active Learning
is to optimize annotation costs by selecting the most informative and unique data
points from unexplored datasets, thereby maximizing performance improvement. Data
selection is a critical component of the AL framework, involving the identification of
data points to be fed back into the model.

In this thesis, I employed two strategies to maximize the utility of the pool of unla-
beled data. First, I implemented a confidence-based selection strategy, where instances
that the model classifies with the least confidence are sampled. These instances then
validated by human experts (oracles) to enhance the model’s understanding of less fa-
miliar data spaces. Although this sampling strategy is promising, it carries the risk of
selecting repetitive patterns or similar instances, which is not ideal for the task.

To address this issue, I supplement the confidence-based selection with a cosine
similarity-based clustering approach. This method aims to distill the sampled data
into clusters of the most dissimilar instances, ensuring a diverse and representative set
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Figure 4.6: Active Learning Pipeline Schematics

of data points for annotation. This has been discussed earlier in the background section
(2.4).

Confidence Based Selection

When the model predicts over the unlabeled data, it not only provides category la-
bels but also extracts confidence scores for each category. These confidence scores
are represented as a probability distribution where each value corresponds to the like-
lihood of a specific category. The indices of these probability values directly corre-
spond to the indices of the categories in a predefined class representation array, such as
[1,0,0,0,0,0,0,0,0,0] which indicates sentence is categorized asADM or [0,1,0,0,0,0,0,0,0,0]
which stands for ATT etc. For instance, a confidence score list such as below indicates
the model’s uncertainty for each category, with each probability value representing the
confidence of the model that a specific category is present in the input data.

[0.14725594664970185, 0.09731612966276924, 0.020964024221496024, 0.0847652854875062,
0.052311226815738716, 0.01966332748579979, 0.01897129034805298, 0.05865874323248863,
0.034723036676526546, 0.019370829358050346]

This detailed probabilistic output allows for uncertainty-based sampling strategies,
where data points with lower confidence scores can be prioritized for further annotation
and training, thereby improving the model’s performance on uncertain or ambiguous
cases.

Having this information for each data point allowed me to calculate statistics for
each category that the model predicted on the unlabeled data, as illustrated in 4.4. Us-
ing these statistics, I established a confidence range for each category in each iteration,
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Mean Max Min Median

ADM 0.192508 0.214066 0.137933 0.199599
ATT 0.177317 0.201498 0.143179 0.182112
BER 0.156479 0.181988 0.144197 0.155204
ENR 0.181222 0.207282 0.1378 0.185258
ETN 0.172086 0.208895 0.136817 0.171643
FAC 0.19413 0.224223 0.135732 0.202025
INS 0.1616 0.198077 0.133001 0.157535
MBW 0.180865 0.210215 0.143126 0.183675
STM 0.191591 0.222531 0.144306 0.196488

Table 4.4: An example of confidence statistics

which guided the sampling of predictions for expert annotation.

For each category, I targeted the lower end of the confidence range, around the
minimum point. In the first iteration, confidence scores were distributed more evenly,
with the minimum, mean, and median points closer to each other. This allowed me to
retrieve a substantial number of informative examples from the lower range for each
category.

Similarity Based Selection

Active Learning aims to maximize the cost-efficiency and informativeness of data se-
lected for expert annotation, crucial in creating high-quality, gold-standard datasets.
One common approach, uncertainty-based selection, focuses on samples where the
model is least confident (Section 4.3.3). However, this method can lead to repeti-
tive patterns, reducing the diversity of the data pool. To enhance the informativeness
of the dataset while maintaining cost-efficiency, it’s essential to select a batch of rep-
resentative, yet diverse instances. This approach ensures that each annotated instance
introduces new information to the system.

To achieve this, sentences are numerically represented as word embeddings, trans-
forming text into data points that can be compared in a multi-dimensional vector
space. Pre-trained MedRoBERTa.nl represents the tokens with its embedding space.
These embeddings are retrieved from the model via the simpletransformers library. By
applying the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm, I can identify meaningful clusters within a large sample set, particularly
those with low confidence thresholds (Birant and Kut, 2007).

DBSCAN is a density-based clustering algorithm that identifies clusters based on the
density of data points in a given space. Unlike other clustering algorithms, DBSCAN
does not require specifying the number of clusters beforehand. Instead, it relies on two
parameters: the minimum number of points (MinPts) to form a dense region and the
radius (ϵ) within which points are considered neighbors (Birant and Kut, 2007).
Key features of DBSCAN include:

1. Core Points: Points that have at least MinPts within their (ϵ)-radius.

2. Border Points: Points that have fewer than MinPts within their (ϵ)-radius but
are within the (ϵ)-radius of a core point.
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3. Noise Points: Points that do not fit into the category of core or border points,
representing outliers.

By using DBSCAN, the embedded sentences can effectively be clustered , ensuring
that the selected instances for annotation are both informative and diverse. To enhance
this process, I use cosine similarity to measure how similar the sentences are to each
other. Cosine similarity calculates the cosine of the angle between two vectors in a
multi-dimensional space, providing a measure of similarity that is independent of vector
magnitude (Lahitani et al., 2016). This helps in identifying and selecting sentences that
are most dissimilar, thus ensuring diversity. This combined method reduces redundancy
and enhances the overall quality of the annotated dataset, leading to better model
performance in subsequent training iterations.

In summary, combining word embeddings and DBSCAN clustering allows for a
robust selection strategy in Active Learning, optimizing the annotation process by tar-
geting the most informative and dissimilar instances. This approach not only improves
model performance but also ensures the efficient use of expert annotators’ time and
resources.

4.3.4 Expert Annotation

The sampled instances presented to experts in categorized way per each batch. In
order to optimize the annotation process, I asked annotators only to indicate whether
the sentence actually belongs to the category that model classified inconfidently. For
instance, for the first batch, I collected 156 ATT, 355 BER, 160 INS, and 160 MBW
instances queried from unlabeled data (Table 5.6). I put the sentences in spreadsheets in
accordance with their respective category and for each category I asked the annotator
if the sentence belongs to this category or not. In this way I aimed to reduce the
annotation process into a binary annotation which I presumed to be faster than usual
full on multi-label annotation. In this way I acquired all validations for sentences per
category and processed these validations into a new segment for training data to feed
back to the model.

4.4 Models

Having described the detailed methodology, this section now briefly describes all the
models used and created throughout the thesis, for the reader’s convenience.

4.4.1 MedRoBERTa.nl - Pre-trained Base Model

The MedRoBERTa.nl is a Transformer based large language model pre-trained with
Dutch medical notes (Verkijk and Vossen, 2021). The details about the model described
in the literature review section above (Section 2.5.1). This model used as the base pre-
trained model which is fine tuned for classification tasks in other domains.

4.4.2 Jenia-9 - Legacy Baseline

This model is created via fine tuning MedRoBERTa.nl with COVID-19 dataset. Since
this dataset contained the biggest annotated dataset so far for ICF classification, it
has been used as source domain to adapt in other research (Kim, 2021; Badloe, 2022;
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Schramm, 2023). Ultimately, I will compare the performance of my best models against
Jenia-9 as it is the legacy model that has not been developed further with any gold
data from the same domain since it was created.

It should be noted that the Jenia-9 performance in this research appears lower than
the reported performance in (Kim, 2021). I simply re-trained the MedRoBERTa.nl
with the original test data again to create the model. As Kim (2021) also pointed
out, this may be due to random initialization related disrepancies which may occur in
transformer based models. In this thesis I take the version of Jenia-9 that went through
annotation fixes to compare with Jenia-10 and other models.

In this thesis, I use the version of Jenia-9 that has undergone annotation fixes for
comparison with Jenia-10 and other further models. This ensures a fair comparison
between the newly developed models and the legacy model.

4.4.3 Jenia-10 - Updated Baseline

This model is created by fine tuning the MedroBERTa.nl with the Jenia Train split
that has been used to create Jenia-9. This version, differently, represented the values
of instances in a 10 category binary vector to correspond to 10 categories including the
negative category as the 10th. The motivation behind this design change was to reduce
the false positives by introducing the negative category to the model as a separate class.
Therefore, it can disambiguate the negative cases better than before.

The reason that I am also taking this as another baseline is that the 10 category
Jenia-10 design is used in all of other experiments in this thesis. I believe it is a better
reference point than Jenia-9 to some experiments to show the differences with the same
fine-tuning design.

4.4.4 Jenia-M3

This model is created via fine tuning MedRoBERTa.nl with a combination of the Jenia
test split, and the Active Learning Batches 1,2,3. This model is created by re-initializing
method introduced in the Methodology chapter (Section 4.3).

4.4.5 Jenia-M3.1

This model is created via fine tuning Jenia-10 with combination of Active Learning
Batches 1,2,3 at once. The motivation behind this alternative experiment is to observe
how the model would behave if I update the previously updated weights instead of
re-fine tuning the base pre-trained model. The motivation behind this model is also
discussed in the Methodology chapter above (Section 4.3).

4.4.6 Jenia-M3.2

This model, instead of fine-tuning Jenia-10 all at once with the total sum of all AL
batches, fine-tunes it incrementally at each iteration with the new AL batch data. The
motivation behind this model is discussed in the Methodology chapter (Section 4.3).

4.5 Evaluation

Evaluation metrics are essential tools in assessing the performance of machine learning
models, particularly in medical NLP classification tasks. These metrics provide a quan-
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Figure 4.7: A confusion matrix for visualizing Evaluation Metrics (Jurafsky and Martin,
2009)

titative basis for comparing models, understanding their strengths and weaknesses, and
guiding further improvements. They help ensure that the models are not only accurate
but also robust and reliable across different scenarios. By leveraging evaluation met-
rics, researchers can objectively measure how well a model performs in various aspects,
such as precision, recall, and F1-score, which are crucial for making informed decisions
about model deployment in real-world medical applications.

Precision is the ratio of correctly predicted positive observations to the total pre-
dicted positives. It is a measure of the accuracy of the positive predictions. Mathe-
matically, it is defined as:

Precision =
TP

TP + FP

Where TP represents True Positives (correctly predicted positive cases) and FP
represents False Positives (incorrectly predicted positive cases) (Jurafsky and Martin,
2009).

Recall, also known as sensitivity or true positive rate, is the ratio of correctly
predicted positive observations to all the observations in the actual class. It measures
how well the model can identify all relevant instances. Mathematically, it is defined as:

Recall =
TP

TP + FN

Where FN represents False Negatives (actual positive cases that were incorrectly
predicted as negative) (Jurafsky and Martin, 2009).

The F1 Score is the harmonic mean of precision and recall, providing a single metric
that balances both concerns. It is particularly useful when you need to take both false
positives and false negatives into account. Mathematically, it is defined as:

F1 Score = 2× Precision× Recall

Precision + Recall

Macro F1 Score is the arithmetic mean of the F1 Scores of all classes. It treats all
classes equally by calculating the F1 Score for each class and then averaging them. This
metric does not take into account the class imbalance, treating each class as equally
important (Jurafsky and Martin, 2009).

Macro F1 =
1

N

N∑
i=1

F1 Scorei

Where N is the number of classes.
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Micro F1 Score aggregates the contributions of all classes to compute the average
F1 Score. It considers the total true positives, false negatives, and false positives across
all classes to calculate precision and recall, and then derives the F1 Score from these
aggregated values. This metric is more sensitive to class imbalance, reflecting the
performance on the dataset as a whole (Jurafsky and Martin, 2009).

Micro F1 =
2×Micro Precision×Micro Recall

Micro Precision +Micro Recall

Where Micro Precision and Micro Recall are calculated as:

Micro Precision =

∑
TPi∑

TPi +
∑

FPi

Micro Recall =

∑
TPi∑

TPi +
∑

FNi

These metrics are essential for evaluating the performance of classification models,
helping to understand their strengths and weaknesses in terms of both detecting relevant
instances and avoiding false alarms. In my research I used the metric calculation tools
provided by sciki-learn python library.2

2https://scikit-learn.org/stable/api/sklearn.metrics.html#module-sklearn.metrics
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Chapter 5

Experiments and Results

This chapter provides an overview of the experiments conducted, along with a detailed
analysis of the results and relevant comparisons. As discussed in the introduction
above (Section 1), having misannotations in the train and test data makes it difficult to
assess the genuine generalization capacity and performance of the model. This section
demonstrates the results of implemented data improvements, such as the re-annotation
of the INS category and the False-false Positive (FFP) instances. Additionally, the
chapter evaluates the performance of the model that has been redesigned to incorporate
10 categories.

Following that the chapter explores the implementation of the Active Learning
process to further refine and optimize the previously available models’ performance.
The AL experiments include one model created by re-initialization (Jenia-M3) (Section
4.3.2), two models created by updating (Jenia-M3.1, Jenia-M3.2) (Section 4.3.2, 4.3.2).
I compare these models created as a result of AL cycle against both old test data and
new combined test data(Section 4.1.3).

Finally, I explored the potential of the models through minor experiments. These
included pseudo-labeling, where the model’s predictions were used to label unlabeled
data, and fine-tuning with different data compositions, including the addition of nega-
tive instances. These experiments aimed to assess and enhance the models’ robustness
and accuracy by testing various data augmentation techniques and training strategies.

5.1 Data Improvements

This section provides an overview of the key data improvements made during the
project. It begins with the re-annotation of the INS (exercise tolerance) category, ad-
dressing previously identified inconsistencies and leading to a more accurate evaluation
of the classifier. Then it describes the FFP issue and how it has been addressed.

5.1.1 INS Data

It can be seen in Table 4.1 that the value of some examples has changed from 1 to 0,
while others have remained as 1. As a result, the total support number for the category
has dropped from 1967 to 893 in the training data and from 287 to 148 in the test data,
as shown in Table 5.1

When comparing the INS performance of the Jenia model re-trained with the fixed
INS category, an increase in recall is observed (Table 5.2). Despite this improvement in

35
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recall, there is a slight drop in precision. This decrease in precision may be attributed
to the significant drop in support numbers for the INS category in the training data.

Old # New #

Train 1967 893

Test 287 148

Table 5.1: Old and New INS instance counts in Jenia Dataset after re-validation of the
category

Category
Old INS New INS

Precision Recall F1 Support Precision Recall F1 Support

ADM 0.99 0.46 0.63 775 0.99 0.46 0.63 775
... ... ... ... ... ... ... ... ...

INS 0.93 0.14 0.24 287 0.77 0.22 0.35 148

... ... ... ... ... ... ... ... ...
STM 0.76 0.69 0.72 181 0.76 0.69 0.72 181

Table 5.2: Comparison of metrics for model trained with fixed INS data on old and
new INS test data, Model: Jenia-9(INS fixed)

(a) Old INS Test Data (b) Updated INS Test Data

Figure 5.1: Confusion Matrices of fixed INS model on old and updated INS Test data

It is important to note that making a clear comparison between the old and new
models is challenging. The old model, which was trained with mislabeled INS values,
cannot be considered reliable. Naturally, the model re-trained with fixed INS values
performs better with a test set that has been corrected in the same manner. Assessing
the improvement is difficult, as comparing a wrongly trained model against either
correct or incorrect test data, or a correctly trained model against either correct or
incorrect test data, would not provide clear insights.

My objective was to re-establish the external consistency of the INS category with
expert validation, rather than relying on its unrealistic internal consistency. This ap-
proach ensures that the evaluation aligns more accurately with practical expectations
and knowledge. This model with fixed INS will be taken as reference for the next
experiment of false-false positive fixes.
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5.1.2 False False Positives

When I adjusted the gold labels of false-false positives in the test data, several changes
in the evaluation metrics were observed, as shown in Table 5.4.

Category Old FFP New

ADM 775 116 891
ATT 39 0 39
BER 54 56 110
ENR 160 5 165
ETN 382 32 414
FAC 253 28 281
INS 148 17 165
MBW 125 22 147
STM 181 29 210
O 20120 - 19897

Total 22077 305 22136

Table 5.3: Amount of Fixed FFP instances in Jenia Test Data

Overall, the adjustments to the gold labels of false-false positives in the test data
led to notable improvements in precision for several categories, particularly BER and
MBW. While some categories experienced slight decreases in recall, the overall im-
pact on F1 scores was mixed, with some categories showing improvements and others
remaining stable. As it can also be observed in confusion matrices (Figure 5.2), the
re-annotation effort primarily enhanced the model’s ability to correctly identify true
positives without substantially compromising its recall performance.

Category
Old Test (FFP Unfixed) FFP Fixed

Precision Recall F1 Support Precision Recall F1 Diff Support

ADM 0.99 0.46 0.63 775 0.99 0.40 0.57 116 891
ATT 1 0.36 0.53 39 1 0.36 0.53 0 39
BER 0.38 0.43 0.40 54 0.80 0.44 0.56 56 110
ENR 0.92 0.59 0.72 160 0.95 0.59 0.73 5 165
ETN 0.93 0.46 0.61 382 0.94 0.43 0.59 32 414
FAC 0.85 0.71 0.77 253 0.90 0.68 0.78 28 281
INS 0.77 0.22 0.35 148 0.77 0.20 0.32 17 165
MBW 0.80 0.57 0.66 125 0.92 0.56 0.69 22 147
STM 0.76 0.69 0.72 181 0.84 0.66 0.74 29 210

Table 5.4: Comparison of metrics for test data with fixed and unfixed false-false positive
values, Model:Jenia-9 (INS Fixed)
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(a) Test data unfixed FFP (b) Test data fixed FFP

Figure 5.2: Confusion Matrices of Test Data with unfixed and fixed false-false positives,
Model:Jenia-9

The drop in false positives can particularly be observed in BER, FAC, and MBW
categories in confusion matrices (Figure 5.2.

5.2 Introducing 10th Category - Jenia-10

In all previous experiments, including the legacy model by Kim (2021), the model was
trained with only 9 ICF categories. To address the false positive behavior observed
in the model (Figure 5.3), I decided to re-train the model with an additional, tenth
category, representing negative instances. By incorporating this negative category into
the training process, I anticipated that the model would learn to recognize and classify
the ’none’ category more effectively. This adjustment was aimed at reducing the false
positive rate and improving the overall performance of the model.

The Jenia-9 model is the baseline model with fixed INS category, and the Jenia-10
model is the model trained with the same data but with 10 category including ’none’.
The test data is the one with fixed false-false positives and fixed INS annotations.

In the classification report (Table 5.5) introducing the negative category into the
model training results in a slight improvement in recall. This enhancement is also
evident in the confusion matrices in Figure 5.3. Specifically, for the categories ADM,
ATT, ETN, and STM, there is an observed improvement in recall, leading to a reduction
in false negatives. However, for the categories BER, ENR, and MBW, recall did not
improve, but there was an improvement in precision.
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Category
Jenia-9 Jenia-10

Precision Recall F1 Support Precision Recall F1 Support

ADM 0.99 0.40 0.57 891 0.97 0.47 0.63 891
ATT 1 0.36 0.53 39 1 0.41 0.58 39
BER 0.80 0.44 0.56 110 0.97 0.27 0.43 110
ENR 0.95 0.59 0.73 165 0.97 0.52 0.68 165
ETN 0.94 0.43 0.59 414 0.92 0.44 0.60 414
FAC 0.90 0.68 0.78 281 0.92 0.67 0.78 281
INS 0.77 0.20 0.32 165 0.77 0.16 0.27 165
MBW 0.92 0.56 0.69 147 0.93 0.56 0.70 147
STM 0.84 0.66 0.74 210 0.78 0.72 0.75 210

Table 5.5: Comparison of metrics for Jenia-9 baseline model and Jenia-10 model, Test
data: Jenia Test split (FFP,INS Fixed)

(a) Jenia-9 (b) Jenia-10

Figure 5.3: 9 category and 10 category models on fixed Jenia Test Data

5.3 Active Learning

This section describes the process of query strategies adopted throughout the Active
Learning (AL) cycle and model development through each iteration of the cycle. The
section begins with an overview of data selection techniques. In this part, I detail the
strategies used to choose data samples that enhance model performance. Specifically,
I discuss Uncertainty Based Sampling, where samples that the model is least confident
about are selected for labeling and further training. Additionally, we cover Cosine
Similarity Based Clustering, an approach that involves clustering data based on cosine
similarity to ensure that diverse and representative samples are chosen for training.

Following data selection, the section moves on to Hyperparameter Tuning. Here,
I describe the methods employed to optimize the model’s hyperparameters, which are
crucial for improving both performance and efficiency. The fine-tuning of these param-
eters ensures that the model operates at its best possible capacity.

Finally, the section concludes with a detailed look at the Active Learning Cycle
itself. This subsection outlines the iterative process of Active Learning, which includes
steps such as data selection, model training, evaluation, and refinement. Each iteration
of this cycle is designed to progressively enhance the model’s capabilities, ensuring
continuous improvement and adaptation to new data.
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5.3.1 Data Selection

The Table 5.6 presents the results from three batches of data retrieved through Active
Learning iterations. Each batch includes various categories of data, the confidence range
of predictions, the number of instances, the correctness of predictions after validation
by human experts, and whether cosine similarity clustering was applied.

In Batch-1, the focus was on categories ATT, BER, INS, and MBW, with no cluster-
ing applied. Batch-2 expanded to include additional categories and applied clustering
to some. Batch-3 targeted all categories proportionally to their representation in the
training data, with no clustering used.

Overall, clustering in Batch-2 did not significantly improve correctness, and there
was considerable variability in accuracy across categories and batches. The decrease
in correctness from Batch-1 to Batch-3 highlights the need for refined data selection
strategies and potential improvements in the model to enhance performance. Addi-
tionally, models may have overfitted to the data, reducing the proportion of correct
predictions at lower confidence levels as iterations progressed.

Uncertainty Based Sampling

On each iteration of the AL cycle, the model made predictions on a different batch of
unlabeled data consisting of 750,000 sentences. The goal was to identify informative
low-confidence instances to validate and feed back into the system. Based on the
confidence statistics from the total predictions, as shown in Table 5.7, the lower end of
the confidence range was targeted.

In Batch-1, the Jenia-10 model was used to predict over the unlabeled data. The
initial focus was on the most underrepresented categories: ATT, BER, INS, and MBW.
A total of 831 sentences were selected for these categories, with approximately half being
accurate predictions after expert validation.

For Batch-2, I used Jenia-M1, an augmented version of Jenia-10 with Batch-1 data.
The category range was expanded to include all categories proportionately, meaning
well-represented categories were sampled less, and underrepresented categories more.
This batch aimed for a wider range of confidence space to increase the number of positive
predictions and to experiment with informative clustering. However, after validation,
the accuracy of predictions dropped, with only 22% of the sampled instances being
correct.

In Batch-3, a similar confidence range was used, targeting values between the mean
and minimum. The intermediary model Jenia-M2, an augmented version of Jenia-M1
with Batch-2 data, was used. The sample size per category varied according to category
representation in the initial model dataset. Clustering was not applied in this batch due
to its lack of promising results in Batch-2. Despite increasing the number of sampled
instances, the proportion of positive validated instances decreased (Table 5.6).

Cosine Similarity Based Clustering

In the process of applying DBSCAN clustering to the queried data, I encountered sig-
nificant challenges due to the nature of pairwise cosine similarity distances observed
within the data. To illustrate this, I generated a histogram of these pairwise distances,
which revealed a predominance of very low distance values (Figure A.1). This distribu-
tion indicates a high degree of similarity between many data points, complicating the
clustering process based on mean cosine similarity.
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Batch Category Confidence Instances Correct/Total Correct Clustered

Batch-1

ATT 0.16-0.12 156 105/156 0.67 No
BER 0.14-0.12 355 110/355 0.3 No
INS 0.14-0.12 160 110/160 0.68 No
MBW 0.14-0.12 160 106/160 0.66 No

Batch-1 Total 831 431/831 0.51

Batch-2

ADM 0.17-0.10 83 51/83 0.61 Yes
ATT 0.17-0.11 573 47/573 0.08 No
BER 0.17-0.12 180 5/180 0.02 Yes
ENR 0.16-0.12 70 62/70 0.88 Yes
ETN 0.16-0.12 119 64/119 0.53 Yes
FAC 0.16-0.12 62 25/62 0.40 Yes
INS 0.14-0.12 202 39/202 0.19 Yes
MBW 0.14-0.12 128 23/128 0.17 Yes
STM 0.16-0.12 37 15/37 0.40 Yes

Batch-2 Total 1454 331/1454 0.22

Batch-3

ADM 0.16-0.12 23 14/23 0.63 No
ATT 0.16-0.12 500 5/500 0.01 No
BER 0.14-0.12 500 6/500 0.01 No
ENR 0.16-0.12 89 17/89 0.19 No
ETN 0.16-0.12 112 42/112 0.375 No
FAC 0.16-0.12 121 61/121 0.5 No
INS 0.14-0.12 392 48/392 0.12 No
MBW 0.14-0.12 277 10/277 0.03 No
STM 0.16-0.12 114 65/114 0.57 No

Batch-3 Total 2128 268/2128 0.12

Table 5.6: Statistics of queried data sent for expert annotation

My preprocessing steps involved several key actions aimed at refining the dataset.
Initially, I removed all words shorter than four characters. This step was crucial to
eliminate potentially noisy and less informative words that might skew the embedding
space. Next, I removed duplicate entries to ensure that each sentence is unique, thus
maintaining the integrity of the clustering process. Following these steps, I computed
the mean word embeddings for each sentence to represent them in a high-dimensional
space suitable for clustering.

Despite these efforts, the application of the DBSCAN algorithm faced difficulties.
DBSCAN is designed to identify clusters based on density, requiring a careful balance of
its parameters, epsilon (ϵ) and the minimum number of points (minPts). However, the
overwhelmingly low pairwise distances meant that setting an appropriate ϵ value was
challenging. A too-small ϵ would result in many points being labeled as noise, while
a too-large ϵ would lead to a single large cluster, failing to differentiate meaningful
subgroups within the data.

This high density of points within a narrow distance range likely stems from the high
similarity between many text entries, potentially due to the nature of the medical text
data used. Such data often contains repeated terminology and phrases, contributing
to the observed distribution. Consequently, the DBSCAN algorithm struggled to dis-
tinguish distinct clusters, underscoring the need for alternative strategies or additional
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Batch Category Max Min Mean Median Sampled Range

Batch-1

ATT 0.2205 0.1169 0.1847 0.1843 0.16-0.12
BER 0.2163 0.1028 0.1799 0.1799 0.14-0.12
INS 0.2061 0.1112 0.1682 0.1675 0.14-0.12

MBW 0.2166 0.1113 0.1899 0.1986 0.14-0.12

Batch-2

ADM 0.2174 0.1210 0.1886 0.1939 0.17-0.10
ATT 0.2219 0.1175 0.1818 0.1829 0.17-0.11
BER 0.2184 0.1133 0.1803 0.1795 0.17-0.12
ENR 0.2153 0.0993 0.1917 0.2032 0.16-0.12
ETN 0.2097 0.0968 0.1846 0.1906 0.16-0.12
FAC 0.2210 0.1285 0.1930 0.2011 0.16-0.12
INS 0.2072 0.0890 0.1694 0.1669 0.14-0.12

MBW 0.2212 0.1158 0.1871 0.1908 0.14-0.12
STM 0.2228 0.1305 0.1989 0.2079 0.16-0.12

Batch-3

ADM 0.2174 0.1210 0.1886 0.1939 0.17-0.10
ATT 0.2219 0.1175 0.1818 0.1829 0.17-0.11
BER 0.2184 0.1133 0.1803 0.1795 0.17-0.12
ENR 0.2153 0.0993 0.1917 0.2032 0.16-0.12
ETN 0.2097 0.0968 0.1846 0.1906 0.16-0.12
FAC 0.2210 0.1285 0.1930 0.2011 0.16-0.12
INS 0.2072 0.0890 0.1694 0.1669 0.14-0.12

MBW 0.2212 0.1158 0.1871 0.1908 0.14-0.12
STM 0.2228 0.1305 0.1989 0.2079 0.16-0.12

Table 5.7: Statistics of queried data sent for expert annotation, models used to retrieve
confidence scores are Batch-1:Jenia-10, Batch-2:Jenia-M1, Batch-3:Jenia-M2)

preprocessing steps to better separate the data in the embedding space.

The lower confidence samples that I was interested in were relatively small, ranging
between 100 to 500 instances. When I attempted clustering these samples, I could
not achieve any meaningful grouping. I only managed to obtain a tangible number
of clusters by empirically adjusting the ϵ and minPts parameters when working with
relatively large samples. For example, with 2000 instances, I could generate 50-80
clusters. However, these larger sample sizes represented well-represented categories,
which were not my main focus. Consequently, I could only use clustering to extract the
most informative pieces from these large samples, rather than from the smaller, less
confident samples that were of primary interest to me.

5.3.2 Active Learning Cycle

The table presents the performance metrics for different categories across the iterations
of Active Learning cycle. Each iteration (M1, M2, M3) represents a model trained with
progressively larger datasets, starting from the base model (M0), and adding Batch-
1, Batch-2, and Batch-3 sequentially. Models tested agains development data, in this
process. Here is a detailed interpretation:

ADM (Breathing): Precision increased until Batch-2, Recall fluctuated.
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Table 5.8: Performance Metrics for Each Category on each Active Learning iteration
- Model-M0: Jenia-10, Model M1,M2,M3 models per iteration with their increased
instances, testing on dev set

Category Added Precision Recall F1-Score

ADM-M0 0 0.68 0.70 0.69
ADM-M1 3 0.69 0.66 0.68
ADM-M2 51 0.73 0.64 0.68
ADM-M3 120 0.68 0.69 0.68

ADM-Total 174

ATT-M0 0 0.78 0.32 0.45
ATT-M1 105 0.75 0.55 0.63
ATT-M2 47 0.73 0.55 0.63
ATT-M3 8 0.71 0.55 0.62

ATT-Total 160

BER-M0 0 0.54 0.48 0.51
BER-M1 110 0.44 0.59 0.50
BER-M2 5 0.50 0.62 0.55
BER-M3 15 0.44 0.62 0.51

BER-Total 140

ENR-M0 0 0.75 0.67 0.71
ENR-M1 5 0.75 0.70 0.73
ENR-M2 62 0.74 0.70 0.72
ENR-M3 62 0.74 0.70 0.72

ENR-Total 129

ETN-M0 0 0.50 0.62 0.55
ETN-M1 5 0.54 0.63 0.58
ETN-M2 114 0.53 0.61 0.57
ETN-M3 115 0.52 0.61 0.57

ETN-Total 234

FAC-M0 0 0.44 0.67 0.54
FAC-M1 1 0.49 0.79 0.60
FAC-M2 25 0.60 0.76 0.60
FAC-M3 140 0.47 0.76 0.58

ETN-Total 166

INS-M0 0 0.61 0.09 0.15
INS-M1 110 0.45 0.15 0.22
INS-M2 39 0.62 0.16 0.25
INS-M3 96 0.61 0.18 0.28

INS-Total 245

MBW-M0 0 0.76 0.74 0.75
MBW-M1 106 0.73 0.77 0.75
MBW-M2 23 0.72 0.75 0.73
MBW-M3 40 0.71 0.75 0.73

MBW-Total 169

STM-M0 0 0.52 0.69 0.59
STM-M1 0 0.55 0.67 0.60
STM-M2 15 0.56 0.73 0.63
STM-M3 102 0.54 0.76 0.63

STM-Total 117
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ATT (Attention): Precision only decreased, recall spiked at Batch-1 then stabilized.

BER (Work): Precision only decreased, recall increased gradually util Batch-2.

ENR (Energy): All metrics remained almost steady.

ETN (Eating): With Batch-1 improvement observed in both Precision and Recall
together, then both decreased.

FAC (Walking): Recall peaked at Batch-1, Precision at Batch-2, then both dropped
at Batch-3.

INS (Exercise Tolerance): recall steadily increased, Precision fluctuated.

MBW (Weight Maintenance): Precision gradually decreased, recall slightly im-
proved at Batch-2 with increased support number, then decreased again.

STM (Emotion): Recall increased significantly at Batch-3, Precision at Batch-2.

Overall, the Active Learning cycle demonstrates that adding more data with re-
initialization technique did not show a notable improvement throughout the AL itera-
tions (4.3.2). The results have small fluctuations and small improvements in recall in
some categories.

5.4 Active Learning Batches as the New Data

In this section I will describe the datasets that I have created via AL.

This section shows the positive instances retrieved per each AL iteration. The num-
ber of instances retrived per category are higher than the ones in Table 5.6, because I
asked annotators also to mark other categories if present in a given sentence. There-
fore, there are notable amount of unintended positive cases within the batches. The
intended instance here means that

5.4.1 Batches per Iteration

As shown in Table 5.6, the first batch yielded 431 positive instances from the targeted
categories. Some of these instances had multiple labels per sentence, consequently
including additional positive instances.

Category Intended Unintended Total
ADM 14 106 120
ATT 5 3 8
BER 6 9 15
ENR 17 45 62
ETN 42 73 115
FAC 61 79 140
INS 48 48 96

MBW 10 30 40
STM 65 37 102

Table 5.9: Intended, Unintended, and Total Instances per Category in Batch-3 (Sen-
tence)
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(a) Batch-1 Total: 440 Sentences (b) Batch-2 Total: 381 Sentences

(c) Batch-3 Total: 506 Sentences

Figure 5.4: Category distribution of retrieved positive instances from 3 AL iteration
Batches

The second batch contains 381 instances, including 50 unintended ETN instances,
which are added to the 331 intended ones.

The third batch included a significant number of unintended instances. Here the
term ’intended’ stands for positive instances coming from their category specific an-
notation sets. For example, from queried low confidence ADM instances I got only
14, yet instances in other categories somehow included 106 ADM instances, either via
multi-label instances or misclassified instances. Initially, the intended amount was 268,
but the total ended up being 506 sentences. This is detailed in Table 5.9, which shows
the distribution of intended, unintended, and total instances across various categories.

5.4.2 Final Augmented Train Data

This section demonstrates the final state of the category distribution in training data
after targeted augmentation techniques applied throughout the thesis and compares it
with the old data category distribution. The left bars in the plot on each category
represents the old train data with its amount of sentences and their percentage within
their dataset. The right bars represent the new dataset in the same way.
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Figure 5.5: Comparison of Sentence Amounts per Category in Old and New Train Data

It can be seen from the graph 5.5 that the new data brings about a slightly more
balanced category distribution. While the portion of previously underrepresented cat-
egories increased, the share of dominant categories within the dataset slightly reduced.
For example, an increase can be observed ranging from .3% to .9% in categories ATT,
BER, ENR, INS, and MBW. This number would be higher if I did not label and query
sufficiently represented categories in the dataset, yet I included them in the experiments
too.

5.5 Testing Models on Combined and Jenia Test Data

In this section, I evaluate the created models (M3, M3.1, M3.2) against both the legacy
Jenia test data and the newly combined test data. These evaluations also include Jenia-
10 baseline comparisons. This section aims to highlight the results related to the main
objectives of this thesis, particularly the concept of inbalancedness as described in the
introduction and background chapters (Chapters 1,2). Since I aim to demonstrate both
the model improvements and general assessment of the new combined test data. Ini-
tially, I compare the individual performances of the models as a result of targeted data
augmentation designed to create more balanced models. While showing the individual
performances I also assess how these models perform against the newly combined bal-
anced test data, which is intended to provide a more comprehensive evaluation of the
models.

In order to make it easier to compare the models, both against each other and
between the two different test datasets, I will initially provide the results of four models
per test dataset. Then, I will interpret the results for each model separately with respect
to each test dataset.
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5.5.1 Testing against Jenia Test Data (COVID-19)

I compare the performances of the models against the Jenia test data, providing a
clearer understanding of how the models perform in relation to previous research.

The provided performance metrics and confusion matrices for the Jenia-10, Jenia-
M3, Jenia-M3.1, and Jenia-M3.2 models offer detailed insights into their classification
behaviors, especially regarding false positives and false negatives (Table 5.11).

Category
Jenia-10 Jenia-M3 Jenia-M3.1 Jenia-M3.2

Support
P R F1 P R F1 P R F1 P R F1

ADM 0.97 0.47 0.63 0.98 0.40 0.57 0.93 0.64 0.76 0.96 0.52 0.67 891
ATT 1.00 0.41 0.58 0.95 0.49 0.64 0.70 0.54 0.61 1.00 0.49 0.66 39
BER 0.97 0.27 0.43 0.93 0.12 0.21 0.66 0.69 0.67 0.81 0.43 0.56 110
ENR 0.97 0.52 0.68 0.97 0.53 0.69 0.90 0.65 0.75 0.96 0.58 0.72 165
ETN 0.92 0.44 0.60 0.94 0.39 0.55 0.78 0.74 0.76 0.89 0.57 0.69 414
FAC 0.92 0.67 0.78 0.92 0.70 0.80 0.77 0.79 0.78 0.89 0.72 0.80 281
INS 0.77 0.16 0.27 0.73 0.27 0.40 0.54 0.43 0.48 0.75 0.25 0.38 165
MBW 0.93 0.56 0.70 0.85 0.67 0.75 0.81 0.71 0.76 0.88 0.65 0.75 147
STM 0.78 0.71 0.75 0.88 0.28 0.43 0.60 0.83 0.70 0.71 0.77 0.74 210

Macro Avg 0.92 0.52 0.64 0.91 0.49 0.60 0.77 0.70 0.72 0.88 0.60 0.69

Table 5.10: Comparison of performance metrics between Jenia-10 (Baseline), Jenia-M3,
Jenia-M3.1, and Jenia-M3.2 models against legacy test data

(a) Jenia-10 (b) Jenia-M3

(c) Jenia-M3.1 (d) Jenia-M3.2

Figure 5.6: Confusion matrices of models tested against Jenia Test data
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5.5.2 Testing against Combined Test Data

The combined test set integrates data from three different sources: Jenia Test split,
Primary Care Dataset of Galjaard (2022), and Oncology Dataset of Badloe (2022).
This test set aims to provide a comprehensive evaluation of model performance across
diverse datasets, ensuring a robust assessment.

Category
Jenia-10 Jenia-M3 Jenia-M3.1 Jenia-M3.2

Support
P R F1 P R F1 P R F1 P R F1

ADM 0.89 0.50 0.64 0.90 0.50 0.65 0.84 0.66 0.73 0.87 0.55 0.67 1063
ATT 0.91 0.38 0.53 0.86 0.45 0.59 0.70 0.48 0.57 0.92 0.44 0.60 82
BER 0.71 0.28 0.41 0.73 0.33 0.46 0.57 0.60 0.59 0.66 0.40 0.50 331
ENR 0.82 0.58 0.68 0.83 0.54 0.65 0.75 0.68 0.71 0.79 0.62 0.70 413
ETN 0.67 0.49 0.57 0.66 0.51 0.58 0.53 0.77 0.63 0.63 0.61 0.62 1063
FAC 0.74 0.68 0.71 0.68 0.70 0.69 0.57 0.80 0.67 0.70 0.62 0.67 362
INS 0.66 0.23 0.34 0.70 0.26 0.38 0.36 0.48 0.41 0.50 0.31 0.38 186
MBW 0.82 0.61 0.70 0.78 0.64 0.71 0.65 0.75 0.70 0.77 0.67 0.72 341
STM 0.77 0.63 0.69 0.79 0.62 0.70 0.57 0.75 0.65 0.67 0.68 0.67 348

Macro Avg 0.79 0.54 0.62 0.79 0.55 0.64 0.65 0.69 0.66 0.74 0.60 0.65

Table 5.11: Comparison of performance metrics between Jenia-10, Jenia-M3, Jenia-
M3.1, and Jenia-M3.2 models against combined test data

(a) Jenia-10 (b) Jenia-M3

(c) Jenia-M3.1 (d) Jenia-M3.2

Figure 5.7: Confusion matrices of models tested against Combined Test data
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5.5.3 Summary of Tests

In Jenia Test data evaluation, Jenia-10 tends to be conservative, resulting in fewer false
positives but more false negatives. By conservative, I mean the high precision behavior
that the model doe more of a safer classifications which are more likely to be true.
Jenia-M3 still faces challenges with both false positives and false negatives. It can be
said that it does not perform noticeably different than baseline Jenia-10. Jenia-M3.1
emerges as the best performing model in terms of recall score, effectively reducing the
risk of missing true positives (i.e. less false negatives) while maintaining an acceptable
level of false positives. If we call Jenia-10 conservative, we can call Jenia-M3.1 more
aggressive as it sacrifices some precision in order to catch more instances by takin more
risk. These findings suggest that Jenia-M3.1 is the most reliable model, especially in
scenarios where capturing true positives is critical. However, since the drop in precision
is quite noticable, I also experimented with another AL augmented model which lies
in between high precision and high recall. The model Jenia-M3.2 stands as the most
balanced improved model overall.

In general all 4 models show relatively worse precision performance on this combined
test data. On the top of this, Jenia-M3.1’s precision recall trade off brings significantly
high false positives on this test data. However, if we observe the confusion patterns in
the confusion matrices, we can identify dataset independent classification patterns of
the models. The confusion patterns between ETN (eating) and MBW (weight main-
tenance), INS (exercise tolerance), ADM (breathing), and ENR (energy) remained
unchanged with insignificant number differences in each experiment.

Jenia-10

In Jenia Test evaluation, Jenia-10 achieves high precision (0.92) but has a lower recall
(0.52) and F1-score (0.64) on average (Table 5.11). This indicates that while the model
is quite accurate when it predicts a positive outcome, it tends to miss a significant
number of true positives. The confusion matrix for Jenia-10 shows several instances
where the model incorrectly predicts positive categories, leading to false positives (5.6a).
In the matrix, columns represent the model’s predictions while rows represent the true
values. For example, ATT was classified correctly 16 times, misclassified as BER 1
times, as ENR 5 times, as FAC 2 times, as INS 1 time, as STM 1 time and finally
misclassified as none 13 times. The ’none’ misclassifications stands for false negatives.
The model has a notable amount of false negatives, as indicated by its lower recall
values.

In the combined test data, the performance of Jenia-10 varied more, with generally
lower precision and recall scores compared to the legacy test. Categories like ADM saw
a decrease in precision to 0.89 and an increase in recall to 0.50, resulting in an F1-score
of 0.64. This indicates that the model became slightly better at identifying all ADM
instances but at the cost of more false positives. Other categories also experienced a
significant drop in performance. These results suggest that the model struggles more
with the combined test data, likely due to its increased diversity and complexity.

Jenia-M3

Jenia-M3 demonstrates a balanced precision (0.91) and recall (0.49), with an F1-score
of 0.60 (Table 5.11) in Jenia Test set. This balance suggests that the model has a
moderate rate of both false positives and false negatives. The confusion matrix for
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Jenia-M3 reveals that the model does not behave significantly differently in comparison
to Jenia-10 (5.6b).

On the combined test data, the Jenia-M3 model’s performance metrics indicate an
overall challenge with the more diverse dataset. Most of the categories show a decrease
in precision and a slight improvement in recall to 0.50. This shows that the model was
able to identify more actual instances but at the cost of higher false positives compared
to Jenia-10.

Jenia-M3.1 - High Recall Model

In Jenia Test evaluation, Jenia-M3.1 achieves the highest recall (0.70) and F1-score
(0.72) among the three models, with a precision of 0.77 (Table 5.11). This indicates
a better balance, capturing more true positives with fewer misses. The confusion ma-
trix for Jenia-M3.1 shows an increase in false positives compared to the other models
(5.6c). Although many categories still have misclassifications, Jenia-M3.1 has signifi-
cantly fewer false negatives, indicating superior recall performance. In every category
it has higher true positives compared to Jenia-10 and Jenia-M3. High recall perfor-
mance comes with the price of relatively lower precision and it brings about more false
positives in comparison to other models as it can be seen in the last row (5.6c).

Quite similar to the Jenia Test data evaluation, Jenia-M3.1 achieves the highest
recall (0.69) and F1-score (0.66) among the three models again, with a precision of
0.65 (Table 5.11) in the combined test set. The confusion matrix for Jenia-M3.1 shows
a reduction in false positives compared to the other models (5.7c). Jenia-M3.1 has
noticeably fewer false negatives and higher true positives as result of higher recall
performance.

Jenia-M3.2 - Moderate Model

Jenia-M3.2 shows a moderate performance in terms of recall and precision between
Jenia-10 and Jenia-M3.1 (Figure 5.6c). It does not outperform any model in any metric,
yet its moderate performance still looks the most promising in comparison to Jenia-10
baseline as it shows a significantly better performance without sacrificing precision as
much as Jenia-M3.1.

In the combined test set, Jenia-M3.2 shows a moderate performance similarly again
in terms of recall and precision between Jenia-10 and Jenia-M3.1 (Figure 5.6c).

5.5.4 Testing against Primary Care and Oncology Datasets

In this section I compare the performance of the moderate model (Jenia-M3.2) against
individual constituents of the combined test set. The combined test set enables us to
evaluate specific themes in such a modular dataset individually. This comparison gives
us more fine grained insight about all model’s dropped performance in the combined
test set.
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Category
Jenia Test Split Primary Care Oncology Combined Test

P R F1 # P R F1 # P R F1 # P R F1 #

ADM 0.96 0.52 0.67 891 0.59 0.62 0.61 56 0.66 0.77 0.71 116 0.87 0.55 0.67 1063
ATT 1.00 0.49 0.66 39 0.83 0.45 0.59 33 1.00 0.20 0.33 10 0.92 0.44 0.60 82
BER 0.81 0.43 0.56 110 0.60 0.38 0.47 181 0.57 0.42 0.49 40 0.66 0.40 0.50 331
ENR 0.96 0.58 0.72 165 0.70 0.60 0.64 180 0.76 0.79 0.78 68 0.79 0.62 0.70 413
ETN 0.89 0.57 0.69 414 0.29 0.15 0.20 26 0.44 0.75 0.56 200 0.63 0.61 0.62 1063
FAC 0.89 0.72 0.80 281 0.16 0.61 0.25 18 0.55 0.76 0.64 63 0.70 0.62 0.67 362
INS 0.75 0.25 0.38 165 0.25 0.23 0.24 18 0.65 0.48 0.55 101 0.50 0.31 0.38 186
MBW 0.88 0.65 0.75 147 0.80 0.23 0.60 33 0.70 0.74 0.72 161 0.77 0.67 0.72 341
STM 0.71 0.77 0.74 210 0.47 0.41 0.43 49 0.66 0.61 0.63 89 0.67 0.68 0.67 348

Macro Av. 0.88 0.60 0.69 0.57 0.49 0.50 0.70 0.65 0.64 0.74 0.60 0.65

Table 5.12: Comparison of performance metrics of Jenia-M3.2 against Jenia Test (Kim,
2021), Primary Care (Galjaard, 2022), Oncology (Badloe, 2022)

In the Table 5.12 it can be seen that model M3.2 performs the worst on the Primary
Care component of the combined test set. I suppose it would be fair to assume the
same for the other models as well. Inferring from low precision and recall, particularly
in ETN, FAC and INS categories, it appears that models are particularly unfamiliar
with the Primary Care dataset.

5.6 Semi-Supervised Learning Experiment

In this section I compare the Jenia-M3 and Jenia-M3.1 separately with two other re-
spective models created with different fine-tuning data compositions. Jenia-M3 and
M3.1 are final models of AL cycle as demonstrated in above experiments. In their
data augmentation via AL, I only added low confidence positive instances validated by
human experts, discarded the instances turned out to be negative. Here in the model
design M3b and M3.1b I also added negative validated instances to the batches.

As a last part of this experiment, I pseudo-labeled in total 16756 high confidence
instances and added them on the top of the AL batches. I used my high recall model
Jenia-M3.1 while retrieving these pseudo labeled instances.1 This model augmented
with pseudo labeled instances named as M3c and M3.1c.

Pseudo-labeling is a data augmentation technique that Schramm (2023) also adopted
in her thesis where predictions are made on selected unlabeled data and these predic-
tions are then used as training instances for the model (Xu et al., 2021). Although I did
not focus on this technique in my thesis, I aimed to test whether an Active Learning
augmented model, such as Jenia-M3 or Jenia-M3.1, could serve as a better initial model
for semi-supervised learning in a small scale.

All of the models are tested against legacy Jenia Test set.

1I tried high precision alternative as well, results were not significantly different.
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Jenia-M3 vs Jenia-M3b, Jenia-M3c

In this part of the experiment I tested different variations of fine-tuning setup against
each other on legacy Jenia test split. In all of these models, I fine tunedMedroBERTa.nl
with different combinations of datasets using the re-initialization approach as described
in the (Section 4.3.2).
Model M3: legacy Jenia Train set + AL Batches 1,2,3 (only low confidence positive
instances)
Model M3b: legacy Jenia Train set + AL Batches 1,2,3 (low confidence positive
instances combined with annotated negative instances).
Model M3c: legacy Jenia Train set + AL Batches 1,2,3 (low confidence positive
instances) + high confidence pseudo labeled positive instances.

Table 5.13: Comparison of different train data constitutions

Category Precision Recall F1-Score

ADM-M3 0.98 0.46 0.63
ADM-M3b 0.97 0.46 0.63
ADM-M3c 0.99 0.41 0.57

ATT-M3 0.95 0.51 0.67
ATT-M3b 1.00 0.33 0.50
ATT-M3c 1.00 0.46 0.63

BER-M3 0.90 0.34 0.49
BER-M3b 0.90 0.34 0.49
BER-M3c 0.91 0.27 0.42

ENR-M3 0.98 0.53 0.69
ENR-M3b 0.98 0.56 0.72
ENR-M3c 0.99 0.47 0.63

ETN-M3 0.91 0.48 0.63
ETN-M3b 0.95 0.43 0.60
ETN-M3c 0.91 0.50 0.64

FAC-M3 0.89 0.68 0.77
FAC-M3b 0.89 0.68 0.77
FAC-M3c 0.87 0.69 0.77

INS-M3 0.80 0.25 0.38
INS-M3b 0.80 0.31 0.45
INS-M3c 0.69 0.16 0.26

MBW-M3 0.93 0.57 0.71
MBW-M3b 0.97 0.56 0.71
MBW-M3c 0.93 0.64 0.76

STM-M3 0.81 0.71 0.76
STM-M3b 0.81 0.68 0.74
STM-M3c 0.81 0.69 0.75

Models Macro Pr. Macro R. Macro F1

M3 0.91 0.55 0.67
M3b 0.92 0.52 0.64
M3c 0.91 0.53 0.64

Category Precision Recall F1-Score

ADM-M3.1 0.93 0.64 0.76
ADM-M3.1b 0.98 0.40 0.57
ADM-M3.1c 0.75 0.83 0.79

ATT-M3.1 0.70 0.54 0.61
ATT-M3.1b 0.95 0.49 0.64
ATT-M3.1c 0.05 0.69 0.10

BER-M3.1 0.66 0.69 0.67
BER-M3.1b 0.93 0.12 0.21
BER-M3.1c 0.31 0.85 0.45

ENR-M3.1 0.90 0.65 0.76
ENR-M3.1b 0.97 0.53 0.69
ENR-M3.1c 0.89 0.60 0.72

ETN-M3.1 0.78 0.74 0.76
ETN-M3.1b 0.94 0.39 0.55
ETN-M3.1c 0.39 0.88 0.54

FAC-M3.1 0.77 0.79 0.78
FAC-M3.1b 0.92 0.70 0.55
FAC-M3.1c 0.33 0.62 0.48

INS-M3.1 0.54 0.43 0.48
INS-M3.1b 0.73 0.27 0.40
INS-M3.1c 0.19 0.62 0.29

MBW-M3.1 0.81 0.71 0.76
MBW-M3.1b 0.85 0.67 0.75
MBW-M3.1c 0.35 0.83 0.49

STM-M3.1 0.60 0.83 0.70
STM-M3.1b 0.88 0.28 0.43
STM-M3.1c 0.19 0.60 0.31

Models Macro Pr. Macro R. Macro F1

M3.1 0.77 0.70 0.72
M3.1b 0.91 0.49 0.60
M3.1c 0.44 0.77 0.49

Jenia-M3.1 vs Jenia-M3.1b, Jenia-M3.1c

In this experiment I tested different variations of fine-tuning setup against each other
on legacy Jenia test split. In all of these models, I fine tuned Jenia-10 model with
different combinations of datasets using the updating approach as described in the
(Section 4.3.2, 4.3.2).
Model M3.1: AL Batches 1,2,3 (only low confidence positive instances)
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Model M3b: AL Batches 1,2,3 (low confidence positive instances combined with
annotated negative instances)
Model M3c: AL Batches 1,2,3 (low confidence positive instances) + high confidence
pseudo labeled positive instances

Summary of Alternative Fine-tuning Data Constitutions

It can be seen in Table 5.13 that adding negative validated instances in Models M3b and
M3.1b does not make a significant contribution to performance. The most interesting
result of this experiment is the observed inefficiency of pseudo-labeling attempt as it
can be seen with the results of M3c and M3.1c models.

5.7 Best Models

Having described the various experiments, in this section I summarize the best models
that have been created in the course of the research. In particular, I describe the best
models for precision and recall performance, as well as a moderate alterantive between
the two.

5.7.1 Best Models for Recall and Precision

The best performing model overall in terms of recall performance appears to be Jenia-
M3.1 which is the model created by fine tuning Jenia-10 with only positive data from
combined AL batches.

Best Model for Recall

The results in Table 5.14 highlight that Jenia-M3.1 is the best model overall in terms of
recall performance. This model, which is fine-tuned from Jenia-10 using only positive
data from combined Active Learning (AL) batches, demonstrates superior recall metrics
across most categories. Notably, Jenia-M3.1 achieves a macro average recall of 0.70,
significantly higher than Jenia-10 (0.46) and Jenia-9 (0.47). This indicates that Jenia-
M3.1 is highly effective at identifying true positive instances across various categories,
reducing the likelihood of missing relevant data.

Category
Jenia-9 Jenia-10 Jenia-M3.1

Support
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

ADM 0.99 0.40 0.57 0.97 0.47 0.63 0.93 0.64 0.76 891
ATT 1.00 0.36 0.53 1.00 0.41 0.58 0.70 0.54 0.61 39
BER 0.80 0.44 0.56 0.97 0.27 0.43 0.70 0.69 0.67 110
ENR 0.95 0.59 0.73 0.97 0.52 0.68 0.90 0.65 0.75 165
ETN 0.94 0.43 0.59 0.97 0.44 0.60 0.78 0.74 0.76 414
FAC 0.90 0.68 0.78 0.92 0.67 0.78 0.77 0.79 0.78 281
INS 0.77 0.20 0.32 0.77 0.16 0.27 0.54 0.43 0.48 165
MBW 0.92 0.56 0.69 0.93 0.56 0.70 0.81 0.71 0.76 147
STM 0.84 0.66 0.74 0.78 0.72 0.75 0.60 0.83 0.70 210

Macro Avg 0.91 0.47 0.65 0.92 0.46 0.64 0.77 0.70 0.72

Table 5.14: Comparison of performance metrics between Jenia-9, Jenia-10, and Jenia-
M3.1 models against Jenia Test Data
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Best Model for Precision

Table 5.15 identifies Jenia-10 as the model with the highest precision across most cat-
egories, outperforming both Jenia-9 and Jenia-M3. Jenia-10 achieves a macro average
precision of 0.92, which is negligably better than Jenia-9 (0.91) and Jenia-M3 (0.91).
This indicates that Jenia-10 is slightly more accurate in its positive predictions, mini-
mizing the occurrence of false positives. However, it should be noted that it is possible
for these models that they are at their higher limits of precision already.

Category
Jenia-9 Jenia-10 Jenia-M3

Support
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

ADM 0.99 0.40 0.57 0.97 0.47 0.63 0.98 0.40 0.57 891
ATT 1.00 0.36 0.53 1.00 0.41 0.58 0.95 0.45 0.59 39
BER 0.80 0.44 0.56 0.97 0.27 0.43 0.93 0.12 0.21 110
ENR 0.95 0.59 0.73 0.97 0.52 0.68 0.97 0.53 0.69 165
ETN 0.94 0.43 0.59 0.97 0.44 0.60 0.94 0.39 0.55 414
FAC 0.90 0.68 0.78 0.92 0.67 0.78 0.92 0.70 0.80 281
INS 0.77 0.20 0.32 0.77 0.16 0.27 0.73 0.27 0.40 165
MBW 0.92 0.56 0.69 0.93 0.56 0.70 0.85 0.67 0.75 147
STM 0.84 0.66 0.74 0.78 0.72 0.75 0.88 0.28 0.43 210

Macro Avg 0.91 0.47 0.65 0.92 0.46 0.64 0.91 0.49 0.60

Table 5.15: Comparison of performance metrics between Jenia-9, Jenia-10, and Jenia-
M3 models against Jenia Test Data

This result is also an indication that the augmented model via re-initialization
(Jenia-M3) could not outperform its initial model (Jenia-10).

Most Balanced Improved Performance

The model Jenia-M3.2 provides a more balanced performance as having relatively
greater recall compared to Jenia-10 and M3, and relatively higher precision than Jenia-
M3.1 (Table 5.16). This model can be a moderate alternative if the precision drop of
M3.1 is found too costly.

Category
Jenia-9 Jenia-10 Jenia-M3.2

Support
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

ADM 0.99 0.40 0.57 0.97 0.47 0.63 0.96 0.52 0.67 1063
ATT 1.00 0.36 0.53 1.00 0.41 0.58 1.00 0.49 0.66 82
BER 0.80 0.44 0.56 0.97 0.27 0.43 0.81 0.43 0.56 331
ENR 0.95 0.59 0.73 0.97 0.52 0.68 0.96 0.58 0.72 413
ETN 0.94 0.43 0.59 0.97 0.44 0.60 0.89 0.57 0.69 1063
FAC 0.90 0.68 0.78 0.92 0.67 0.78 0.89 0.72 0.80 362
INS 0.77 0.20 0.32 0.77 0.16 0.27 0.75 0.25 0.38 186
MBW 0.92 0.56 0.69 0.93 0.56 0.70 0.88 0.65 0.75 341
STM 0.84 0.66 0.74 0.78 0.72 0.75 0.71 0.77 0.74 348

Macro Avg 0.91 0.47 0.65 0.92 0.46 0.64 0.88 0.60 0.69

Table 5.16: Comparison of performance metrics between Jenia-9, Jenia-10, and Jenia-
M3 models against Jenia Test Data



Chapter 6

Conclusion, Discussion, and
Future Work

In this chapter, I provide a general analysis of the output of this thesis, including error
analysis and an interpretation of the overall outcomes of the research. In the following
sections, I interpret the outcomes of this research by summarizing the results in their
presented order in the thesis (Section 6.1)). Subsequently, I conduct an Error Analysis
based on the classification performance of the moderate model Jenia-M3.2 over the
combined test set (Section 6.2). Following that, I provide a discussion based on the
observations made throughout the thesis, highlighting setbacks, unclear points, and
suggesting ways the thesis could have been improved (Section 6.3). Finally, I explore
potential expansions of the research presented in this thesis (Section 6.4).

6.1 General Analysis of the Results

In this thesis, my primary goal was to reduce the false positive (FP) and false negative
(FN) behavior of the models.

Initially, I addressed two data quality issues within the dataset: misannotations
identified as false-false positives in Schramm’s (2023) research and misannotations of
INS data discovered in Galjaard’s study (2022). Correcting these issues increased pre-
cision in the evaluations and reduced FPs, providing a more accurate picture of the
models’ true performance.

Next, I aimed to address the balance of both the test data and the models. For
the test data, I combined the legacy Jenia Test split with full datasets from previous
domain adaptation research (Galjaard, 2022; Badloe, 2022). This augmented test data
provided a more comprehensive evaluation opportunity, as it was thematically divided
into three parts, demonstrating that test data can be effectively augmented if needed.
It also provided a more balanced category distribution overall.

To balance the models, I employed targeted data augmentation via Active Learning.
This methodology showed promising results in addressing model balance and reducing
FP and FN behavior overall. I experimented with two approaches to incrementally
develop the models. The first approach involved directly fine-tuning the base pre-
trained model with a combination of old training data and data retrieved through all
AL cycle iterations. This re-initialization approach resulted in the Jenia-M3 model.

In the second approach, I used two ways to incrementally fine-tune the models
by continuously updating model weights. For Jenia-M3.1, I fine-tuned a previously
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fine-tuned model (Jenia-10) with the newly retrieved data only once. This method
significantly improved recall by 20% but sacrificed around 15% precision. I named
this model Jenia-M3.1 - High Recall model. In the final method, I continuously fine-
tuned the previously fine-tuned model on each iteration, incrementally updating over
the previous iteration. This resulted in the Jenia-M3.2 model, which offered a more
moderate trade-off, sacrificing only 3% precision for a 10% gain in recall. I included
this model in my thesis to provide a balanced option for medical data classification.

High recall is often desirable in medical NLP text classification tasks to capture as
many true positives as possible and minimize missed instances. However, a significant
drop in precision can lead to unsatisfactory results, as the model would be less reliable
for the instances it classifies, despite capturing more instances overall.

This work provides more options for the future development of the A-PROOF
project in their use of medical text classifiers, offering a range of models that balance
recall and precision based on specific needs.

6.2 Error Analysis

The error analysis is based on predictions over the combined test set with the moderate
model Jenia-M-3.2. I wanted to use the moderate model instead of high recall or high
precision model because it gives a more balanced error profile between false negatives
and false positives. The high precision model produce less false positive, yet more false
negatives. Similarly, high recall model makes significantly less false negative predictions
but this comes with a price of higher false positive predictions.

6.2.1 False Positives

In this section I showcase representative instances that the model predicted a wrong
class. I aim to focus on intra-category confusions when available which I think would
provide some insights about disambiguation of these categories.

False positives in model predictions can often indicate overfitting to noise within
the data. As shown in Table 6.1, the model incorrectly classified several instances
across different datasets, suggesting a tendency to misinterpret irrelevant or mislead-
ing features as meaningful. For example, the sentence ”85 O2 li 3 6 DEMMI:” from
the Jenia Test set was wrongly predicted as ADM, even though its gold value was
NONE. The surface pattern which includes some abbreviations related to breathing
is likely to be found in breathing specifying instances. Similarly, the simple mention
of ”Eten/drinken:” was classified as ETN instead of NONE. These type of phrases are
probably function as title before the eating/drinking specifying phrase appear. And also
I observe that the model is too sensitive towards certain keywords like ’eten’(eating),
’lopen’(walking), ’werkt’(works) where their presence directs the model towards cat-
egories like ETN(Eating), FAC(Walking), or BER(Working) while these words might
have multiple linguistic functions in different context. These misclassifications high-
light how the model can sometimes latch onto superficial patterns or noise, leading
to incorrect predictions. This overfitting to noise reduces the model’s reliability and
underscores the need for further refinement in distinguishing between true signal and
irrelevant data.
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Sentence Source Dataset Prediction Gold Value

85 O2 li 3 6 DEMMI:
Jenia Test

ADM NONE

Eten/drinken:
Jenia Test

ETN NONE
Eating/drinking

is energie
Primary Care

ENR NONE
is energy

eetlust eetlust
Oncology

ETN NONE
appetite appetite

Table 6.1: False Positives showing bias towards noise in the data

As it can also be seen in the confusion matrices in the experiments, semantically
close categories which are somewhat related to each other in a context are confused
a lot by the models. (e.g. ETN(eating) - MBW(weight maintenance), ENR(energy)-
INS(exercise tolerance)) When I inspect the false positive misclassifications 6.2, I could
again observe surface forms confusing the model. For example, it is likely that the
’reduced nutritional state’ confused the model so that it wanted to classify MBW too
due to shared vocabulary between MBW and ETN. In the second example in that table,
the model misses the implied meaning and focuses on surface form again by focusing
on used vocabulary mentions.

Sentence Source Dataset Prediction Gold Value

mevrouw heeft een verminderde
voedingstoestand, ziekte gerelateerde
ondervoeding zonder inflammatie

Jenia Test
ETN, MBW ETN

The lady has a reduced nutritional state,
disease-related malnutrition without
inflammation.

iets doen (bv. stofzuigen) maar dit kost erg
veel energie. Alles Primary Care

ENR INS

doing something (e.g., vacuuming) but this
takes a lot of energy. Everything

Table 6.2: False Positives showing confusion between semantically close categories

6.2.2 False Negatives

This section showcase instances that the model predicted as ’None’ while in fact they
were supposed to belong a category.

Sentence Source Dataset Prediction Gold Value

Vermoeid Gevoel
Ellemijn

NONE ENR
Tired Feeling (Primary Care)

Table 6.3: STM False-False Positives from Combined Test Data, Model: Jenia-M3.2
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Category
Text Length Confidence

Max Min Median Average Max Min Median Average

ADM 679.0 2.0 71.0 82.21 0.171119 0.075458 0.118042 0.119485
ATT 285.0 15.0 67.5 85.87 0.173728 0.082028 0.089571 0.097844
BER 452.0 6.0 86.5 103.54 0.184641 0.079614 0.113469 0.121083
ENR 841.0 3.0 74.0 100.56 0.179884 0.084979 0.099287 0.109916
ETN 1805.0 1.0 64.0 99.69 0.195359 0.085369 0.130754 0.132064
FAC 475.0 1.0 57.0 95.71 0.204143 0.085363 0.110774 0.119395
INS 717.0 4.0 79.0 106.08 0.189112 0.080075 0.106352 0.117285
MBW 1051.0 3.0 74.0 111.89 0.190013 0.081700 0.107881 0.117553
STM 739.0 4.0 64.0 96.96 0.183896 0.073680 0.103681 0.116268

Table 6.4: Text length (character) statistics and confidence values for false negative
instances per category.

Table 6.4 shows text length and confidence statistics for false negative classifica-
tions. While it provides limited insights, the median and average statistics can reveal
some aspects of the model’s behavior. For example, the relatively high average and
median text length statistics for BER, ENR, and MBW suggest that the model has
more difficulty classifying these categories in longer sentences. Additionally, the min-
imum character length for each category indicates that these instances might need
re-validation, as it would be challenging to convey any category implication with such
short texts.

Regarding the confidence statistics, ETN and BER stand out with their high average
confidence in false negative classifications. This suggests that these categories might
be more ambiguous compared to those with lower averages, as they tend to have more
instances grouped at the lower end with a few high outliers.

6.2.3 New False-False Positives

When I analyze the false positives I suspected some instances should not actually be
false positives. I applied False-false positive fixes in (Section 4.1) from an evaluation
that I earlier made with the Jenia-10 model on Jenia Test split. However, here I
discovered some new instances in this evaluation in the both Jenia Test split, and other
datasets of Oncology and Primary Care.

These instances given in the Table 6.5, are singular examples from each dataset
from a couple of categories. The medical experts in the A-PROOF team confirmed
the presence of a noticeable amount of incorrect false positive predictions throughout
the dataset where real gold value should be updated. These findings suggest that the
datasets still include notable amount of misannotations where it results with skewed
evaluations.
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Sentence Source Dataset Prediction Gold Value

Bleef onrustig, toen lorazepam ging
werken werd mw rustiger end de band af
gedaan

Jenia Test
STM NONE

Remained restless, when lorazepam
started to work, Mrs. became calmer and
the band was taken off

(COVID-19) (Emotion)

Maakt zich zorgen dat het niet goed is in
het operatie gebied. Oncology

STM NONE

Worried that things are not well in the
surgical area.

(Emotion)

geweest en schrok hiervan. Houdt
Primary Care

STM NONE
and was shocked by this. holds (Emotion)

Kortademig
Primary Care

ADM NONE
Short of breath (Breathing)

aanwezig, concentratie verminderd, lezen
over tekst heen Bedrijfsarts geeft aan om
dan te stoppen. 40

Primary Care
ATT NONE

present, concentration reduced, reading
over text Occupational physician suggests
stopping then. 40

(Attention)

Gewicht 70 kg, stabiel
Oncology

MBW NONE
Weight 70 kg, stable (Weight Maint.)

Eet normaal.
Oncology

ETN NONE
Eats normal. (Eating)

Table 6.5: STM False-False Positives from Combined Test Data, Model: Jenia-M3.2

6.2.4 Contradictory Predictions - Both Positive and Negative

Logically negative and positive classes should be mutually exclusive. In the sense that
no instance can be both none and some other positive category. However, I decided to
treat ’none’ as just another category alongside the other nine positive ICF categories.
The performance of the ’none’ category is not 100%, although it is higher than 95%.
This decision inevitably leads to some interesting cases of confusion, where certain
instances are predicted as both ’none’ and another category. The amount is negligible
but it is still worth mentioning.

6.3 Discussion

One key point from my findings is the difference between re-initialization and continu-
ous updating in fine-tuning models. While I am not entirely sure what exactly changes
during fine-tuning, the difference between these two approaches is understudied (Lem-
mens and Daelemans, 2023). The re-initialization approach boosted recall but dropped
precision significantly. In contrast, continuous updating resulted in a more balanced
model. This empirical observation suggests that different fine-tuning compositions can
manipulate various performance aspects of the models.

Another important aspect is the trade-off between recall and precision. High recall
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is crucial in medical NLP tasks to capture as many true positives as possible. However,
this often comes at the cost of precision, leading to more false positives. The challenge
is to find a balance that suits the specific needs of the application.

Moreover, I noticed that data augmentation via Active Learning can significantly
impact model performance. By carefully selecting informative samples, we can improve
model accuracy and robustness. However, this process requires continuous monitoring
and validation to ensure that the augmented data truly enhances the model.

At some point, I used a particular query strategy, Cosine Similarity based Redun-
dancy Reduction, but then I dropped it as it turned out not beneficial. This incon-
sistency in methodology is not ideal for objectively assessing its impact. Ideally, the
methodology should be consistent throughout the research. However, applying this
would have required additional batches of annotations, which was constrained by time
and availability of experts.

Additionally, I included some unintended instances came out of annotations, which
were not low-confidence queried instances, into the training batches. Ideally new data
consist of only low certainty validated instances. However, I thought they were just ex-
tra gold data and would not do harm. They should better be excluded if the experiment
could be done with more iterations.

Another consideration is that I used the same data source (VUMC - 2023 Medical
Notes) as my unlabeled data pool. It might be beneficial to diversify the source of
the unlabeled data pool when possible. This could potentially improve the model’s
generalizability and robustness.

Overall, these observations highlight the complexities and challenges in fine-tuning
and augmenting models for medical NLP tasks. By addressing these points in future
work, the methodology can be further refined to produce more reliable and effective
models.

6.4 Future Work

Building on the improvements made in this thesis, there are several ways to further
enhance the A-PROOF ICF Classifiers Framework.

Further Data Retrieval and Annotation Fixes

The methodology used in this research can be extended to retrieve more data, aiming
for a more balanced larger test set. This will ensure that the models are evaluated
on a dataset that accurately represents all categories, thus providing a more reliable
assessment of their performance.

Both the test data and training data can be augmented with data from different
domains to evaluate how these models perform in varied contexts. This will help in
understanding the robustness and generalizability of the models.

Experimentation with Query Strategies

Although this was beyond the scope of my background and methodology, I believe Dis-
criminative Active Learning(DAL) should be explored for obtaining more informative
samples from the unlabeled data pool (Section 2.4). DAL focuses on training a model to
differentiate between labeled and unlabeled data instance types. This binary strategy
aims to identify examples that are different from the labeled data, thereby uncovering



6.4. FUTURE WORK 61

new and unexplored data points to improve the model. The work of Gissin and Shalev-
Shwartz (2019) 1 can be a useful starting point to discover the potential of this method.

For redundancy elimination, it is worthwhile to try CLS embedding-based tech-
niques, as mentioned in the research by Jacobs et al. (2021). Using the sentence em-
bedding values (CLS) created by the model instead of word embeddings could bring
better redundancy reduction performance. These techniques can be combined with
various other clustering algorithms such as TF-IDF or K-means to enhance their effec-
tiveness.

Revisiting Sentence Segmentation

The sentence segmentation of the Primary Care dataset can be re-evaluated (Galjaard,
2022). It may be beneficial to segment the data again with specific constraints im-
plemented via a SpaCy pipeline. This could improve data quality by ensuring that
sentences are segmented more accurately, leading to better model performance.

Large Scale Bootstrapping

Bootstrapping can be experimented with on a larger scale in combination with AL
augmented models. From an initial pool of 750k sentences, approximately 15k positive
high-confidence instances were retrieved. It would be worthwhile to scale this approach,
perhaps increasing the dataset size by tenfold. Although there is a risk of overfitting,
it might enhance the quality and quantity of training data, leading to better model
performance.

By exploring these future work directions, the A-PROOF ICF Classifiers Framework
can be further refined, resulting in models that are more accurate, robust, and capable
of performing well across different domains and conditions. These advancements will
contribute to the development of more reliable and efficient medical NLP applications.

In conclusion, this thesis has contributed to improved understanding of medical text
classification, through the development and evaluation of improved models and method-
ologies. By addressing the challenges of data imbalance and enhancing annotation ac-
curacy, this work contributes to more robust and reliable applications of NLP in the
medical domain. Future research can build on these findings to further refine models
and explore their integration into clinical practice, ultimately contributing to better
patient care and outcomes.

1https://dsgissin.github.io/DiscriminativeActiveLearning/2018/07/05/DAL.html
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Appendix A

Appendix

Table A.1: Train Data Pattern Distribution with Counts and Percentages, Total Pat-
tern Amount 65

pattern Count Percentage

O 223198 93.33
ADM 4762 1.99
STM 3262 1.36
FAC 2305 0.96
ETN 2249 0.94
ENR 781 0.33
INS 686 0.29
MBW 610 0.26
BER 445 0.19
ATT 205 0.09
ETN, MBW 99 0.04
FAC, INS 95 0.04
ADM, ENR 75 0.03
ENR, INS 38 0.02
ADM, FAC 34 0.01
ADM, ETN 31 0.01
FAC, STM 25 0.01
ADM, STM 23 0.01
ADM, INS 22 0.01
ENR, STM 19 0.01
ADM, MBW 13 0.01
ATT, STM 13 0.01
ENR, STM 13 0.01
BER, STM 12 0.01
... ... ...
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Figure A.1: Pairwise cosine similarity between words from Batch-1
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