
Master Thesis

Automated Verb Order Error Detection
for Learners of Dutch as a Second

Language

Noah-Manuel Michael

a thesis submitted in partial fulfilment of the
requirements for the degree of

MA Linguistics
(Text Mining)

Vrije Universiteit Amsterdam

Computational Lexicology and Terminology Lab
Department of Language and Communication

Faculty of Humanities

Supervised by: Dr. Lisa Beinborn, Dr. Camille Welie
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Abstract

Correct verb placement in Dutch can be difficult to acquire for second-language learn-
ers because it depends on a variety of factors such as the (non-)finiteness of the verb
or the clause type it appears in. This leads to verb order being a common source of
errors. Within the natural language processing community, automated grammatical
error correction is a task that has received continuous attention. Yet, word order errors
are severely underrepresented in all benchmark datasets. This leaves the potential per-
formance of natural language processing models at detecting word and verb order errors
essentially unexplored. In the case of transformer-based models, which have become
the current de facto standard for solving a variety of natural language processing tasks,
their ability to reliably solve tasks that require syntactic understanding remains an
open research question. In this thesis, I test how different natural language processing
model architectures can be used for the detection of word order errors. By comparing
the performance of a classifier that has access to syntactic information to the perfor-
mance of a classifier that does not, I can show that syntactic information plays a vital
role in the detection of word order errors. Transformer-based classifiers unanimously
exhibit almost perfect performance scores in the detection of generic word and generic
verb order errors, trained and tested on synthetic datasets. However, depending on the
model architecture and the method of pseudo data generation, their general capability
in detecting erroneous word order translates differently to the detection of learner-
informed verb order errors, i.e., verb order errors that learners are likely to make. The
best model is a Gpt-2-based classifier trained on a pseudo dataset consisting of both
correct Dutch sentences and random permutations of the same sentences. Despite be-
ing trained on randomly permuted data, the model appears to have learned to identify
learner-informed verb order errors while its performance at detecting generic verb order
errors is significantly lower.

Keywords: automated grammatical error correction – detection of word and verb
order errors – Dutch – transformer models – pseudo data generation
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Ich möchte mich auch bei meinen Freunden zu Hause bedanken, die mir trotz Peri-
oden längerer Abwesenheit nie fremd geworden sind.

And I want to thank all the friends I have made along the way who have made the
journey of studying truly an adventure. I am excited to see what is to come next.

I want to thank the CLTL department and its staff for the high-quality education
we were allowed to experience. I feel that the program allowed me to learn a lot and I
feel well-prepared for what is ahead of me.

I would like to thank Dr. Camille Welie, my co-supervisor, for his input about word
order in Dutch and the idea of the project.

And finally, I would like to thank my supervisor, Dr. Lisa Beinborn, for her con-
tinuous support throughout the process of writing this thesis. Her valuable input has
enabled me to choose a focus for this work that I am really interested in. She played a
vital role in the success of this project.

A special thanks to Jeremias Graf and Irma Tuinenga for thoroughly proofreading
this thesis in its final form and their suggestions for stylistic improvements.

In Gedenken an die kleine Amy ...

iii



Contents

Abstract i

Declaration of Authorship ii

Acknowledgements iii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Related Work 5
2.1 Word Order Transfer Errors . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Automated Grammatical Error Correction . . . . . . . . . . . . . . . . . 6
2.3 Pseudo Data for Grammatical Error Correction . . . . . . . . . . . . . . 7
2.4 Part-of-Speech Taggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Syntactic Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Transformer Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.2 Word Order Information in Transformer-Based Models . . . . . . 11

3 Detection of Generic Word and Verb Order Errors 15
3.1 Generation of Pseudo Data: Datasets Rand and Verbs . . . . . . . . . 15

3.1.1 Shuffle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Seed Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Standard Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Part-of-Speech Tagger . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Syntactic Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Transformer Models . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Experimental Configurations . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Parse Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 PoS Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Parse Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Transformer Classifier . . . . . . . . . . . . . . . . . . . . . 30

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.1 Parse Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



3.6.2 PoS Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.3 Parse Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.4 Transformer Classifier . . . . . . . . . . . . . . . . . . . . . 36

4 Detection of Learner-Informed Verb Order Errors 39
4.1 Generation of Learner-Informed Pseudo Data: Dataset Info . . . . . . . 39

4.1.1 Dutch Verb Order . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Generating Target Hypotheses . . . . . . . . . . . . . . . . . . . 43
4.1.3 Analyzing Verb Order Errors . . . . . . . . . . . . . . . . . . . . 44
4.1.4 Leuven corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.5 Identified Error Tendencies . . . . . . . . . . . . . . . . . . . . . 48
4.1.6 Curation of Evaluation Dataset Info . . . . . . . . . . . . . . . . 51

4.2 Evaluation Metric: F0.5 Score . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Parse Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 PoS and Parse Classifier . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Transformer Classifier . . . . . . . . . . . . . . . . . . . . . 57
4.4.4 Opportunities for Future Research . . . . . . . . . . . . . . . . . 59

5 Outlook: Generative Artificial Intelligence Models as Virtual Teach-
ers 61

6 Conclusion 63

A Abbreviations and Symbols 65

B Illustration Verbs Shuffles 66

C Categories for Phrasal Analysis 67

D Results Overview 68

E Data Statements 72
E.1 KU Leuven - Instituut voor Levende Talen - Leerdercorpus . . . . . . . 72
E.2 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

F Annotation Prompt 74

G Generative AI Statement 75

H Licenses 76
H.1 Lassy License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
H.2 Wai-Not License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



List of Figures

3.1 Distribution of sentence length in the Leuven corpus . . . . . . . . . . 22
3.2 Tree a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Tree b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Tree a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Tree c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Tree a simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Tree c simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 spaCy-tup tuple format . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 Dop-tup-orig tuple format . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10 Dop-tup-simple tuple format . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Distribution of first languages in selected learner sentences . . . . . . . . 47
4.2 Distribution of CEFR levels in selected learner sentences . . . . . . . . . 47
4.3 Distribution of errors per verb / complement type . . . . . . . . . . . . 48
4.4 Distribution of finite verb error types . . . . . . . . . . . . . . . . . . . . 48
4.5 Distribution of incorrect positions of finite verb in main and subordinate

clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Recreation of a clause-final before nfv error in main clause . . . . . . . 53
4.7 Recreation of a clause-internal after subject error in subordinate clause 53
4.8 F1 scores per model and test dataset . . . . . . . . . . . . . . . . . . . . 55

5.1 Distribution of accepted and challenged initial target hypotheses . . . . 61

vi



List of Tables

2.1 Share of word order errors in shared tasks on grammatical error correction 6

3.1 Seed corpora for pseudo datasets . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Train/Test data split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Effects of tree simplification . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Parse Lookup models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 PoS Classifier model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Parse Classifier models . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Transformer Classifier models . . . . . . . . . . . . . . . . . . . . . 31
3.8 Average F 1 score of all models on Test Rand and Test Verbs . . . . . 31
3.9 Confusion matrix Dop-tree-orig on Test Rand . . . . . . . . . . . . . 33
3.10 Confusion matrix Dop-tree-orig on Test Verbs . . . . . . . . . . . . 33
3.11 Confusion matrix Dop-tree-simple on Test Rand . . . . . . . . . . . 33
3.12 Confusion matrix Dop-tree-simple on Test Verbs . . . . . . . . . . . 33
3.13 Confusion matrix spaCy-tup Train Rand on Test Verbs . . . . . . . . 34
3.14 Confusion matrix spaCy-tup Train Verbs on Test Verbs . . . . . . . 34
3.15 Confusion matrix Dop-tup-orig Train Rand on Test Rand . . . . . . 35
3.16 Confusion matrix Dop-tup-simple Train Rand on Test Rand . . . . . 35
3.17 Best confusion matrix RobBERT Train Rand on Test Rand . . . . . . 36
3.18 Best confusion matrix RobBERT Train Verbs on Test Verbs . . . . . 36
3.19 Illustration of mislabeled Verbs permutations . . . . . . . . . . . . . . 38

4.1 Default positions per clause and verb/complement type . . . . . . . . . 43
4.2 Clause type error distribution in Info . . . . . . . . . . . . . . . . . . . 51
4.3 Distribution of error position types in main and subordinate clauses in

Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Average F 0.5 score of all models on Test Info and Recall score of all

models on Test Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Best predictions of Gpt-2 Rand per incorrect position in Info . . . . . 58

C.1 Symbols used for analysis of clause structure . . . . . . . . . . . . . . . 67

D.1 Combined Results of all Experiments . . . . . . . . . . . . . . . . . . . . 68

vii



Chapter 1

Introduction

Ik wil geen boeken kopen.
I want no books buy.

If English followed the syntax of Dutch, a simple sentence such as “I don’t want to
buy books.” would already look considerably different from its current form. A key
factor in this is the different positions verbs can occupy in a Dutch sentence. Verbs in
Dutch can typically either appear in the second or in the final position in the clause,
depending on conditions such as the type of the clause they occur in or whether they are
(non-)finite. In the example above, both verb positions are filled. Due to the multitude
of factors that can influence the correct placement of verbs in Dutch, verb placement
is often challenging for second-language learners.

This can result in transfer errors, where learners of Dutch as a second language mis-
place verbs in the Dutch sentences they produce based on how they would place verbs in
their first language. Similarly to how the pseudo-English sentence in the example above
without context would be rather difficult to understand for an English-speaking person,
Dutch sentences with verb order errors can lead to challenging situations in communica-
tion with Dutch speakers. As verb order is an error-prone area within Dutch grammar
(Jordens, 1988; Verhagen, 2011), this offers the opportunity for examining how natural
language processing models can be leveraged to help learners of Dutch as a second
language detect the verb order errors they make in writing.

In the context of this task, I want to explore the performance of four classifica-
tion approaches based on different natural language processing model architectures: a
lookup approach based on the output of a syntactic parser, a classifier with access to
the output of a part-of-speech tagger, classifiers with access to the output of a syntac-
tic parser, and classifiers based on the output of transformer models. By comparing
the performance of classification approaches that have access to syntactic information
versus those that do not, I can determine whether syntactic information is a vital com-
ponent in the detection of word order errors. This leads me to the first research question
this thesis will focus on:

To what degree is syntactic information helpful for the detection of word
order errors?

This question is particularly interesting for the models based on the transformer ar-
chitecture because their (in)ability to reliably solve tasks that require syntactic under-
standing remains an open research question. Transformers model natural language by

1



1. INTRODUCTION 2

representing it in the form of embeddings. Embeddings are high-dimensional vector
representations of tokens, where tokens can be equivalent to words or smaller units
(subwords). These embeddings are trained on large amounts of data and manage to
capture contextual information about the tokens they represent. By mathematically
manipulating these embeddings depending on the desired output, transformer models
can be trained to perform a variety of different natural language processing tasks. The
uncertainty as to whether these models are able to effectively represent and access
syntactic information leads me to the second research question of this thesis:

Are transformer-based classifiers able to reliably detect word and verb
order errors?

One of the key challenges in investigating these questions, however, is the lack of data
annotated for word order errors. Within the natural language processing community,
the task of automated grammatical error correction is not unheard of. Yet, benchmark
datasets for the task often only contain a small fraction of word order errors, of which
verb order errors are a subset, if any at all. This leaves the targeted investigation of
how to efficiently and reliably detect word order errors essentially unexplored. Being
able to inform a learner about the presence of word order errors in their writing can,
however, be beneficial as it can raise awareness for these types of errors amongst the
learners. This would be especially useful for learners of Dutch, where the acquisition
of correct verb placement is particularly difficult.

Another aggravating factor is the general scarcity of genuine learner data. Thus,
creating an entirely new dataset for the detection of word and verb order errors is not
trivial either. To the best of my knowledge, at this point in time, genuine Dutch learner
data professionally annotated for word order errors does not exist. Therefore, I opt to
base the training of the classification approaches I am going to explore on synthetic
data, or pseudo data.1 I propose two different methods for the generation of pseudo
data based on correct Dutch sentences sourced from a variety of corpora: randomly
permuting the positions of all tokens within a sentence (equal to generic word order
errors) and randomly permuting the positions of only the verb tokens within a sentence
(equal to generic verb order errors). This creates an opportunity for me to explore
whether it is possible to train classifiers for the detection of generic word and verb
order errors on pseudo data exclusively, which leads me to the third research question
that this thesis is concerned with:

Can pseudo data successfully be leveraged to train classifiers for the
detection of generic word and verb order errors?

Once the general capability of the different classification approaches in detecting erro-
neous word order is established, I additionally test the performance of the proposed
models on a final synthetic evaluation dataset that approximates genuine learner data
by including only learner-informed verb order errors, i.e., common error types I extract
by means of structural analysis of genuine learner data. The genuine learner sentences
analyzed serve as an additional means of evaluation. This facilitates the fourth research
question this thesis aims to investigate:

Do the models’ performance scores at the detection of generic word and
verb order errors translate to the detection of learner-informed verb order

errors?
1Following Kiyono et al. (2019), I will henceforth use the terms synthetic data and pseudo data

interchangeably. Genuine data describes authentic learner data.



1. INTRODUCTION 3

Finally, the two different methods of pseudo data generation allow for investigating how
training on generic word order errors impacts model performance compared to training
on generic verb order errors. As this thesis focuses on the detection of verb order errors
for learners of Dutch, all of the errors introduced to the learner-informed evaluation
dataset are verb order errors. Intuitively, classifiers trained on generic verb order errors
should exhibit a higher performance on learner-informed verb order errors than classi-
fiers trained on generic word order errors, where all tokens can change their positions
randomly. This leads to the fifth and final research question this thesis concerns itself
with:

How does the method of pseudo data generation influence the performance
of the models?

Outline. In order to address these questions, in the following chapter, I want to lay
the theoretical foundations by briefly introducing the concept of word order transfer er-
rors, the task of automated grammatical error correction, and how pseudo data has suc-
cessfully been used in the training of grammatical error correction models. Additionally,
I introduce the basic architectures of the natural language processing model families I
explore in the context of the experiments I conduct, and I briefly summarize the cur-
rent state of knowledge concerning transformer models and their (in)ability to represent,
process, and access word order information for solving natural language processing tasks
(Section 2. Related Work).2

After introducing the necessary background information, I dedicate the first part of
this thesis to the detection of generic word and verb order errors. I formally define
the two proposed methods of pseudo data generation and introduce the seed corpora
that serve as a source for the correct Dutch sentences to be permuted. Subsequently, I
briefly introduce the evaluation metric according to which I judge the models’ general
capability in detecting erroneous word order before introducing the specific natural
language processing models and the classification approaches I build upon their basic
architecture. Once the experimental configurations have been established, I present
the results and reflect on the performance of each of the classification approaches
(Section 3. Detection of Generic Word and Verb Order Errors).

The second part of this thesis focuses on the detection of learner-informed verb
order errors. I begin by introducing the most common positions verbs can occupy in
Dutch sentences and link these positions to error types. I introduce the concept of
target hypotheses, i.e., hypotheses about what the learner intended to express with a
given sentence as they are important for the analysis of learner data. I then proceed to
explain how I perform a structural analysis of a selection of genuine learner sentences
taken from the Leuven corpus of genuine learner data. I present the error tendencies
that result from the analysis and go on to explain how I create a learner-informed
evaluation dataset that tries to approximate genuine learner data as closely as possible.
Before presenting and discussing the results the established classification approaches
are able to achieve on the learner-informed evaluation dataset and the selected learner
sentences, I introduce an additional evaluation metric that attributes more importance
to the precision of the classifier. This is important for in a real-life application scenario,
high precision is crucial in order to not discourage learners. Lastly, I briefly summarize
the limitations of this work (Section 4. Detection of Learner-Informed Verb Order

2I use the terms word order information and syntactic information interchangeably.



1. INTRODUCTION 4

Errors).
With generative artificial intelligence models recently gaining more and more pub-

lic recognition, before concluding this thesis, I briefly illustrate their potential as readily
available end-to-end solutions for automated grammatical error correction
(Section 5. Outlook: Generative Artificial Intelligence Models as Virtual Teachers).

Finally, I conclude this thesis by summarizing and contextualizing its main findings
(Section 6. Conclusion).



Chapter 2

Related Work

I begin this chapter by introducing the concept of word order transfer errors, which are
errors that result from transferring syntactic patterns of one of the languages a learner
of a certain language already speaks into the language they are currently learning, i.e.,
their target language. An ungrammatical sentence such as the opening sentence of this
thesis can often be their result. I then introduce the natural language processing task
of automated grammatical error correction, which is typically evaluated on benchmark
datasets that treat grammatical error correction as a holistic task, focusing on the cor-
rection of all or at least a variety of potential errors a learner could make. This has
resulted in word order errors being severely underrepresented in those datasets. Verb
order in particular has not yet been targeted explicitly, although isolating it and provid-
ing feedback about it to the learner is valuable since verb order in Dutch is a common
source of errors. My thesis focuses on the detection of these word and verb order errors
as the first step in the correction and feedback generation pipeline. I also briefly explain
how synthetic data, or pseudo data, has been used successfully in grammatical error
correction as I create pseudo datasets to train and evaluate classifiers in the detection
of word and verb order errors. Additionally, I introduce the basic architectures of the
natural language processing models that I explore in my experiments: part-of-speech
taggers, syntactic parsers, and transformer models. Finally, I provide a brief overview
of why it is unclear whether transformer-based models have access to word order infor-
mation and make use of it for solving natural language processing tasks that require
such information to be solved.

2.1 Word Order Transfer Errors

Transfer errors in general are a very common phenomenon that can begin with learners
of second languages having an accent when speaking in their target language. A first
language-based accent is a neat example of a transfer error because the source of the
error is immediately apparent – the accent is typically associated with the learner’s first
language; parts of the phonology of the first language are carried over into the second
language speech.

With other types of transfer errors, the source of the error may not be as immedi-
ately apparent. One such case is word order errors, which can result from transferring
syntactic structures from one language into another.3 However, just like accents, de-

3Note that word order errors can also occur as a result of other phenomena unrelated to transfer.

5



2.2. AUTOMATED GRAMMATICAL ERROR CORRECTION 6

pending on their severity, word order errors can negatively impact the communication
experience, and being able to form syntactically correct sentences is a desirable skill to
master when trying to acquire a second language. Therefore, reliably detecting word
order errors, and in the case of Dutch, verb order errors in particular, is a natural
language processing task worth exploring.

There are a number of publications concerned with word order acquisition in general
and in Dutch specifically. Jordens (1988) discusses the acquisition of word order in
Dutch and German as first languages versus as second languages. He groups both
languages together as their verb order is rather similar: Both languages exhibit both
SOV and V2 syntax patterns,4 illustrating the fact that verb order in Dutch seems to
be difficult to master. Schepens (2015) finds that the linguistic distance of a learner’s
first language can have an impact on the learnability of Dutch. Finally, Erdocia and
Laka (2018, p. 8) find that the first language can influence the processing of word order
in the second language: “We observed that when L1 and L2 differ, their cues compete,
resulting in a negative transfer from L1.”5 Knowing that word and verb order can be
sources of grammatical errors, I will now introduce what has already been done in the
domain of automated grammatical error correction.

2.2 Automated Grammatical Error Correction

Automated grammatical error correction is a natural language processing task that has
been researched for more than two decades now. Automated word order error detection
and automated word order error correction, on the other hand, are subtasks that until
today have received much less attention. According to Grundkiewicz et al. (2020), who
provide an informative tutorial on automated grammatical error correction, interest
in the task became widespread with the advent of a number of shared tasks in recent
years, as illustrated in Table 2.1:

Table 2.1: Share of word order errors in shared tasks on grammatical error correction

Shared Task Reference % WOE

HOO Dale and Kilgarriff (2011) < 7.5%
CoNLL Ng et al. (2013) 0.0%
CoNLL Ng et al. (2014) 2.4%
BEA Bryant et al. (2019) 1.6%

WOE – Word order errors

Yet, as the table also illustrates, word order errors only made up a subset of a category
of errors labeled Other in the HOO shared task,6 which itself only made up about 7.5%
of all the errors in the data used in the shared task. Moreover, the CoNLL-2013 shared
task does not concern itself with word order errors at all,7 and in the CoNLL-2014

4SOV: Subject-Object-Verb. V2: Verb-second. V2 languages require verbs to occupy the second
position in a clause or sentence under certain conditions.

5L1: First language. L2: Second language.
6HOO: Helping Our Own.
7CoNLL: Conference on Computational Natural Language Learning.



2.3. PSEUDO DATA FOR GRAMMATICAL ERROR CORRECTION 7

shared task, their share within the whole dataset amounts to a mere 2.4%. This is
aggravated by the fact that by definition, word order errors must be a span correction
problem as opposed to the vast majority of single token correction problems within the
shared tasks. The term span correction problem refers to errors that stretch over more
than a single token. In a phrase such as *de man die ken goed ik ‘the man that I know
well’, there is no single token that could be identified as erroneous – the error stretches
over the span *ken goed ik, which should be ik goed ken ‘I know well’. None of the
tokens in the incorrect version are in their correct relative position to the other tokens.
By contrast, in a phrase such as *de man die ik goed kent, the erroneous token is kent
‘knows’ (3sg),8 which should be ken ‘know’ (1sg).

With its negligible impact on the overall scoring of the participating systems and its
difficulty for being a span correction problem, this situation has resulted in an almost
complete disregard of word order errors by the participating teams. Out of the 13
participating systems in the 2014 shared task, only four managed to achieve any recall
at all on the underrepresented word order errors. Furthermore, the above-mentioned
shared tasks were organized before the popularization of deep neural networks, with
transformer models being a subtype. Due to their promising performances, they have
become the current de facto standard for solving a variety of complex natural language
processing tasks. Thus, the shared tasks’ solutions most likely have lost their state-of-
the-art status by now. Even with the most recent shared task on grammatical error
correction, the BEA-2019 shared task,9 when transformer architectures had already
been available, word order errors only made up 1.6% of all errors in the dataset. This
essentially leaves the subtasks of automated word order error detection and automated
word order error correction as well as the currently popular language models’ potential
performances on them unexplored. This thesis will focus on the detection of word order
errors.

2.3 Pseudo Data for Grammatical Error Correction

Studies have shown that incorporating pseudo data into the training process of machine
learning models can significantly increase performance at the task of grammatical error
correction (Kiyono et al., 2019; Xu et al., 2019). This is important as there is no genuine
Dutch data available that is annotated for word and verb order errors. While Xu et al.
(2019) do incorporate transposition errors into their dataset, which make certain tokens
change their absolute position with one of their adjacent tokens, these errors can hardly
represent all of the different word order errors learners of a language are likely to make.
Kiyono et al. (2019) find that both the source corpus for the synthetic data and the
method of generating the data can influence model performance. Both teams test their
solutions primarily on the benchmark datasets introduced earlier (e.g., CoNLL-2014,
BEA-2019). However, even though Xu et al. (2019) include a certain type of word order
error during the training process, evaluating on these datasets suggests that word order
errors are underrepresented in the evaluation.

Both teams treat grammatical error correction as a holistic task, i.e., they do not
explicitly focus on isolating certain error types. In this thesis, I want to take a different
approach by isolating single capabilities a grammatical error correction model should

8When providing morphological information, I follow the categories and notation proposed in the
Leipzig Glossing Rules (Comrie et al., 2008).

9BEA: Building Educational Applications.
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possess (detecting erroneous word order and detecting erroneous verb order), which is a
parallel that my synthetic datasets share with challenge datasets (Ribeiro et al., 2020).
Creating pseudo datasets that differ only in the type of errors present within them
allows for isolating the behavior of the tested models under different conditions. I then
evaluate how well different classifiers based on different natural language processing
model architectures perform on these two tasks, which in the case of the transformer
models allows me to draw insights about whether transformer models can solve tasks
that require an understanding of word and verb order information to be solved.

When describing the properties of my datasets, I will mostly adhere to the ter-
minology used by Kiyono et al. (2019). After exploring the models’ performance at
the detection of generic word and generic verb order errors, I also generate a learner-
informed synthetic dataset that imitates error tendencies I extract from genuine learner
data. I will now introduce the basic model architectures I use in my experiments, i.e.,
part-of-speech taggers, syntactic parsers, and transformer models, and I will briefly
explain why there is uncertainty concerning the transformer models’ ability to solve
tasks that require an understanding of word order information.

2.4 Part-of-Speech Taggers

Automated part-of-speech tagging is a natural language processing task that tradition-
ally forms the basis of many other tasks that require linguistic analysis of the input, one
of which is syntactic parsing. Its objective is to assign each token of an input sequence
a corresponding part-of-speech tag (Jurafsky and Martin, 2021, pp. 163–164):

Tagging is a disambiguation task; words are ambiguous—have more than
one possible part-of-speech—and the goal is to find the correct tag for the
situation. For example, book can be a verb (book that flight) or a noun (hand
me that book). [...] The goal of POS-tagging is to resolve these ambiguities,
choosing the proper tag for the context.10

The resulting output can then serve as a basis for other linguistic analyses. Over
the years, part-of-speech tagging has developed from being performed manually to
being performed automatically by means of rule-based systems, statistical systems,
and finally neural network-based approaches (Chiche and Yitagesu, 2022). As part-
of-speech tagging is traditionally performed as an early step in the syntactic parsing
pipeline (Jurafsky and Martin, 2021), in my experiments I illustrate the difference in
performance of classification approaches based on the output of a mere part-of-speech
tagger and a syntactic parser. The following section introduces the general architecture
of syntactic parsers.

2.5 Syntactic Parsers

In automated grammatical error correction, syntactic parsers have been used to solve a
variety of tasks, among which the correction of spelling and agreement errors (Wagner
et al., 2007), determiner selection (Turner and Charniak, 2007; Rozovskaya and Roth,
2010), and the correction of verb forms (Lee and Seneff, 2008). However, to the best of
my knowledge, they have not yet been thoroughly explored in the context of word and

10POS: Part-of-speech.
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verb order error detection. Syntactic parsers are traditional natural language processing
architectures that are used to represent the syntax of an input sequence, usually in the
form of hierarchical tree structures. There are two main types of parsing for syntactic
analysis: constituency and dependency parsing (Zhang, 2020).

Constituency parsers organize the input they receive into different, labeled con-
stituents, i.e., groupings of words that are grammatically related in some way, often
by agreement, and usually fulfill a single function in a sentence. The noun phrase het
kleine meisje ‘the small girl’ in the sentence Het kleine meisje ging naar huis. “The
small girl went home.”, for example, serves as the subject of the sentence. Early con-
stituent parsers often make use of context-free grammars (Jurafsky and Martin, 2021,
p. 262):

A context-free grammar consists of a set of rules or productions, each of
which expresses the ways that symbols of the language can be grouped and
ordered together, and a lexicon of words and symbols.

Later models, according to Zhang (2020), often incorporate statistical information
in addition to a grammar’s production rules, and neural network-based constituency
parsers have redefined previous performance limits. The Disco-dop parser I will intro-
duce in the context of my experimental setup in Section 3.3.2 is a constituency parser
that, among others, uses a statistically enriched version of context-free grammar: prob-
abilistic context-free grammar, which allows for the calculation of the likelihood of a
parse of a sentence.

Dependency parsers, on the other hand, make use of dependency grammars (Zhang,
2020, pp. 1–2): Here, “[...] words are directly connected by dependency links, with la-
bels indicating their syntactic or semantic relations.” However, groupings of words (i.e.,
constituents or phrases) are typically not labeled, which makes it harder to summarize
and abstract these elements. As I am focusing on verb-related word order, simplifying
verb-unrelated constituents can potentially help machine learning systems focus on the
relative positions of verb tokens in relation to verb-unrelated constituents. This means
that dependency parsers are less suitable for the classification approaches I explore in
my experiments. However, I make use of the spaCy dependency parser for various
preprocessing tasks (Section 3.1.2) and when creating the learner-informed evaluation
dataset as will be explained in Section 4.1.6.

2.6 Transformer Models

Transformer models, as opposed to syntactic parsers, are large language models that
capture more than just syntactic information. They represent language, i.e., input
tokens, in the form of embeddings, or high-dimensional vector representations. By
mathematically modifying these vector representations based on learned parameters
during their pre-training and fine-tuning, they are able to model natural language. Due
to their high dimensionality, the behavior of transformer models is difficult to analyze,
and it is not in fact clear whether these models are able to reliably solve tasks that
need an understanding of word order information. Therefore, in the following sections,
I will briefly introduce the general transformer architecture as well as a number of
studies that investigate the representation and processing of word order information in
transformer models.
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2.6.1 Model Architecture

Transformer models are variants of deep artificial neural networks.11 Neural networks
are a machine learning architecture that is inspired by biological neural networks in that
vectorized inputs are mathematically modified when passed through layers of intercon-
nected “neurons”. A neural network can be described as deep when in its architecture,
multiple of these neural layers are stacked upon one another (Goodfellow et al., 2016).
Transformer models are special in that they typically make use of encoder and decoder
architectures, as well as the so-called attention mechanism.12 Vaswani et al. (2017, p.
3), who are the first to introduce the transformer architecture, describe attention as
follows:13

An attention function can be described as mapping a query and a set of
key-value pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function
of the query with the corresponding key.

Essentially, the decoder can obtain information about which parts of the input to focus
on when generating the output by computing a query. The query is used to compute
attention weights over the encoder’s outputs, which consist of a set of key-value pairs.
Each key in this set is compared with the query to calculate a compatibility score,
which measures the relevance of the respective part of the input to the current step of
the output generation. The model then pays most attention to the parts of the input
that exhibit the highest compatibility scores when generating the output for the current
step of the output generation, i.e., it assigns higher weights to the values of the input
components that are determined to be more relevant.

In this thesis, I will be exploring the performance of transformer models based on
the following architectures:

1. Bidirectional Encoder Representations from Transformers (BERT)

2. Robustly Optimized BERT Pretraining Approach (RoBERTa)

3. Generative Pre-trained Transformer 2 (GPT-2)

BERT is a transformer model that only makes use of the encoder architecture. During
its pre-training, where it is tasked to both fill masked tokens (masked language model-
ing) and predict whether, in a pair of sentences, the second sentence is likely to follow
the first sentence (next sentence prediction), it is trained on very large amounts of data
(Devlin et al., 2019). By constantly adjusting its parameters during the pre-training
process to generate more reliable predictions, the model is able to effectively model nat-
ural language.14 RoBERTa uses the same basic architecture as BERT but optimizes the

11I will henceforth refer to artificial neural networks as neural networks.
12An encoder maps an input sequence to a vector of fixed dimensionality (Sutskever et al., 2014).

The input vector is then modified as it is passed through the hidden layers of the neural network.
Finally, a decoder maps the output to the desired output sequence (Sutskever et al., 2014).

13Vaswani et al. (2017) introduce the transformer architecture. Attention mechanisms, however, had
already been commonly in use. The innovation in their approach lies in transformer models making
use of multi-head attention exclusively, i.e., the attention mechanism in the transformer architecture
is not combined with other architectures for generating the desired output sequence (Vaswani et al.,
2017).

14The original BERT model was trained on English data.



2.6. TRANSFORMER MODELS 11

pre-training process by, for example, training on additional data, increasing the amount
of training time, fine-tuning hyperparameters, and, most notably, dropping the next
sentence prediction pre-training task (Liu et al., 2019). RoBERTa is hence pre-trained
on the masked language modeling task only. Finally, GPT-2 differs from BERT in that
it only uses the decoder architecture, it is not bidirectional but processes sequences
from left to right, and its pre-training objective is next-word prediction (Radford et al.,
2019), which makes it especially well-suited for generative natural language processing
tasks.

In my experiments, I compare the performance of all of the models on the discrim-
inative task that is word order error detection. The models I use in my experiments
have been specifically adapted for Dutch, as I will explain in Section 3.3.3. Due to
the depth of transformer models, it is difficult to analyze and explain what types of
information the models learn to represent during their pre-training. Therefore, it is an
open research question whether transformer models are able to reliably solve tasks that
require an understanding of word order information. In the following section, I briefly
summarize the current state of research on the ways transformer models encode and
interpret sequences of words with a focus on positional, i.e., word order information.

2.6.2 Word Order Information in Transformer-Based Models

With the basic architecture and mechanisms of transformer-based models explained, I
now want to draw attention to how transformer models process word order. Most of
the studies that try to investigate this question do so by testing the models’ behavior
and the impact ablation studies have on it.

O’Connor and Andreas (2021) investigate the impact augmenting word order has
on usable information in long-range contexts,15 i.e., in parts of the input sequence that
are relatively far away from the target. They find that shuffling sentences within these
long-range contexts while preserving the internal word order of the sentences only has
a very moderate effect on the usable information. Likewise, shuffling trigrams within
sentences while preserving the order of the sentences, and shuffling word order within
trigrams while preserving the order of the trigrams show a similarly low impact on
the usable information. Randomly shuffling the word order within the whole long-
range context, however, causes a more significant drop in performance. Thus, they
conclude that usable information in long-range contexts is mostly contained in content
words and local ordering statistics. Nonetheless, even transformations of the type
man bites dog → dog bites man that have significant implications for an utterance’s
semantic content hardly influence the model’s performance if they occur in long-range
contexts. Therefore, while word order does have an impact on model performance in
contexts close to the target, they find this impact to be significantly smaller in long-
range contexts, as long as local ordering is generally preserved: “[P]rediction accuracy
depends on information about local co-occurrence, but not fine-grained word order or
global position” (O’Connor and Andreas, 2021, p. 855).

15Usable information refers to information that a language model can use in order to make more
accurate predictions. O’Connor and Andreas (2021) explain that it is well established that long-range
contexts provide additional helpful information to language models. They train a model that has
access to long-range contexts, a model that does not, and several models that have access to long-
range contexts that have been augmented in some way. By measuring the differences in additional
model accuracy (unaugmented vs. augmented contexts) in comparison to the model that does not have
access to the long-range contexts, they can measure the impact of the augmentations on the usable
information. The model they use is based on the GPT-2 architecture.
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Sinha et al. (2021b) take this even further and investigate how word order permutations
influence the performance of a variety of models (including transformer models such as
BERT and RoBERTa, and non-transformer architectures such as a bidirectional long
short-term memory neural network) at the task of natural language inference.16 They
find that in almost all of their test cases, there is at least one and usually multiple
permutations that still allow the model to predict the correct output. Sometimes, even
previously incorrectly predicted samples are predicted correctly after the permutation
of the sample’s word order. Accordingly, they conclude that “NLI models (Transformer-
based models, RNNs, and ConvNets) are largely insensitive to permutations of word
order that corrupt the original syntax” (Sinha et al., 2021b, p. 7337).17 It is, however,
important to note that while they verify their findings with three different English
datasets and a Chinese one, their study still only takes into account a single natural
language processing task and the tested models’ behaviors in the context of that task
alone.

Nonetheless, Sinha et al. (2021a) manage to back up their claim in a later study
where they pre-train the RoBERTa masked language modeling architecture on data
with permuted word order. They find that this alternation hardly influences the model’s
performance on down-stream tasks, and conclude that “MLM’s success is most likely
not due to its ability to discover syntactic and semantic mechanisms necessary for a
traditional language processing pipeline during pre-training” (Sinha et al., 2021a, p.
2896),18 but due to the distributional information the model learns.

Until this point, the evidence suggests that word order is not something that is in-
herently learned by language models, nor do they rely on it for solving the tasks they
have been trained for. Abdou et al. (2022), however, challenge this belief. They base
their study on Sinha et al. (2021a)’s findings and try to provide a more nuanced insight
into the models’ behaviors by conducting additional experiments. In particular, they
try to answer the question of why models without position embeddings perform worse
than models with position embeddings that are trained on shuffled data when according
to Sinha et al. (2021a), word order does not seem to substantially impact model per-
formance. Additionally, they challenge the benchmarks Sinha et al. (2021a) evaluate
their models on and investigate whether there are other natural language understand-
ing tasks that require a more substantial understanding of word order than the tasks
Sinha et al. (2021a) explore, as they argue that many of the latter have been shown to
be solvable by employing “spurious artefacts and heuristics” (Abdou et al., 2022, p.
6911).19 At first, Abdou et al. (2022) show that language models do in fact contain
word order information by training linear classifiers on the models’ final word repre-
sentations for predicting whether two tokens are likely to succeed one another and for
predicting the position of a word in a sentence.20 They find that word representations
extracted from a model without position encodings produce close to random results,
whereas both embeddings extracted from a model trained on unaugmented data and

16Natural language inference describes the natural language processing task that aims to predict
whether in a pair of sentences, a premise and a hypothesis, the premise entails the hypothesis, contra-
dicts it, or is semantically unrelated to it (Bowman et al., 2015; Sinha et al., 2021b).

17NLI: Natural language inference. RNNs: Recurrent neural networks. ConvNets: Convolutional
neural networks.

18MLM: Masked language modeling.
19Sinha et al. (2021a) evaluate their models on GLUE (Wang et al., 2018) and on the PAWS dataset

(Zhang et al., 2019).
20Word representations equal embeddings.
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embeddings extracted from a model trained on shuffled data are able to achieve high ac-
curacy scores on the previously introduced tasks. They argue that this surprising result
is related to the point in time when the shuffling takes place: Models trained on data
shuffled after byte pair encoding segmentation perform significantly worse than models
trained on data shuffled before byte pair encoding segmentation, i.e., models trained
on data where only full words are shuffled.21 All of the models Sinha et al. (2021a) use
were trained on data shuffled before byte pair encoding segmentation. Abdou et al.
(2022, p. 6910) remark:

When tokens are shuffled before BPE segmentation, this leads to word-level
shuffling, in which sequences of subwords that form words remain contigu-
ous. Such sequences become a consistent, meaningful signal for language
modelling, allowing models to efficiently utilise the inductive bias provided
by position embeddings. Thus, even though our pre-trained models have,
in theory, not seen consecutive tokens in their pre-training data, they have
learned to utilise positional embeddings to pay attention to adjacent to-
kens.22

Shuffling after byte pair encoding segmentation, on the other hand, does not seem to
sensitize the models to use positional embeddings for attending to adjacent tokens to
the same extent. Additionally, Abdou et al. (2022) report that especially in short sen-
tences, up to 12% of the randomly shuffled word bigrams also occur in the original
sentences. This “accidental overlap” effect drops to a maximum of about 8% with sub-
word bigrams. Nevertheless, even when shuffling is performed after byte pair encoding
segmentation, Abdou et al. (2022) report that at least some information about the orig-
inal word order is preserved, which they attribute to the correlation between unigram
probabilities and sentence length.23 They verify their findings by testing the models on
additional benchmarks such as the WinoGrande dataset (Sakaguchi et al., 2019) and
SuperGLUE (Wang et al., 2020), which, according to them, require a more substantial
understanding of word order than the benchmarks used by Sinha et al. (2021a). This
mostly resulted in significant drops in performance for the models trained on shuffled
data and an even more significant drop for the model trained without positional en-
codings. Thus, they conclude that models trained on augmented pre-training data still
retain information about word order. This retained “word order knowledge” exists
mostly on the local level, which aligns with O’Connor and Andreas (2021)’s findings.
However, Abdou et al. (2022) arrive at the conclusion that models do in fact rely on
word order information for solving natural language understanding tasks that require
substantial knowledge of word order.

Lasri et al. (2022) take a step back and investigate the importance of position encod-
ings for the pre-training objective, i.e., masked language modeling. They hypothesize
that increasing the number of masked tokens during pre-training increases the im-
portance of word order information. This information comes in the form of position
encodings, which the model needs to effectively solve the masked language modeling
task. By computing the distance of probability distributions for possible completions in

21Byte pair encoding segmentation describes the subtokenization algorithms explained in Section 2.6.
22BPE: Byte pair encoding.
23Abdou et al. (2022, p. 6910) exemplify this with the phrase thank you, which they use to illustrate

that “there is an approximately learnable relationship between the distribution of words and sentence
boundary symbols.” Formulaic contexts and other genre-dependent commonly short sentences and
phrases do not offer a wide range of possibilities for subword shuffling.
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both ordered and unordered contexts, they are able to support this hypothesis. They
then proceed to test the performance of two BERT models, one of which has access
to position encodings while the other does not. They find that the predictions of the
model with access to position encodings align with the true probability distribution of
the ordered context, whereas the predictions of the model without access align with
the probability distribution of the unordered context. Therefore, they conclude that
position information is more important when more tokens are masked, and models
that have access to position encodings perform better under these circumstances. It
is, however, important to note that Lasri et al. (2022) test their hypotheses on artifi-
cial language data as it allows for an estimation of the true probability distributions
for possible completions. This is more difficult when working with natural languages,
whose word order typically is less restricted than the word order of the artificial lan-
guage investigated in Lasri et al. (2022)’s study. Nonetheless, their findings indicate
that word order information in the form of position encodings does play a role in the
models’ capability of solving the pre-training task of masked language modeling, es-
pecially with higher numbers of masked tokens. In this paper, on the other hand, I
want to explore how transformer models perform at the downstream task of automated
word order error detection, where word order information appears to be the single most
important factor necessary for solving these tasks.



Chapter 3

Detection of Generic Word and
Verb Order Errors

In the following chapter, I propose a number of initial classification approaches for
detecting generic word and verb order errors. I define both tasks as binary sequence
classification problems. When presented with a sentence, a classifier should be able
to identify whether the word order of the presented sentence is correct or incorrect.24

Training classifiers for these tasks presents a challenge due to the lack of available
genuine data annotated for word and verb order errors. The difficulty in obtaining such
data stems from the high costs associated with annotation and existing privacy concerns
when working with learner data. Consequently, I resort to generating pseudo datasets
that include both correct and incorrect sentences. In the first part of this thesis, my
focus is on assessing the effectiveness of different classification approaches in detecting
generic word and verb order errors within these incorrect sentences. I characterize
sentences with generic word order errors as those where any or all words within the
sentence may be randomly rearranged. Meanwhile, in sentences with generic verb
order errors, only the verbs are subject to potential misplacement. After showcasing
the abilities of the classification approaches in detecting erroneous word order, utilizing
generic word and verb order errors for demonstration purposes, the second part of this
thesis focuses on the detection of verb order errors that learners are likely to make.

3.1 Generation of Pseudo Data: Datasets Rand and Verbs

In order to be able to train classifiers for the tasks of word and verb order error detection,
a substantial amount of labeled data is needed. Due to the lack of available genuine
data, I opt to curate pseudo datasets for the training and evaluation of the classifiers.
Next to correct Dutch sentences, these pseudo datasets contain sentences with word
order errors induced according to two different principles of shuffling the tokens of the
respective correct sentences.25 These principles are:

1. Random shuffling of all tokens (Rand).

2. Random shuffling of verb tokens (Verbs).

24By correct I refer to sentences that are acceptable according to standard Dutch syntax rules.
25I henceforth use the terms shuffling and permuting interchangeably. A shuffle is equivalent to a

permutation.
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Rand shuffles are equivalent to generic word order errors. For any given sentence, the
set of Rand shuffles contains all possible unique rearrangements of every token in that
sentence. Picking one of these permutations randomly results in a random shuffling
of the sentence. This simulates any and all potential misplacements of words that
could occur within that sentence. Verbs shuffles, on the other hand, are equivalent to
generic verb order errors as their set for a given sentence contains all possible unique
permutations where only the verb tokens can change their absolute position. The rest
of the sentence’s original syntax is preserved, i.e., the verb-unrelated tokens stay in
their original relative order to one another. Kiyono et al. (2019) point to three aspects
that can impact model performance when incorporating pseudo data into the training
of grammatical error correction models:

1. Pseudo Data Generation

2. Seed Corpus

3. Optimization Setting26

Following the first two aspects, I will now describe both the method of pseudo data
generation, i.e., the previously introduced shuffle methods, and the seed corpora I use
for the curation of the pseudo datasets in more detail.

3.1.1 Shuffle Methods

In the following section, I formally define the Rand and Verbs shuffle methods to
illustrate that Verbs shuffles constitute a subset of Rand shuffles. Because of this,
it is conceivable that classifiers trained on data shuffled according to the Rand shuffle
method could achieve high performance scores when tested on data shuffled according
to the Verbs shuffle method, which is one of the hypotheses I will explore in my
experiments.

Rand Shuffling

Let s be an original sentence (3.1), represented as a sequence of verb tokens v and
verb-unrelated tokens w (3.2):

s = (t1, t2, . . . , tn) = (ti)
n
i=1 (3.1)

ti =

{
vi, if ti is a verb token

wi, otherwise
(3.2)

Let generic word order errors be the set of all permutations of s, excluding the original
sequence s, i.e., the identity permutation (3.3):

SRand(s) = {s′ : s′ is a permutation of s and s′ ̸= s} (3.3)

26The optimization setting, according to Kiyono et al. (2019), describes the method of combining
genuine data and pseudo data during the training process of grammatical error correction models.
However, within the scope of this thesis, I am interested in only very specific types of grammatical
errors, i.e., word and verb order errors. As there is no genuine data available that is annotated for
these types of errors, my datasets consist of pseudo data only.
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In SRand(s), all tokens can appear in all positions randomly (Rand). Its maximum
size is calculated by taking the factorial of n minus one to exclude the original, correct
sequence s (3.4).27

max(|SRand(s)|) = n!− 1 (3.4)

In a sentence such as ik koop boeken ‘I buy books’,28 which has n = 3 tokens, this set
contains five unique permutations (3.5).

|SRand((ik, koop, boeken))| = 3!− 1

= 5
(3.5)

This excludes the original, correct permutation (ik, koop, boeken) (3.6).

SRand((ik, koop, boeken)) =

{(ik, boeken, koop),
(koop, ik, boeken),

(koop, boeken, ik),

(boeken, ik, koop),

(boeken, koop, ik)}

(3.6)

Datasets created according to theRand shuffle method contain both original sentences s
and, for each original sentence, one of the permutations contained in SRand(s). They
simulate all word order errors that could occur in a given sentence. The permutation
is picked from SRand(s) randomly. While it is possible that changing the word order
randomly in a sentence could result in a permutation that also forms a grammatically
correct sequence, this effect is estimated to be low. I illustrate the effect by means of
the sentence ik wil geen boeken kopen ‘I don’t want to buy books’, which holds five
tokens. SRand((ik, wil, geen, boeken, kopen)) holds three permutations other than the
original that could naturally occur in the Dutch language, although only the first one
could form a proper stand-alone sentence (Example 1).

(1) (wil, ik, geen, boeken, kopen)
(ik, geen, boeken,wil, kopen)
(ik, geen, boeken, kopen,wil)

These permutations constitute the variants of word order as used in polar questions and
subordinate clauses, as will be explained in Section 4.1.1. In total, there are 119 possible
permutations contained within SRand((ik, wil, geen, boeken, kopen)). The longer the
sentences, the more the relative amount of incorrect sentences versus correct sentences
in SRand(s) is expected to grow, and the lower the likelihood of a correct sentence
getting randomly picked. The total amount of correct sentences getting mislabeled as
incorrect sentences should therefore be negligible. For better readability, I will refer

27The maximum size is equal to the actual size of the set when all tokens within the sequence s are
unique. Let the set of unique token types in the sequence s be represented as T = {Ti}mi=1, where m
is the total number of unique token types. For each Ti in T , let cTi denote the count (i.e., the number
of occurrences) of token type Ti in the sequence s. If the sequence holds duplicate tokens, the actual
size can be calculated by dividing the factorial of the length of the sequence by the product of the
factorials of the counts c of each distinct token type Ti minus one to exclude the identity permutation:
|SRand(s)| = n!/(cT1! ∗ cT2! ∗ ... ∗ cTm!) − 1. For illustrative purposes, however, I will henceforth only
showcase the maximum size of the sets I define.

28I lowercase all tokens and exclude punctuation.
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to the method of shuffling, the set of possible permutations for a single sentence, and
the resulting dataset simply as Rand whenever a more fine-grained distinction is not
necessary.

Verbs Shuffling

In comparison to Rand shuffling, where all tokens can appear in all positions randomly,
with Verbs shuffling, only the verb tokens within a sentence can change their positions
randomly. The rest of the tokens, i.e., the verb-unrelated tokens, remain in their original
relative order to one another. Since all Verbs shuffles are included in the set of Rand
shuffles for a given sentence, Verbs shuffles form a subset of Rand shuffles (3.7):

SV erbs(s) ⊆ SRand(s) (3.7)

Let W be a sequence of all verb-unrelated tokens, where the order of the verb-unrelated
tokens wi in W is the same as the order of the corresponding ti in the original sentence
s (3.8):

W = (wi)
j
i=1 (3.8)

Let V be a multiset of all verb tokens contained in the original sentence s.29 Being a
set, the order of the verb tokens vi in V does not matter (3.9):

V = {vi}ki=1 (3.9)

For illustrative purposes, I will first showcase how to calculate the size of SV erbs(s)
when the original sentence s contains a single verb token, as is the case in the example
sentence ik koop boeken,30 which I introduced in the previous paragraph. Calculating
the size of the set of verb order error permutations for a given sentence can be defined
as a combinations problem. The verb-unrelated tokens of W always remain in their
original order. The verb tokens of V are free and can take any position before, after,
or in between the W tokens; they fill hypothetical gaps g around the tokens of W
(Example 2):

(2) ik boeken

The number of gaps g is calculated as follows (3.10):

g = j + 1 (3.10)

This enables us to calculate the maximum size of SV erbs(s) by employing the formula
for combinations minus one to exclude the identity permutation (3.11).

max(|SV erbs(s)|) = C(g, k)− 1 =

(
g

k

)
− 1

=
g!

k!(g − 1)!
− 1

(3.11)

29I define V to be a multiset as it allows for duplicates of the same verb tokens.
30Verb tokens are underlined.
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In our case, this equates to two possible permutations (3.12):31

|SV erbs((ik, koop, boeken))| = C((|(ik, boeken)|+ 1), |{koop}|)− 1

=

(
3

1

)
− 1

=
3!

1!(3− 1)!
− 1

= 2

(3.12)

This excludes the original, correct permutation (ik, koop, boeken) (3.13):

SV erbs((ik, koop, boeken)) =

{(ik, boeken, koop),
(koop, ik, boeken)}

(3.13)

However, once we look at longer sentences, it becomes the norm rather than the excep-
tion that sentences contain more than a single verb token. Therefore, we either need
to select more than a single gap when filling in the gaps of W with the tokens of V ,
or we need to select the same gap(s) multiple times. This calls for the formula for
combinations with repetitions. Additionally, as previously explained, the order of the
verb tokens does not matter. Thus, we multiply by the factorial of the number of verb
tokens k in s to account for all permutations of the set of verb tokens (3.14):32

max(|SV erbs(s)|) = C(g + k − 1, k) · k!− 1 =

(
g + k − 1

k

)
· k!− 1

=
(g + k − 1)!

k!(g − 1)!
· k!− 1

(3.14)

For the previously introduced example sentence ik wil geen boeken kopen, which holds
two verb tokens and three verb-unrelated tokens, this yields a total of 19 possible
permutations (3.15):

|SV erbs((ik, wil, geen, boeken, kopen))|

=
((|(ik, geen, boeken)|+ 1) + |{wil, kopen}| − 1)!

|{wil, kopen}|!((|(ik, geen, boeken)|+ 1)− 1)!
· |{wil, kopen}|!− 1

=
(4 + 2− 1)!

2!(4− 1)!
· 2!− 1

= 19

(3.15)

31The formula for combinations here calculates the number of all possible gap selections when we
need to select a single gap as there is one verb token in the example sentence. With three available
gaps, the number of possible gap selections also equals three. We subtract one to exclude the gap
selection that would result in the original, correct sequence s.

32Here, the maximum size of the set is equal to the actual size when all verb tokens are unique.
If there are duplicates within V , the actual size of SV erbs(s) can be calculated in a similar way as
previously explained (dividing the maximum size by the product of the factorials of the counts of
all unique verb token types before subtracting one for the identity permutation). The tokens of W
themselves do not play a role in calculating the actual size of SV erbs(s) as they can be considered a
constant and do not change their position during the permutation process. They are only needed to
determine the number of gaps to fill.
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The permutations contained within SV erbs((ik, wil, geen, boeken, kopen)) are illustrated
in Appendix B.

Summarizing the previous definitions, I define verb order errors be the set of all
unique permutations of the positions of the verb tokens in a sentence s, excluding the
original, correct sentence. The relative order between the verb-unrelated tokens of W
is preserved (3.16):

SV erbs(s) = {s′ : s′ is a permutation of s

with each vi ∈ V

inserted into any of the g gaps of W,

where gaps may be filled more than once,

and s′ ̸= s}

(3.16)

As shown in the previous paragraph, the sentence ik wil geen boeken kopen has 5!−1 =
119 unique Rand shuffles, as opposed to 19 unique Verbs shuffles. Thus, Verbs
shuffles are a subset of Rand shuffles in the same way that verb order errors are a
subset of word order errors. Datasets curated according to the Verbs shuffle method
contain both original sentences s and, for each original sentence, one of the permutations
contained in SV erbs(s). They simulate generic verb order errors. Here too, for better
readability, I will refer to the method of shuffling, the set of permutations for a single
sentence, and the resulting dataset as Verbs.

3.1.2 Seed Corpora

For the generation of the pseudo data, I use the corpora illustrated in Table 3.1 as seed
corpora, i.e., as sources for the correct Dutch sentences which I permute according to
the shuffle methods explained above.

Table 3.1: Seed corpora for pseudo datasets

Corpus License Content

Edia33 CC BY-NC 4.0 news items, fiction, academic journals,
educational content, informational content

Lassy34 see Appendix H.1 newsletters, websites, Wikipedia, press releases,
books, brochures, flyers, manuals, legal texts,
newspapers, policy docs, proceedings, reports

Leipzig35 CC BY-NC 4.0 newspapers, webcrawls, Wikipedia
Wai-Not36 see Appendix H.2 newspaper articles in easy-to-read Dutch

By including the different types of content listed in the table, I try to make the pseudo
datasets as representative as possible of the text types learners of a foreign language
are likely to be prompted to produce in a classroom setting. The training data contains
sentences from all of these corpora.

33Breuker (2023); https://www.edia.nl/resources/elg/downloads, last accessed: 15.08.2023.
34https://taalmaterialen.ivdnt.org/download/lassy-klein-corpus6/, last accessed:

15.08.2023.
35Composition: Mixed 2012, Wikipedia 2021, News 2022; https://wortschatz.uni-leipzig.de/

de/download/Dutch#nld-nl_web_2019, last accessed: 15.08.2023.
36https://taalmaterialen.ivdnt.org/download/wai-not-corpus1-0/, last accessed: 15.08.2023.

https://www.edia.nl/resources/elg/downloads
https://taalmaterialen.ivdnt.org/download/lassy-klein-corpus6/
https://wortschatz.uni-leipzig.de/de/download/Dutch#nld-nl_web_2019
https://wortschatz.uni-leipzig.de/de/download/Dutch#nld-nl_web_2019
https://taalmaterialen.ivdnt.org/download/wai-not-corpus1-0/
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For the test data, I want to approximate genuine learner data as closely as possible by
only using sentences from the Edia corpus. The Edia corpus is a readability corpus
comprised of texts annotated for CEFR levels.37 I filter the Edia data to select sen-
tences from texts that match the CEFR levels present in the Leuven corpus of genuine
Dutch learner data available to me.38 A detailed introduction to the Leuven corpus
will be provided in Section 4.1.4. This means that the test data only holds sentences of
levels A2 through C1, which reflects the typical learner range. The remaining sentences
of the Edia corpus, i.e., sentences originating from texts annotated as A1 or C2, I add
to the training data.

Finally, since I am looking into word and verb order errors, there are a number
of additional conditions a sentence must fulfill in order to be included in the pseudo
datasets I curate. One of these conditions, naturally, is that the sentence must contain
verb tokens. In the following section, I will therefore explain how I preprocess the raw
seed corpora before illustrating the final data split.

Preprocessing

The data in the Lassy and Leipzig corpora is already pre-segmented into individual
sentences. For Edia and Wai-Not, I segment the full texts contained within the
corpora into individual sentences with the help of the spaCy dependency parser (model:
nl core news lg).39 Subsequently, for all corpora, I filter out all sentences that fulfill
any of the following conditions:

1. Sentence is shorter than 10 characters in length.

2. Sentence does not begin with a capital letter.

3. Sentence does not end with a full stop, question mark, or exclamation mark.

4. Sentence does not contain any verb tokens according to the spaCy part-of-speech
tagger.40

By doing so, I try to ensure that the pseudo datasets only contain proper sentences as
opposed to bullet points, headers, elements of lists, or other syntactically incomplete
structures and mis-segmented sequences. That a sentence must contain verb tokens to
be able to be permuted according to the Verbs shuffle method is trivial.

Additionally, in order to save computational resources and to approximate genuine
learner data even further, I analyze the distribution of sentence length in the Leuven
corpus of genuine Dutch learner data to establish a maximum sentence length that
realistically mirrors the output of learners. As illustrated in Figure 3.1, it seems that

37CEFR: Common European Framework of Reference for Languages.
38All texts in the Edia corpus have been annotated for their corresponding CEFR level by multiple

annotators. When the annotators disagree, I convert the CEFR levels to a point scale (A1 = 1, A1+
= 2, A2 = 3, ..., C2+ = 12) and average by the number of annotators. Finally, I convert the averaged
score back to its corresponding CEFR level according to the point scale to obtain the average CEFR
level for the given text.

39https://spacy.io/api/dependencyparser, last accessed: 15.08.2023.
https://spacy.io/models/nl, last accessed: 15.08.2023.

40https://spacy.io/usage/linguistic-features, last accessed: 15.08.2023.
Uses the same nl core news lg model, which is reported to exhibit an accuracy score of 0.96 for part-
of-speech tagging. I check for the presence of at least one token in a given sentence that is tagged as a
verb or auxiliary.

https://spacy.io/api/dependencyparser
https://spacy.io/models/nl
https://spacy.io/usage/linguistic-features
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learners hardly ever produce sentences that are longer than 50 tokens. Therefore, I
filter out all sentences that exceed this threshold in length.

Figure 3.1: Distribution of sentence length in the Leuven corpus
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Finally, I remove all punctuation characters from the sentences to ensure that the ma-
chine learning-based classification approaches I explore in my experiments have to rely
on linguistic information only as opposed to orthographic cues that could potentially
be learned during the training process.41

Data Split

After preprocessing and filtering the raw seed corpora according to the conditions
explained above, I am left with the following data split of correct Dutch sentences
(Table 3.2):

Table 3.2: Train/Test data split

Dataset Size42 Seed

Train 2,231,602 EdiaA1,C2, Lassy, Leipzig, Wai-Not
Test 13,586 EdiaA2–C1

Due to computational restrictions, I treat the train data as a pool of sentences to draw
from, i.e., not all classification approaches make use of all the sentences contained within
the train data. I specify the precise amount of train sentences each classifier is trained

41It is, for example, likely that a machine learning-based classifier could learn that a full stop in
any place other than the very end of the sentence, as could be rendered when permuting a sentence
according to the Rand shuffle method without removing punctuation tokens, is a strong indicator of
incorrect word order.

41In number of sentences.
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on when introducing the classification approaches in the experimental setup (Section
3.4). The resulting Rand and Verbs datasets contain both the specified numbers
of correct sentences and, for each correct sentence, one permutation of it rendered
according to the respective shuffle method. The actual size of the datasets is therefore
double the indicated amount of sentences.

3.2 Standard Evaluation Metrics

The first part of this thesis focuses on the general capability of the classification ap-
proaches I explore in detecting erroneous word order. Therefore, I evaluate the per-
formance of the models according to the standard F1 metric, which is defined as the
harmonic mean of the precision and recall scores and attributes equal importance to
both metrics (3.17):

F1 = 2 · Precision · Recall
Precision + Recall

(3.17)

Precision, for each category, is defined as the number of instances that the classifier
correctly predicts as belonging to that respective category (true positives; TP) divided
by the sum of the number of true positives plus the number of instances that are
incorrectly predicted as belonging to that category (false positives; FP) (3.18):

Precision =
TP

TP + FP
(3.18)

In the context of the binary classification tasks that are word and verb order error
detection, this means that the precision score indicates the proportion of sentences the
classifier predicts as correct that are indeed correct, and the proportion of sentences it
classifies as incorrect that are indeed incorrect.

Recall, for each category, is defined as the number of true positives divided by the
sum of the number of true positives plus the number of instances that are incorrectly
classified as belonging to another category (false negatives; FN) (3.19):

Recall =
TP

TP + FN
(3.19)

For word and verb order error detection, this means that the recall score indicates the
proportion of correct sentences that are correctly classified as such, and the proportion
of incorrect sentences that are correctly classified as incorrect.

For a model to exhibit an overall good performance at detecting erroneous word and
verb order, both the precision and recall scores should be as high as possible for each
category, i.e., the classifier should identify as many sentences as possible as belonging
to their respective category (recall) while at the same time, it should not overpredict
any of the categories and only classify sentences as belonging to a category if they
actually do belong to that category (precision). The F1 score combines both metrics,
attributing equal importance to each of them. Hence, the average F1 score is a good
indicator of the general capabilities of the classification approaches.43

43(Footnote continues on the next page.) For reasons of completeness, in Appendix D, I also provide
the accuracy score, which indicates the proportion of total predictions that the classifier correctly made,
regardless of category. It is calculated by dividing the sum of the number of true positives plus the
number of true negatives (TN), i.e., the total number of correct predictions, by the total number of
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3.3 Models

In this thesis, I explore the performance of classifiers based on three different natural
language processing model families at the tasks of word and verb order error detection:
part-of-speech taggers, syntactic parsers, and transformer models. Specifically, I ex-
plore the part-of-speech tagger of the spaCy natural language processing toolkit,44 the
Disco-dop constituency parser,45 and transformer models adapted for Dutch based on
the BERT, RobBERTa, and GPT-2 architectures introduced earlier.

3.3.1 Part-of-Speech Tagger

In traditional methods, unlike neural network-based parsers that provide end-to-end
solutions, part-of-speech tagging is typically required before syntactic parsing. Thus,
I aim to compare the performance of classifiers trained on the output of a part-of-
speech tagger versus those trained on the more syntactically informative output of a
syntactic parser. The part-of-speech tagger I use is the spaCy morphologizer, which is
a neural part-of-speech tagger that exhibits an accuracy score of 0.96 for Dutch with
the nl core news lg model (see also Section 3.1.2).

3.3.2 Syntactic Parser

Disco-dop, or discontinuous data-oriented parsing, is a statistical constituency parser
implementation that focuses on being able to represent discontinuous constituents.
Parse tree structures that allow for discontinuous constituents allow “non-terminal
node[s] to dominate a lexical span that consists of non-contiguous chunks.” (Cranen-
burgh et al., 2016). This can be useful for Dutch as in Dutch, discontinuous constituents
are quite common. Consider the example sentences Ik heb ervan gedroomd. ‘I have
dreamed about it.’ and Ik heb er niet van gedroomd. “I have not dreamed about it.”.
In the first sentence, ervan ‘from it’ is a single token, yet in the second sentence, the
adverb niet ‘not’ splits it up into two tokens, i.e., a discontinuous constituent. The
Disco-dop parser operates in three stages, making use of three different grammar for-
malisms, the precise details of which go beyond the scope of this paper and can be
found in Cranenburgh et al. (2016).46 I use it with a grammar that is trained on both
the CGN (van der Wouden et al., 2002) and Lassy (van Noord, 2009) treebanks for
Dutch.47 For each parsing stage, Disco-dop approximates the most probable parse
by employing the relative frequency estimate. “The relative frequency of a fragment is
the number of its occurrences, divided by the total number of occurrences of fragments

instances (3.20):

Accuracy =
TP + TN

TP+ TN+ FP + FN
(3.20)

44https://spacy.io/api/morphologizer/, last accessed 15.08.2023. The implementation is not a
pure part-of-speech tagger but additionally offers morphological information.

45https://discodop.readthedocs.io/en/latest/, last accessed: 15.08.2023.
46Disco-dop uses a Probabilistic Context-Free Grammar (PCFG) in its first stage. The grammar

treats elements of discontinuous constituents as independent from one another but encodes information
about discontinuity in the node labels. In the next stage, it uses a Probabilistic Linear Context-Free
Rewriting System (PLCFRS). This grammar allows “non-terminals to rewrite tuples of strings instead
of just single, contiguous strings” (Cranenburgh et al., 2016, p. 65). Finally, it uses a discontinuous
data-oriented parsing grammar (Disco-DOP) that makes use of tree fragments instead of production
rules to find the most likely parse for a sentence.

47https://lang.science.uva.nl/grammars/, last accessed: 15.08.2023.

https://spacy.io/api/morphologizer/
https://discodop.readthedocs.io/en/latest/
https://lang.science.uva.nl/grammars/
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with the same root node” (Cranenburgh et al., 2016, p. 84). The relative frequencies
of all fragments in the input are multiplied and yield the probability of the derivation.
I always choose the output of the stage that renders the highest absolute probability
when parsing sentences. Finally, I choose the Disco-dop parser implementation in
particular for its representation of natural language in the form of constituency struc-
tures, which allows me to abstract verb order-irrelevant syntactic information as will
be explained in Section 3.4.1.

3.3.3 Transformer Models

BERTje. BERTje is a monolingual transformer model based on the BERT archi-
tecture introduced in Section 2.6 and adapted for the Dutch language. It uses the same
architecture and parameters but is trained on “a large and diverse [Dutch] dataset of
2.4 billion tokens” (de Vries et al., 2019, p. 1). Additionally, it differs from the original
BERT model in that its second pre-training task is sentence order prediction as opposed
to next sentence prediction. In next sentence prediction, the original BERT model was
tasked to predict whether, in a pair of sentences, the two sentences are consecutive or
not. The second sentence could either be an actual consecutive sentence or a random
sentence (de Vries et al., 2019). BERTje, on the other hand, is tasked to predict
whether two sentences are consecutive or have been swapped, i.e., the second sentence
of the sentence pair is never random but always taken from the same context. Accord-
ing to de Vries et al. (2019), the original next sentence prediction task led the BERT
model to learn topic similarity instead of coherence, which they mitigate by adapting
the pre-training objective. BERTje outperforms the multilingual BERT model trained
on the full Wikipedias of 104 languages in a variety of fundamental natural language
processing tasks in Dutch, among which part-of-speech tagging (de Vries et al., 2019).

RobBERT. RobBERT, like BERTje, is a monolingual transformer model adapted
for Dutch. It is based on the previously introduced RoBERTa model that optimizes the
BERT pre-training process but generally uses the same architecture as BERT (Delobelle
et al., 2020). It is trained on a Dutch dataset of 6.6 billion words and outperforms
BERTje in a number of Dutch natural language processing tasks, especially when
datasets for fine-tuning for a given task are rather small (Delobelle et al., 2020).

GPT-2 Dutch. Lastly, Gpt-2 (recycled for) Dutch is another monolingual trans-
former model. It is based on the GPT-2 architecture and therefore differs from BERT
architecturally. Its pre-training objective is next word prediction and it processes se-
quences from left to right instead of bidirectionally. Additionally, it differs from both
BERTje and RobBERT in that the model is not initialized with random parameters
when pre-training, but de Vries and Nissim (2021) retrain only the lexical embeddings,
i.e., the vector representations of tokens that serve as input for the model with the
help of a dataset that is slightly larger in size than the dataset BERTje was trained
on. In their first step, they leave the parameters within the layers of the transformer
network untouched. The resulting model is therefore technically identical to the origi-
nal English model in terms of model parameters. It is only in their following step that
de Vries and Nissim (2021) fine-tune the transformer layers based on the newly ob-
tained retrained word embeddings for the target language, which, they report, reduces
the recognizability of the model’s output as artificial. They evaluate their model’s
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generative capabilities with the help of human annotators and do not provide results
for benchmark datasets of common natural language processing tasks. I want to ex-
plore whether the difference in architecture in comparison to the previous two models
could potentially have an influence on the transformer model’s capability of detecting
erroneous word and verb order.

3.4 Experimental Configurations

I will now introduce the different experimental configurations I explore with the help
of the previously introduced models. First, I will explore a rule-based approach to
classification that is based on the output of the Disco-dop parser. It is a naive lookup
approach that does not employ machine learning algorithms. I will then introduce
the machine learning-based approaches by illustrating the performance of a classifier
trained on the output of the spaCy part-of-speech tagger. As part-of-speech tagging
in many cases is a prerequisite for the task of syntactic parsing, I will subsequently
compare this performance with the performance of a classifier trained on the syntacti-
cally more informative output of the Disco-dop parser. By doing this, I can confirm
that detecting word and verb order errors is a natural language processing task that
benefits significantly from having access to syntactic information. Finally, I compare
the performances of three different transformer-based models in order to investigate
whether transformer-based models are able to reliably solve tasks that require an un-
derstanding of word order information and whether different transformer architectures
influence the performance scores of these models.

3.4.1 Parse Lookup

The first configuration I explore is a lookup approach based on the output of a syntactic
parser, i.e., the Disco-dop parser. Because the parser’s processing speed is very slow,
this approach makes use of only 80,000 correct sentences picked randomly from the
set of available train sentences as explained in Section 3.2. I let the parser parse all
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80,000 correct sentences and save the resulting most probable parses and their tree
representations as a Pool of correct parse structures. The assumption here is that a
parse structure resulting from parsing a correct sentence is a valid sentence structure
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pattern in the target language. The sequences het meisje zat op de vloer ‘the girl sat on
the floor’ (a) and de hond keek naar het plafond ‘the dog looked at the ceiling’ (b) are
superficially different but share the same sentence structure. The parser renders similar
parses for similarly structured sentences (Figure 3.2 and Figure 3.3).48 Consequently,
the question arises of whether a Pool of correct parse trees can serve as an effective
tool to look up the validity of a parse of a sentence that is not included in that Pool. I
name the solution that uses the tree output of the Disco-dop parser in its unmodified,
original form Dop-tree-orig.

However, once we look at sequences such as het meisje zat op de vloer (a) and het
meisje zat op school ‘the girl was in school’ (c), we face a new challenge: The noun
phrase de vloer ‘the floor’ loses its determiner when being replaced by school. This
means that the sentence structure of the sequence is different from the one without the
adjective as the tree structure the parser renders holds a representation for every token
in the sequence (Figure 3.4 and Figure 3.5):
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Yet, the overall sentence structure is still the same and the difference occurs in a con-
stituent that does not contain a verb token. If a constituent does not contain any
verb tokens, its internal structure is irrelevant to the relative order of verbs and verb-
unrelated constituents. Thus, I collapse constituents that do not contain verb tokens
into the highest possible node label before a verb token crosses the path (Figure 3.6
and Figure 3.7):
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48Node labels adapted by the author for better recognizability.
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The Dop-tree-simple solution makes use of a Pool consisting of the same 80,000
tree representations as Dop-tree-orig, yet the representations are simplified by re-
cursively iterating through the tree and checking whether a subtree of the current node
contains a v (verb) token. If it does, I leave the subtree untouched. If it does not, I
collapse the node into the highest possible node label that does not contain a v token,
i.e., the current node label. This way, verb-unrelated constituents like the prepositional
phrases op de vloer and op school can be abstracted into being represented by the same
node label, ignoring their internal structure. This can potentially make the Pool more
representative by allowing for groupings of similarly structured sentences that do not
correspond to each other word for word. By applying this technique to all original trees
in the Pool, I am able to reduce the number of unique trees in the Pool from 76,186
to 55,197, resulting in a reduction in variety of approximately 27.5%. The reductions
in variety in the test datasets vary, as Table 3.3 illustrates:49

Table 3.3: Effects of tree simplification

Sents Trees Original Trees Simple Red.

Pool 80,000 76,186 55,197 27.5%
Test Correct 13,586 12,917 9,918 23.2%
Test Rand 13,586 13,505 11,537 14.6%
Test Verbs 13,586 13,453 10,812 19.6%

Unsurprisingly, the reduction is higher in the correct sentences (Pool and Test Cor-
rect) as natural sentences follow certain syntactic patterns and form constituents.
These elements can neatly be abstracted as shown above. Introducing word and verb
order errors negatively impacts the potential for abstraction as constituents are broken
apart. This effect is strongest in the Rand sentences where none of the original syntax
is necessarily preserved. Verbs shuffles, on the other hand, exhibit a reduction in
variety closer to the reduction of their corresponding correct sentences, showing that
they retain more abstractable information than Rand. Moreover, the Pool of correct
sentences exhibits an even greater reduction in unique tree structures. This indicates
that the larger the dataset, the more reduction can be expected as more sentences are
likely to exhibit similar syntactic patterns.

Table 3.4: Parse Lookup models

Config Model Size Pool

Parse Lookup Dop-tree-orig 80,000

Parse Lookup Dop-tree-simple 80,000

When parsing an unseen sentence, the Parser Lookup solutions search for the re-
sulting parse tree in the Pool of correct parse trees they have access to. If it finds
the parse tree in the Pool, the sentence is classified as correct for it has seen a correct

49When referring to the Rand and Verbs test datasets, I typically refer to the test sets that contain
both the correct sentences and the corresponding shuffled sentences. In order to illustrate the effect
of simplifying the parse trees of correct and shuffled sentences independently from one another, here,
I report the reduction in the portion of correct sentences in the test datasets separately from the
reduction in the portion of shuffled sentences (Rand and Verbs).
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sentence with the same sentence structure before. If it does not, the sentence is classi-
fied as incorrect. Table 3.4 summarizes the resulting models from the Parse Lookup
configuration.

3.4.2 PoS Classifier

Part-of-speech tagging is a common prerequisite for syntactic parsing. To introduce the
first machine learning classifier, I take the output of the spaCy part-of-speech tagger
and concatenate each part-of-speech label generated with its absolute position in the
sequence represented as an integer, resulting in position–part-of-speech tuples. The
process is illustrated in Figure 3.8:

Figure 3.8: spaCy-tup tuple format

het meisje zat op de vloer

det noun verb adp det noun

(1, det) (2, noun) (3, verb) (4, adp) (5, det) (6, noun)

parse to part-of-speech

add absolute position information

The spaCy-tup solution extracts these tuples for all train sentences and vectorizes
them to make them available as features before training a logistic regression classifier.50

The combination of position and part-of-speech information approximates syntactic
information in a very simple form. The output of the part-of-speech tagger could
be described as a type of morphological information. This allows us to compare the
performance of spaCy-tup, a PoS Classifier that does not have access to explicit
syntactic information, to the performance of a classifier that does have access to such
information, as will be explained in the following section. spaCy’s fast processing speed
allows for training the model on the whole set of train sentences (Table 3.5).

Table 3.5: PoS Classifier model

Config Model Size Train

PoS Classifier spaCy-tup 2,231,602

50https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

CountVectorizer.html, last accessed: 15.08.2023. The vectorizer generates a vocabulary of all
possible tuples that exist in the train data. Each input sentence is converted to a one-hot-vector with
an entry of 0 for the absence of a certain tuple and 1 for its presence.
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html, last accessed: 15.08.2023. Uses default parameters except for the
maximum number of iterations, which I set to 1000 to ensure convergence.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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3.4.3 Parse Classifier

Although the available train data that could be parsed with the Disco-dop parser is
small, I want to compare the performance of spaCy-tup to the performance of classi-
fiers built according to the same principle, but having access to the syntactically richer
output of the Disco-dop parser. I use the same approach to integrating positional
information by creating tuples of position–node information.

Figure 3.9: Dop-tup-orig tuple format

het meisje zat op de vloer

(root (smain (np (det) (n)) (v)
(pp (p) (np (det) (n)))))

(smain) (np) (det) (n) (v)
(pp) (p) (np) (det) (n)

(1, smain) (2, np) (3, det) (4, n) (5, v)
(6, pp) (7, p) (8, np) (9, det) (10, n)

parse to tree

reduce to important nodes

add absolute position information

Figure 3.10: Dop-tup-simple tuple format

het meisje zat op de vloer

(root (smain (np) (v) (pp))

(smain) (np) (v) (pp)

(1, smain) (2, np) (3, v) (4, pp)

parse to simplified tree

reduce to important nodes

add absolute position information

As Figures 3.9 and 3.10 illustrate, I test two different tree variants for the Parse Clas-
sifier configuration, which is in analogy to the Parse lookup approach. Dop-tup-
orig uses tuples extracted from the original tree structures, while Dop-tup-simple
uses tuples extracted from the simplified tree structures. Table 3.6 summarizes the
resulting models from the Parse Classifier configuration:

Table 3.6: Parse Classifier models

Config Model Size Train

Parse Classifier Dop-tup-orig 80,000

Parse Classifier Dop-tup-simple 80,000

3.4.4 Transformer Classifier

For all three different transformer models in the Transformer Classifier approach,
the experimental configuration is identical. I fine-tune the off-the-shelve models by
installing a sequence classification head on top of the models.51 The sequence classifi-
cation head takes the raw output of the transformer models, which is a vector that has

51(Footnote continues on the next page.) https://huggingface.co/docs/transformers/model_

doc/bert#transformers.BertForSequenceClassification, last accessed: 15.08.2023.
https://huggingface.co/docs/transformers/model_doc/roberta#transformers.

RobertaForSequenceClassification, last accessed: 15.08.2023.

https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaForSequenceClassification
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undergone mathematical modifications according to the transformer models’ architec-
tures and their learned parameters, and predicts whether a given sentence is correct or
incorrect based on that output. During the fine-tuning process, it constantly adjusts
its parameters to make its predictions more accurate. As previously explained, due
to the transformers’ high dimensionality and deep neural architecture, it is uncertain
whether transformer models can reliably solve natural language processing tasks that
require word order information. Additionally, the experiment lets me explore if and
to what extent different transformer architectures influence the transformers models’
performance scores. Due to computational limitations, I limit the amount of correct
train sentences for the transformer experiments to one million (Table 3.7):

Table 3.7: Transformer Classifier models

Config Model Size Train

Transformer Classifier BERTje 1,000,000

Transformer Classifier RobBERT 1,000,000

Transformer Classifier Gpt-2 1,000,000

3.5 Results

With the exception of the Parse Lookup configuration, which does not require train-
ing, I train all models of all configurations on both the Rand and Verbs train datasets
with the amount of train sentences specified in the previous sections. As it has been

Table 3.8: Average F 1 score of all models on Test Rand and Test Verbs

Train Pool/Rand Verbs
Config Model Test Rand Verbs Verbs

Parse
Lookup

Dop-tree-orig 0.41 0.41 –
Dop-tree-simple 0.58 0.56 –

PoS Classifier spaCy-tup 0.72 0.59 0.68

Parse
Classifier

Dop-tup-orig 0.78 0.68 0.73
Dop-tup-simple 0.77 0.71 0.73

Transformer
Classifier

BERTje 0.99 0.77 0.98
RobBERT 1.00 0.74 0.99
Gpt-2 1.00 0.68 0.98

established that Verbs shuffles are a subset of Rand shuffles in the same way that
verb order errors are a subset of word order errors, I test the classifiers trained on the
Rand train dataset on both the Rand and Verbs test datasets. If classifiers trained on
generic word order errors (Rand) could already achieve high performance scores on the
more restricted subset of generic verb order errors (Verbs), computational resources

https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.

GPT2ForSequenceClassification, last accessed: 15.08.2023.

https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2ForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2ForSequenceClassification
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could potentially be saved by not having to tailor the train data to specific word order
error types. Table 3.8 shows the results for all experiments on detecting generic word
and verb order errors. For the Transformer Classifier configuration, I report the
average performance score over three models to account for the random initialization
classification heads’ parameters when fine-tuning.

3.6 Discussion

All configurations exhibit higher performance scores on the Rand data than on the
Verbs data, indicating that generic word order errors are easier to detect than generic
verb order errors. This is unsurprising as sentences permuted according to the Verbs
shuffle method generally preserve more of the original syntax of the correct sentences
they are derived from. Additionally, training on data permuted according to the Verbs
shuffle method typically results in significantly higher performance scores on the Verbs
test data than training on data permuted according to the Rand shuffle method. This
stresses the importance of task-specific training data, even though Verbs shuffles are a
subset of Rand shuffles and Rand-trained classifiers should have seen Verbs shuffles
during their training. The naive Parse Lookup approach exhibits the lowest aver-
age F1 score on both the Rand and Verbs test datasets. Yet, simplifying the tree
structures results in a significant increase in performance. The combination of abso-
lute positional and part-of-speech information in the PoS Classifier configuration
outperforms the Parse Lookup both in the detection of generic word and of generic
verb order errors. However, the Parse Classifier models, which have access to syn-
tactically richer information than the PoS Classifier model, outperform the latter
significantly. This is despite the Parse Classifiermodels having been trained on only
a fraction of the data the PoS Classifier has been trained on (3.6%). This confirms
that syntactic information is highly beneficial for solving the tasks of word and verb
order error detection. Finally, all transformer models are able to achieve almost perfect
performance scores when both trained and tested on data permuted according to the
same shuffle methods. When Rand-trained models of the Transformer Classifier
configuration are tested on the Verbs test data, their performance scores differ sig-
nificantly. As it seems, BERTje is able to generalize the generic word order errors
it has seen during the training process most efficiently when tasked to detect generic
verb order errors, outperforming both RobBERT and Gpt-2. Nonetheless, the ex-
tremely high performance scores all three transformer models exhibit when trained and
tested on data permuted according to the same shuffle method clearly indicate that
transformer-based models are able to effectively solve the task of detecting word and
verb order errors, which, as explained above, benefits greatly from access to syntactic
information. The precise mechanisms by which they are able to achieve this, however,
will need to be the subject of future studies and could be related to co-occurrence
probabilities as suggested by O’Connor and Andreas (2021). I will now discuss each of
the configurations and their performances in more detail.

3.6.1 Parse Lookup

A key limitation of the Parse Lookup approach is the fact that natural language is
recursive and, in theory, can generate sequences of infinite length. Basing the classifi-
cation on a Pool of previously seen correct parses cannot account for this generative
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power. While limiting the maximum number of tokens in a sentence to 50 and sim-
plifying the tree structures to abstract verb-unrelated constituents can help mitigate
this issue and, in the case of the simplification, measurably increases performance, the
size of the Pool of correct parses is simply not large enough to be able to effectively
represent natural language. This can clearly be seen when looking at the confusion
matrices, where both models overpredict the incorrect category (Tables 3.9, 3.10, 3.11,
and 3.12):52

Table 3.9: Confusion matrix
Dop-tree-orig on Test Rand

Predicted

Gold incorrect correct

incorrect 13,438 148
correct 12,476 1,110

Table 3.10: Confusion matrix
Dop-tree-orig on Test Verbs

Predicted

Gold incorrect correct

incorrect 13,423 163
correct 12,476 1,110

Table 3.11: Confusion matrix
Dop-tree-simple on Test Rand

Predicted

Gold incorrect correct

incorrect 11,009 2,577
correct 8,378 5,208

Table 3.12: Confusion matrix
Dop-tree-simple on Test Verbs

Predicted

Gold incorrect correct

incorrect 10,341 3,245
correct 8,378 5,208

While Dop-tree-simple is able to correctly identify almost five times as many cor-
rect sentences, the number of incorrect sentences that it misclassifies as correct also
drastically increases. While it is possible that due to the method of pseudo data gener-
ation, i.e., the shuffle methods, some of these sentences labeled as incorrect are actually
correct Dutch sentences as explained in Section 3.1.1, the problem clearly must stem
from the combination of shuffled data and the simplification process: Syntactic parsers
are typically trained on correct data only. Thus, they are likely to overpredict correct
phrases. A common way of nominalizing a verb in Dutch, for example, is by placing a
definite article before the infinitive. The verb eten can become the noun het eten by
pre-appending the definite article het, resulting in a meaning close to ‘the act of eating’
or, in this particular case, its more common meaning ‘the food’. If in a sentence pair
such as in Examples 3 and 4 eten was a verb token in the original sentence, which in its
shuffled version would appear next to a definite article, it is impossible for the parser
to know that the “intended” part-of-speech of the token was of the type verb.

(3) Het
the

brood
bread

is
is

nog
still

te
to

eten.
eat-inf

‘The bread is still edible.’

52As both the Rand and Verbs datasets contain the same correct sentences and the Parser Lookup
approach is a heuristic classification approach, the predictions for the correct sentences are the same
in both datasets, differing only per model.
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(4) Het
the

eten
food

is
is

nog
still

brood
bread

te.
to

∼ ‘The food is still bread to.’

The parser does not have access to information about the original sentence; each parse is
independent of the context in earlier parses. Human speakers of Dutch may experience
a similar effect. When reading het eten at the beginning of the shuffled sentence, a
speaker of Dutch may mistake het eten for the subject of the sentence, without noticing
immediately that the word order of the entire sentence has been permuted randomly.
This, in turn, can lead to an oversimplification during the simplification process of the
tree structures for all nodes that do not contain verb tokens are collapsed. If the parser
is unable to identify verb tokens because their shuffled position causes them to resemble
other, verb-unrelated constituents, the simplification process eliminates them entirely
when collapsing the node. Therefore, while simplifying tree structures does increase the
overall performance, it is a rather unreliable approach that may lead to unintentional
exclusions of vital components.

3.6.2 PoS Classifier

The PoS Classifier and all other following machine learning-based approaches, on the
other hand, are more robust as they do not rely on simplifying the syntactic information
they receive as input in order to be able to represent syntactic patterns. However, the
information the PoS Classifier has access to is still very limited. It only has access to
morphological information in combination with absolute positional information. While
this does allow the classifier to learn that the presence or absence of certain position–
part-of-speech tuples can be indicators of correct or incorrect word order, the overall
performance is still rather low. When looking at the confusion matrices of the Rand-
trained and Verbs-trained classifiers on the Verbs test dataset, we can see that the
Rand-trained classifier clearly overpredicts sentences to be correct (Tables 3.13 and
3.14):

Table 3.13: Confusion matrix
spaCy-tup Train Rand on Test

Verbs

Predicted

Gold incorrect correct

incorrect 6,048 7,538
correct 3,225 10,361

Table 3.14: Confusion matrix
spaCy-tup Train Verbs on Test

Verbs

Predicted

Gold incorrect correct

incorrect 9,284 4,302
correct 4,299 9,287

This is not very surprising as classifiers trained on the Rand data are likely to expect
a completely broken syntax in order to classify a sentence as incorrect. Since Verbs
shuffles retain most of the original word order, they are more likely to resemble correct
sentences than Rand shuffles. This means that although Verbs shuffles are a subset
of Rand shuffles, the classifier seems to not be sensitive enough to verb order errors
if trained on generic word order errors only. This tendency can be observed in all
following machine learning-based approaches. Additionally, the part-of-speech tagger
is subject to the same challenge as explained in the previous section: Since the part-of-
speech tagger is trained on correct data only, the permutation of word order can result
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in the part-of-speech tagger assigning verbs and verb-unrelated tokens a different part-
of-speech tag than it would in the correct sentence, which can lead to an overprediction
of sentences to be correct. This is likely one of the reasons that the average F1 score of
PoS Classifier models trained on task-specific data, i.e., classifiers trained on Rand
data and tested on Rand data as well classifiers trained on Verbs data and tested on
Verbs data is limited to roughly 0.70 – despite being trained on the largest number of
sentences out of all approaches.

3.6.3 Parse Classifier

The models of the Parse Classifier approach face the same challenges as both the
Parse Lookup and the PoS Classifier configurations. The training of the parser
on correct data can lead to overprediction of correct sentences by assigning the most
likely labels based on the permuted context. Subsequent simplification of parse trees
can potentially amplify this effect by omitting elements that would otherwise have been
preserved if the parser does not recognize the constituent to contain a verb token.53

Nonetheless, both Dop-tup-orig and Dop-tup-simple significantly outperform both
the Parser Lookup and the PoS Classifier approaches. This is especially remark-
able in the case of the PoS Classifier approach, as the Parse Classifier models
have been trained on only a fraction of the data the former has been trained on (approx-
imately 3.6%).54 This implies that syntactic information is crucial when attempting to
solve the tasks of word and verb order error detection. Interestingly, both Dop-tup-
orig and Dop-tup-simple perform almost equally well when trained on task-specific
data, indicating that the evident advantage Dop-tree-simple exhibits over Dop-
tree-orig does not translate to the machine learning-based approaches. The Parse
Classifier models are able to learn representations for correct syntactic patterns from
the position–node tuples alone and do not require further simplification. In the case
of the Rand data, this simplification even seems to be harmful, albeit only slightly.
When looking at the confusion matrices for the Dop-tup-orig and Dop-tup-simple
models trained and tested on Rand data, we can see that the slight drop in perfor-
mance Dop-tup-simple exhibits can be associated with an overprediction of incorrect
sentences as correct, which aligns with the previously identified shortcomings of the
simplification process (Tables 3.15 and 3.16).

Table 3.15: Confusion matrix
Dop-tup-orig Train Rand on Test

Rand

Predicted

Gold incorrect correct

incorrect 10,149 3,437
correct 2,477 11,109

Table 3.16: Confusion matrix
Dop-tup-simple Train Rand on Test

Rand

Predicted

Gold incorrect correct

incorrect 9,720 3,866
correct 2,478 11,108

Yet, simplifying the tree structures seems to be helpful when a Rand-trained classifier
is tasked to detect verb order errors. This could potentially be due to the fact that

53Rather: What would have been a verb token in the original sentence.
54PoS Classifier: 2,231,602 sentences. Parse Classifier models: 80,000 sentences.
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verb-unrelated constituents are collapsed. Where in the original parses, large subse-
quences of a given sentence are typically preserved when permuted according to the
Verbs shuffle method, in simplified parses, these chunks are likely to be summarized
under only a handful of node labels, weakening this effect. This way, the Rand clas-
sifier, being less sensitive to verb order errors, can potentially focus on more relevant
tuples for identifying them.

3.6.4 Transformer Classifier

Finally, all models of the Transformer Classifier approach are able to achieve
near-perfect performance scores when trained on task-specific data, clearly indicating
that transformer-based models can reliably solve the detection of generic word and
verb order errors, which benefits from syntactic information as shown above. The high
performance scores on generic verb order errors are especially impressive as here, other
word order-unrelated indicators of improbable sequences such as incorrect agreement
between verb-unrelated tokens are eliminated for all verb-unrelated tokens remain in
their original order. However, training on task-specific data seems necessary in order
to sensitize the models for the specific word order error type that needs to be detected,
which is a tendency that is reflected in all other machine learning-based approaches
as well. Otherwise, the classifiers tend to overpredict the correct category as they
expect more disruptions to the syntax when trained on Rand data than present in
the Verbs test data which preserves large chunks of the original, correct sentences.
The RobBERT-based models ever so slightly outperform both BERTje and Gpt-2
on both the Rand and Verbs test datasets and the Verbs test dataset, respectively.
With performance scores this high, the question arises whether the misclassifications
that do happen are in fact shortcomings of the classifier itself or whether the sentences
involved are labeled incorrectly due to the method of pseudo data generation. When
looking at the best confusion matrices of the RobBERT model,55 we can see that
the classifier predicts three gold correct sentences as being incorrect in the Rand test
dataset (Tables 3.17 and 3.18):

Table 3.17: Best confusion matrix
RobBERT Train Rand on Test

Rand

Predicted

Gold incorrect correct

incorrect 13,553 33
correct 3 13,583

Table 3.18: Best confusion matrix
RobBERT Train Verbs on Test

Verbs

Predicted

Gold incorrect correct

incorrect 13,403 183
correct 74 13,512

I illustrate these sentences below. Arguably, none of these sentences, or sequences, can
form a grammatically correct stand-alone sentence in Dutch because they are either
incomplete or exhibit word order errors.56 The sequence ze autosleutels zocht could
appear in a subordinate clause. Nonetheless, all three sequences should indeed have
been labeled as incorrect in the context of this experiment.

55The confusion matrices here show the best predictions per category achieved by any of the three
RobBERT models I trained.

56In the case of the incorrect sequences, I do not provide a translation.
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– *digitale vaardig zijn

– *soms ook is er twijfel

– ze autosleutels zocht ‘she was looking for car keys’

When looking at the 33 gold incorrect sentences the classifier predicts to be correct, a
total of seven sequences are grammatically possible in Dutch, while only three could
be proper stand-alone sentences (sequences that could be proper stand-alone sentences
are marked with a +):

– +je kunt karaktereigenschappen ook erven ‘you can also inherit character traits’

– +tandartsen worden door tandartsassistenten bijgestaan ‘dentists are assisted by
dental assistants’

– +waarom doen ze dat ‘why do they do that’

– hoe de beleving was ‘how the experience was’

– en er wordt gereorganiseerd ∼ ‘and reorganization is taking place’

– waar ze zitten ‘where they sit’

– wie dat nou doet ‘who is doing that’

This shows that the amount of grammatically correct sentences the Rand shuffle
method generates is indeed negligible. The majority of misclassified instances in this
category are indeed incorrect and therefore misclassified. When looking at the mis-
classifications within the Verbs test dataset, a similar tendency can be observed for
the gold correct sentences: Many of the sequences the classifier predicts to be incorrect
but are labeled as correct are incomplete or could not typically form stand-alone sen-
tences because of other grammatical reasons. However, the absolute number of these
sentences is still small, indicating that the preprocessing criteria were effective. Shift-
ing the focus to the sentences generated according to the Verbs shuffle method, there
are 183 sequences the classifier predicts to be correct even though they are labeled as
incorrect. Since the set of Verbs permutations for a given sentence is smaller than
the set of Rand permutations as explained in Section 3.1.1, the likelihood of a correct
permutation being picked randomly is also higher. Table 3.19 showcases a selection of
the permutations the Verbs shuffle method rendered that are grammatically possible.
The permutations marked as possible stand-alone sentences are thus mislabeled: The
first two permutations result in correct sequences because the spaCy part-of-speech
tagger mistakes the adjective bepaalde ‘certain’ for a verb and rearranges its position
in such a way that it happens to appear before nouns, resulting in a grammatically
possible sequence (‘the director’s liability also applies to directors of certain associa-
tions’; ‘organelles are parts of the cell with a particular function’).57 The following two
permutations constitute alternative word orders (‘the first fossils of Barosaurus were
discovered in 1889’; ‘researchers have shared new pictures of the Mariana Trench’) and
the final two permutations would form correct sequences if they appeared in subor-
dinate clauses (‘wonders always happen unexpectedly’; ‘the government must be in

57I provide translations for the original sentences. The adjective bepaalde is an inflected form of the
past participle of the verb bepalen ‘to determine’. Its surface form is equivalent to bepaalde, which is
the finite past form of the verb. This is likely the cause of the assignment of an incorrect part-of-speech.
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Table 3.19: Illustration of mislabeled Verbs permutations

Original Permutation Type

de bestuurders-
aansprakelijkheid geldt ook
voor bestuurders van
bepaalde verenigingen

+de bestuurders-
aansprakelijkheid geldt ook
voor bepaalde bestuurders
van verenigingen

adjective
mistaken for
verb and
placed
before noun

organellen zijn onderdelen
van de cel met een bepaalde
functie

+organellen zijn onderdelen
van de bepaalde cel met een
functie

de eerste fossielen van
barosaurus werden ontdekt
in 1889

+de eerste fossielen van
barosaurus werden in 1889
ontdekt alternative

word orderonderzoekers hebben nieuwe
beelden gedeeld van de
marianentrog

+onderzoekers hebben nieuwe
beelden van de marianentrog
gedeeld

wonderen gebeuren altijd
onverwacht

wonderen altijd onverwacht
gebeuren

order correct
in
subordinate
clauses

de regering moet in de
hoofdstad zijn

de regering in de hoofdstad
moet zijn

the capital’). While the performance of the Transformer Classifier models could
potentially be even higher if mislabeled sentences were filtered out, many of the 183
misclassified sentences are in fact incorrect and should have been classified as such.
Table 3.19 also conveniently illustrates one of the main challenges learners face when
studying Dutch syntax rules: Verbs can appear in different positions depending on the
clause type they appear in. Now that the general capabilities of the classification ap-
proaches in detecting generic word and verb order errors have been established, I want
to look at verb order errors learners of Dutch are in fact likely to make. The following
chapter will therefore explore how the established models perform when tested on a
dataset that aims to emulate learner error tendencies.



Chapter 4

Detection of Learner-Informed
Verb Order Errors

The second part of this thesis focuses on the detection of learner-informed verb order
errors. In the first part, I have explored the performances of various classifiers in the
detection of generic word and verb order errors. Generic word and verb order errors
can, nevertheless, only provide an insight into the general capability of the classification
approaches in detecting erroneous word order as they encompass any and all word and
verb order errors that could be made given a particular sentence. In reality, however,
learners do not typically misplace words randomly but word order errors follow certain
patterns, or error tendencies. In Dutch, the correct placement of verbs in a sentence
is one of these error-prone areas. In an ideal scenario, a classifier should be trained
on data that is annotated for these specific types of errors. Yet, learner corpora are
sparse, especially outside of the English domain. To the best of my knowledge, a
Dutch dataset annotated for verb order errors does not exist. Therefore, I perform a
structural analysis of 200 clauses extracted from 184 unique learner sentences which
are obtained from a corpus of genuine learner data graciously made available to me by
the Instituut voor Levende Talen at KU Leuven, which I call the Leuven corpus. By
means of structural analysis, I extract verb order error tendencies which serve as an
informational resource for the construction of a final synthetic evaluation dataset Info.
In the following sections, I will describe the Leuven corpus, the method of structural
analysis, as well as the generation of the learner-informed pseudo data. Finally, I will
explore the performance of the already-established classification approaches on both
the synthetic evaluation dataset Info and the 184 genuine learner sentences (Learn)
to assess how well their general capability in detecting erroneous word order translates
to real-life application scenarios.

4.1 Generation of Learner-Informed Pseudo Data: Dataset
Info

In analogy to the first part of this thesis, I will first describe the method of pseudo
data generation. All possible learner-informed verb order errors for a given sentence
s intuitively must be a subset of generic verb order errors, as the latter comprise any
and all possible misplacements of verbs (4.1):

SInfo(s) ⊆ SV erbs(s) ⊆ SRand(s) (4.1)

39
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Contrary to the shuffle methods applied in the first part of this thesis, the generation
of learner-informed verb order errors is not trivial. It requires an understanding of
what kinds of verb order errors learners are likely to make, which in turn requires at
least a basic understanding of Dutch syntax. In the following section, I will therefore
introduce some of the most prominent syntactic peculiarities of the Dutch language
before introducing my method of structural analysis, which I employ to extract verb
order error tendencies from the Leuven corpus of genuine learner data. Finally, I
describe the curation process of the Info test dataset and present the results the models
established in the first part of this thesis are able to achieve on the learner-informed
evaluation data.

4.1.1 Dutch Verb Order

Verb order in Dutch can be challenging for second-language learners. As has been
mentioned earlier, the placement of verbs in a Dutch sentence depends on a number of
factors, among which the clause type, the (non-)finiteness of the verb, and the presence
or absence of prepositional and infinitival complements. In principle, there are two
main positions in which a verb can occur in Dutch main and subordinate clauses: the
verb-second position and the verb-final position (Broekhuis and Corver, 2016).58 The
verb-second position is exclusively assumed by finite verbs in main clauses. In the
context of this thesis, I define finite verbs to be any conjugated verb form that is not
the infinitive or the past participle. This entails that in main clauses, non-finite verbs
are found in the verb-final position. In subordinate clauses, both the finite verb and
any number of non-finite verbs are found in the verb-final position.59 Examples (5)
through (7) illustrate these general verb order patterns:

(5) Ik
I

koop
buy-1sg.pres

een
a

boek.
book

‘I buy a book.’

Remark: Main clause. The finite verb occupies the verb-second position.

(6) Ik
I

wil
want-1sg.pres

een
a

boek
book

kopen.
buy-inf

‘I want to buy a book.’

Remark: Main clause. The finite verb occupies the verb-second position. The
non-finite verb occupies the verb-final position.

58The verb-second position is also commonly referred to as the V2 position. Both verb-second and
verb-final could also be understood as clause-second and clause-final as verb-second corresponds to the
second element in the clause and verb-final corresponds to the final element in the clause. In order to
keep the focus on the verbs and their positioning, however, I will continue to use the terms verb-second
and verb-final.

59In many cases, the finite verb can appear either before or after the non-finite verb form(s). These
two different variations are commonly referred to as the red order and the green order. The terms
result from Pauwels (1953)’s research on dialectal variation in the verb order of the Dutch subordinate
clause. She used the two colors to visualize the two different verb orders in illustrations and maps. See
Bloem (2021), who finds that this variation appears to be linked to processing complexity, for more
details.
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(7) Hij
He

weet
knows

dat
that

|
|
ik
I

een
a

boek
book

zou
would-1sg.pres

willen
want-inf

kopen.
buy-inf

‘He knows that I would want to buy a book.’

Remark: Subordinate clause. Both the finite and the non-finite verbs occupy
the verb-final position.60

This has resulted in typological resources such as The World Atlas of Language Struc-
tures describing Dutch to exhibit both SOV and SVO syntax patterns (Dryer, 2013).61

Yet, Dutch clauses follow a true SVO pattern only in main clauses that contain a single,
finite verb form and start with the subject of the clause, which often is not the case as
Example (8) illustrates. The clause-initial position can even be occupied by an entire
complement clause serving as a single constituent (Example (9)). In almost all other
cases, the default syntax pattern in Dutch can be described as SOV.

(8) Morgen
tomorrow

koop
buy-1sg.pres

ik
I

een
a

boek.
book

‘Tomorrow, I am going to buy a book.’

Remark: Main clause. The finite verb occupies the verb-second position. The
subject does not occupy the clause-initial position.

(9) [Dat
[that

jij
you

een
a

boek
book

ging
went

kopen],
buy]

wist
know-1sg.pst

ik
I

al.
already

‘I already knew that you were going to buy a book.’

Remark: Main clause. The finite verb occupies the verb-second position. The
clause-initial position is occupied by a finite complement clause serving as a
single constituent.

With the most crucial syntactic patterns covered, I now want to draw the attention to
two other noteworthy syntactic phenomena:

a) In polar questions, the clause-initial position remains phonetically empty, result-
ing in a surface structure where the finite verb appears to be in verb-first position.

b) Certain complements can follow verbs that occupy the verb-final position. They
occupy the post-verbal position.

For a), consider the open question in Example (10) and the polar question in Example
(11):

(10) Waarom
why

koop
buy-2sg.pres

je
you

een
a

boek?
book

‘Why do you buy a book?’

Remark: Open question. The finite verb occupies the verb-second position.
Analogous to main clause.

60Technically, the complementizer dat is also part of the subordinate clause. I draw the boundary in
the manner shown here to lay the focus on the words that are crucial for illustrating the word order
within the subordinate clause. The same applies to all following examples where I have to distinguish
between multiple clauses.

61SOV: Subject-Object-Verb. SVO: Subject-Verb-Object.
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(11) Koop
buy-2sg.pres

je
you

een
a

boek?
book

‘Do you buy a book?’

Remark: Polar question. At the surface level, the finite verb occupies the
verb-first position (clause-initial).

In open questions, the finite verb occupies the verb-second position. They function
in a manner akin to regular main clauses. In polar questions, according to generative
grammar, the finite verb also occupies the verb-second position. According to Broekhuis
and Corver (2016), the clause-initial position “remains phonetically empty”, which
results in a surface form where the finite verb appears to occupy the clause-initial or
verb-first position. As the purpose of this thesis is to lay the foundations for a solution
that can provide learners with informative feedback, I opt to utilize the more pragmatic
description, designating the correct placement of finite verbs in polar questions as the
verb-first position.

For b), consider Examples (12) and (13):

(12) Ik
I

wilde
want-1sg.pst

voorstellen
suggest-inf

[(om)
[(comp)

zijn
his

boek
book

te
to

lezen].
read-inf]

‘I wanted to suggest reading his book.’

Remark: Main clause with infinitival complement. The infinitival complement
occupies the post-verbal position.

(13) Hij
he

weet
knows

dat
that

|
|
ik
I

niet
not

nadacht
think-1sg.pst

[over
[about

het
the

boek ].
book]

‘He knows that I was not thinking about the book.’

Remark: Subordinate clause with prepositional complement. The preposi-
tional complement occupies the post-verbal position.

Contrary to finite subordinate clauses, infinitival complements are non-finite argument
clauses required by a substantial collection of Dutch verbs.62 They are characterized by
the presence of the particle te and can often be introduced by the complementizer om
(Broekhuis and Corver, 2016).63 They typically occur in the post-verbal position. Simi-
larly, prepositional complements can occur in the post-verbal position: “[N]ominal com-
plements normally precede, complement clauses normally follow, and PP-complements
can normally either precede or follow the clause-final verb(s)” (Broekhuis and Corver,
2016).64 The more complex a prepositional complement is, the more likely it is to be
placed in the post-verbal position. Table 4.1 summarizes the default positions of finite
verbs, non-finite verbs, and the previously introduced types of complements.65 The
positions directly translate to the error categories according to which I analyze the
Leuven learner data. However, in order to identify errors in a sentence, it is necessary

62According to Broekhuis and Corver (2016), infinitives such as kopen in Examples (6) and (7)
are also referred to as bare infinitivals. I, however, use the term infinitival exclusively for non-finite
argument clauses that contain the particle te.

63The complementizer om is always optional (Broekhuis and Corver, 2015) when invoked by a verb
that requires an infinitival complement such as voorstellen. Other verbs may require infinitival com-
plements where the use of om is prohibited. When om is used to indicate a purpose as in Ik wil naar
huis gaan om mijn boek te lezen. ‘I want to go home to read my book.’, its use is obligatory.

64PP: Prepositional phrase.
65As mentioned before, prepositional complements can also occur before the verb-final position.
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Table 4.1: Default positions per clause and verb/complement type

Clause Type Question Type

Main Subordinate Polar Open

FV verb-second verb-final verb-first verb-second
NFV verb-final verb-final verb-final verb-final

IC post-verbal
PC post-verbal*

FV – Finite verb
NFV – Non-finite verb
IC – Infinitival complement
PC – Prepositional complement

to initially formulate a hypothesis regarding the specific meaning the learner intended
to convey, known as a target hypothesis. In the following section, I will therefore intro-
duce the concept of target hypotheses before elaborating on the method of structural
analysis in more detail.

4.1.2 Generating Target Hypotheses

When analyzing erroneous learner sentences, it is necessary to establish a target hypoth-
esis, i.e., a hypothesis about what the learner may have intended to express (Lüdeling,
2008). In other words, one must construct a corrected version of the learner sentence
against which to evaluate the erroneous sentence produced by the learner. The gener-
ation of target hypotheses, however, is not trivial. Consider the sentence in Example
(14):

(14) *Anna
Anna

heeft
have-3sg.pres

maakte
make-3sg.pst

zich
herself

grote
big

zorgen
sorrows

om
about

Sam.
Sam.

‘Anna was very worried about Sam.’ (Russian A2)66

The sentence exhibits elements of both the Dutch simple and compound past tenses.
Thus, in principle, two target hypotheses are conceivable (Examples (15) and (16)):

(15) Anna
Anna

heeft
have-3sg.pres

zich
herself

grote
big

zorgen
sorrows

om
about

Sam
Sam

gemaakt.
make-pst.ptcp

(16) Anna
Anna

maakte
make-3sg.pst

zich
herself

grote
big

zorgen
sorrows

om
about

Sam.
Sam

Both hypotheses conform to the grammatical rules of the Dutch language, and a differ-
ence in usage could only be argued if context was available and assumed to be gram-
matically correct. Nonetheless, there is an argument that supports choosing the target

66When providing examples from the corpus, I will also provide the learner’s native language and
their level of Dutch according to the CEFR.
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hypothesis from Example (15) over Example (16): Natural language is both uttered
and written in a linear sequence, which means that the learner must first deliberately
have made the choice to use the auxiliary heeft which suggests an intended usage of
the compound tense. It is therefore more likely that the learner failed to produce the
correct past participle than it is that the learner did not mean to make use of the
compound tense in the first place. Thus, entirely deleting a word the learner chose to
use seems more costly than correcting an incorrectly formed verb form. In ambigu-
ous situations like these, I choose the target hypothesis that appears to be the least
costly. Within the scope of this thesis, it is sufficient if the target hypothesis is a valid
correction of the learner sentence. It does not have to be the single best correction
for its purpose is only to identify potential verb order errors. Additionally, I let all
target hypotheses, which I generate either manually or with the help of generative AI,
be evaluated by two native Dutch speakers (see Section 5). Having defined the concept
of target hypotheses, the following section will provide a more detailed description of
the method used for analyzing verb order errors.

4.1.3 Analyzing Verb Order Errors

For the analysis of verb order errors, I adopt the default positions of the elements
described in Section 4.1.1 and use them to designate error categories. I distinguish
between the following error types:67

1: verb-scond – Finite verb is not found in the verb-second position in main clause
or open question.

2: verb-final – Non-finite verb is not found in the verb-final position or finite verb in
subordinate clause is not found in the verb-final position.

3: verb-first – Finite verb is not found in the verb-first position in polar question.
4: post-verbal – Post-verbal prepositional complement or infinitival complement is

not found in the post-verbal position or exhibits an internal verb order error.

I compare learner sentences to their corresponding target hypotheses (TH) and deter-
mine the error type. The error types are to be interpreted in the following way: The
finite verb form, in a main clause or open question, has to occupy the second position in
the clause – if it does not, there is a verb-second error. Non-finite verb forms (infinitives
and past participles) typically have to occupy the final position in the clause – if they
do not, there is a verb-final error. In subordinate clauses, the finite verb form follows
the same principle as the non-finite verb forms and has to occupy the final position in
the clause – if it does not, there is a verb-final error. In polar questions, the finite verb
has to occupy the first position of the clause – if it does not, there is a verb-first error.
Finally, infinitival complements and complex prepositional complements have to appear
after the verb-final position – if they do not, there is a post-verbal error. For the sake
of simplicity, I also classify internal verb order errors within infinitival complements as
post-verbal errors. Examples (17) through (20) illustrate the different error types:

67Post-verbal: Internal verb order errors can occur in infinitival complements where the infinitive,
being a non-finite verb form, ought to occupy the verb-final position.
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(17) *Bovendien
moreover

wij
we

de
the

musea
museums

kunnen
can-1pl.pres

bezoeken.
visit-inf

‘On top of that, we can visit the museums.’ (Arabic A2)

TH: Bovendien kunnen wij de musea bezoeken.

Error type: main clause – finite verb – verb-second

(18) *De
the

mensen
people

|
|
die
who

wonen
live-3pl.pres

in
in

dorpen
villages

|
|
zijn
are

zo
so

conservatief.
conservative

‘The people who live in villages are so conservative.’ (Spanish B1+)

TH: De mensen | die in dorpen wonen | zijn zo conservatief.

Error type: subordinate clause – finite verb – verb-final

(19) *De
the

belge
Belgian

bevolking
population

agressiefer
more aggressive

dan
than

voor
before

worden?
become-unk

‘Are the Belgian people becoming more aggressive than before?’ (Arabic A2)

TH: Wordt de belgische bevolking agressiever dan voorheen?

Error type: polar question – finite verb – verb-first

(20) ?Ik
I

wil
want

verduidelijken
clarify

dat
that

|
|
ik
I

[over
[about

de
the

mensen
people

die
who

kleine
small

misdaden
offences

hebben
have

gepleegd ]
commited]

spreek.
talk-1sg.pres

‘I want to clarify that I am talking about the people who have commited minor
crimes.’ (Russian B1)

TH: Ik wil verduidelijken dat | ik spreek [over de mensen die kleine misdaden
hebben gepleegd ].

Error type: subordinate clause – prepositional complement – post-verbal

Example (19) also underlines the importance of the target hypothesis, which in this
case determines that the verb in question, worden, should actually be 3sg.pres. The
verb form the learner makes use of could either be the infinitive or 3pl.pres, which
is impossible to discern and the reason why I mark its morphological information as
unknown (unk). As for the purpose of this study, it is only the position of the verbs
within a sentence that is important for extracting learner error tendencies, constructing
a valuable target hypothesis bears the advantage of removing all verb order-unrelated
errors an original learner sentence may additionally contain.

While the previously introduced error types provide a decent general overview about
the types of errors learners are likely to make, they do not possess the representational
power that would be needed in order to recreate such errors. In order to account for
this, I additionally analyze the structure of the clause containing the verb order error
by annotating it for important elements and their order.68 The structures for Examples
(17) through (20) are illustrated in Examples (21) through (24):

68I have adapted the labels of the elements I present here for better readability. A list of all elements
for which I analyze the erroneous clauses can be found in Appendix C.
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(21) *(Bovendien) (wij ) (de musea) (kunnen) (bezoeken).
adverb – subject – object – finite verb – non-finite verb

(22) *(die) (wonen) (in dorpen)
relative pronoun – finite verb – adverbial

(23) *(De belge bevolking) (agressiefer) (dan) (voor) (worden)?
subject – adjective – particle – adverb – finite verb

(24) ?(ik) (over de mensen die kleine misdaden hebben gepleegd) (spreek)
subject – prepositional complement – finite verb

In combination with the respective error type of the clause, I am able to extract patterns
of which elements or absolute positions can be associated with the misplacement of verb
tokens. I also want to emphasize that there are many ways to analyze phrase structure.
My approach is only one way of approximating syntactic patterns, yet it is practical
enough to allow for an efficient reconstruction of observed error tendencies using the
spaCy natural language processing toolkit as will be explained in Section 4.1.6. In the
following section, I will introduce the Leuven corpus as the source of the learner data
I analyze by means of the just established analytical framework before presenting the
error tendencies I am able to extract from it.

4.1.4 Leuven corpus

The original Leuven corpus contains 3,121 unique learner essays that are marked for
errors with a semi-standardized system as could be used by language teachers in their
daily proceedings. The learners authoring the essays speak a total of 82 different first
languages, a full list of which can be found in the data statement in Appendix E.1.
Their levels of Dutch range from A2 to C1 in the Common European Framework of
Reference for Languages (CEFR). In the dataset, the error tag (P) for positie ‘position’
is used to indicate word order errors of any kind. For my analysis with the objective
of extracting learner-informed verb order error tendencies, I manually extract 500 (P)-
sentences from the essays and analyze them for the presence of verb order errors,
resulting in a semi-random selection of 184 sentences with 200 main and subordinate
clauses containing verb order errors.69 The distribution of first languages and CEFR
proficiency levels within the 184 selected sentences is illustrated in Figures 4.1 and 4.2,
respectively. The languages follow the ISO 639 codes.70 I generate target hypotheses
for the selected sentences and proceed to analyze them for the nature of the contained
verb order errors by the means of the previously introduced analytic framework. The
results of this analysis will be presented in the following section.71

69The essays in the corpus do not appear to be ordered based on any criteria such as the learner’s
language proficiency level or their first language. Thus, I review the extracted sentences from top to
bottom and manually filter out any sentences where the (P) error is not related to verb order or the
content of the sentence is too incomprehensible for me to generate a valuable target hypothesis.

70https://www.iso.org/iso-639-language-codes.html, last accessed: 15.08.2023. Brazilian Por-
tuguese included in pt ; Farsi included in prs.

71I generate the target hypotheses for half of the selected sentences manually (second-language
speaker, CEFR B2–C1) and for the other half with the help of a generative artificial intelligence model.
All target hypotheses are evaluated by two first-language speakers. See Section 5 for more details.

https://www.iso.org/iso-639-language-codes.html
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Figure 4.1: Distribution of first languages in selected learner sentences
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Figure 4.2: Distribution of CEFR levels in selected learner sentences
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4.1.5 Identified Error Tendencies

When analyzing the 200 main and subordinate clauses extracted from the learner sen-
tences, we can see that the majority of errors are made in the placement of the finite
verb, followed by errors in the placement of non-finite verb forms and lastly by errors
resulting from misplacements of infinitival and prepositional complements (Figure 4.3):

Figure 4.3: Distribution of errors per verb / complement type

151 22
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10 fv

nfv
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Since correctly placing the finite verb in Dutch sentences appears to be the most error-
prone challenge for learners by a significant margin (75.5%), this thesis will henceforth
focus on verb order errors that result from misplacing the finite verb of a clause. The
other error types present interesting directions for future research.

To reiterate, the finite verb in Dutch can assume three positions, depending on
which clause type it occurs in: verb-second in main clauses and open questions, verb-
final in subordinate clauses, and verb-first in polar questions. Figure 4.4 illustrates the
distribution of these error types within the 151 instances of misplaced finite verbs:

Figure 4.4: Distribution of finite verb error types

verb-second

verb-final

verb-first

1

76

74

As the data indicates, the finite verb is misplaced about equally as often in main clauses
(76 instances), where it should occupy the verb-second position, as it is in subordinate
clauses (74 instances), where it should occupy the verb-final position. Misplacements
of the finite verb in open questions, where it should occupy the verb-first position,
occurred only once in the examined sentences.

The structural analysis, the results of which are illustrated in Figure 4.5, reveals that
89.5% of the finite verb errors in main clauses can be associated with either absolute po-
sitions (clause-initial and clause-final), the subject of the clause (clause-internal before



4.1. GENERATION OF LEARNER-INFORMED PSEUDO DATA 49

Figure 4.5: Distribution of incorrect positions of finite verb in main and subordinate
clauses
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subject and clause-internal after subject), or other, non-finite verb forms (clause-
final before nfv).72 In subordinate clauses, where the verb-final position is the default
position for all verb forms, 90.5% of the finite verb errors can be associated with either
the clause-initial absolute position or the subject of the clause (clause-internal before
subject and clause-internal after subject).73 Misplacements of the finite verb that
cannot be associated with any of these categories are classified as miscellaneous. Note
that contrary to the error types of Figure 4.4, which denote the desired word order, the
incorrect position categories resulting from the structural analysis illustrated in Figure
4.5 denote the positions the finite verb was actually placed in by the learner, which
facilitates reconstructing these errors. Examples (25) through (30) illustrate each of
the incorrect position categories:

72When the finite verb is found in an absolute position either at the beginning or at the end of the
clause, this does not necessarily mean that its positioning cannot be related to other elements. If a
finite verb occurs in the clause-initial position, it can still be immediately followed by the subject, for
example. I choose to conduct my analysis in terms of absolute positions in the case of the clause-initial
and clause-final positions because these absolute positions are more straightforward to replicate in the
Info dataset. At the same time, the results of the analysis do not try to establish a causal relationship
between the subject or any other element and the misplacement of the finite verb, although conceivable.
It is a mere observation that misplaced finite verbs often occur in the immediate neighboring context
of the subject. Further research would be required to establish whether the subject is the cause of the
misplacement.

73The categories clause-internal before subject and clause-internal after subject denote that the
finite verb is found immediately next to the subject but does not occupy any of the absolute positions
or the clause-final before nfv position.
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(25) *Ik
I

mag
may

geen
no

alcoholische
alcoholic

dranken
beverages

drinken
drink

en
and

|
|
mag
may-1sg.pres

ik
I

niet
not

roken.
smoke-inf

‘I mustn’t drink and I mustn’t smoke.’ (Kurdish, A2)

TH: Ik mag geen alcoholische dranken drinken en ik mag niet roken.

Error type: main clause – finite verb – verb-second

Position: clause-initial

(26) *De
the

volgende
following

dagen
days

misschien
maybe

kunnen
can-1pl.pres

we
we

een
a

ballonvaart
balloon ride

maken.
make-inf

‘Maybe we can go for a balloon ride in the upcoming days.’ (Turkish, A2)

TH: Misschien kunnen we de volgende dagen een ballonvaart maken.

Error type: main clause – finite verb – verb-second

Position: clause-internal before subj

(27) *We
we

leven
live

in
in

een
a

wereld
world

|
|
waarin
in which

alles
everything

is
be-3sg.pres

digitaal
digital

geworden.
become-pst.ptcp

‘We live in a world in which everything has become digital.’ (Lingala, A2)

TH: We leven in een wereld waarin alles digitaal is geworden.

Error type: subordinate clause – finite verb – verb-final

Position: clause-internal after subj

(28) *Bovendien
moreover

wij
we

de
the

musea
museums

kunnen
can-1pl.pres

bezoeken.
visit-inf

‘On top of that, we can visit the museums.’ (Arabic, A2)

TH: Bovendien kunnen wij de musea bezoeken.

Error type: main clause – finite verb – verb-second

Position: clause-final before nfv

(29) *Twee
two

jaar
years

geleden
ago

begon
began

ik
I

met
with

Nederlands
Dutch

leren
learn

en
and

|
|
tot
until

nu
now

toe
up

het
it

nog steeds
still

interessant
interesting

is.
be-3sg.pres

‘I started learning Dutch two years ago, and up until now, it is still interesting.’
(Arabic, B1+)

TH: Twee jaar geleden begon ik met Nederlands leren en tot nu toe is het nog
steeds interessant.

Error type: main clause – finite verb – verb-second

Position: clause-final
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(30) *Deze
this

methode
method

soms
sometimes

helpt
help-3sg.pres

mij
me

een
a

beetje.
little

‘This method sometimes helps me a little.’ (Turkish, A2)

TH: Deze methode helpt mij soms een beetje.

Error type: main clause – finite verb – verb-second

Position: miscellaneous

The following section will explain how I take advantage of these identified error ten-
dencies in order to construct the learner-informed evaluation dataset Info.

4.1.6 Curation of Evaluation Dataset Info

The error tendencies that result from the structural analysis of the 200 selected learner
clauses can serve as a source of information for the curation of the learner-informed
evaluation dataset Info. As a subset of Verbs permutations, Info permutations only
allow for changes in the position of the finite verb that recreate one of the incorrect
position categories that result from the analysis. The Info test dataset is based on
the same 13,586 correct sentences as the Rand and Verbs test datasets. The latter
two, however, are effectively double in size as they contain each sentence twice, once in
its original and once in its permuted form. As the Info dataset aims to approximate
genuine learner data as closely as possible, it only contains each of the 13,586 sentences
once, each either retained in its correct form or modified to reflect an incorrect structure
based on the identified learner error tendencies. Out of the 13,586 sentences, 2,242
contain at least one subordinate clauses that is identifiable with the spaCy dependency
parser,74 which is equivalent to 16.5% of all sentences. In order for the dataset to contain
both correct and incorrect subordinate clauses, I assume 50% of the subordinate clauses
to be erroneous, which translates to 1,121 sentences with incorrect subordinate clauses
and equally as many sentences with correct subordinate clauses. In the previous section,
it was established that the finite verb is almost equally as likely to be misplaced in a
subordinate clause as it is in a main clause (Figure 4.4). Thus, I set the amount of
sentences with main clauses to contain errors to 1,121 as well. The resulting distribution
of correct and incorrect main and subordinate clauses is illustrated in Table 4.2:

Table 4.2: Clause type error distribution in Info

Clause % Total Value Amount %

Main 83.5%
correct 10,223 75.25%
incorrect 1,121 8.25%

Subordinate 16.5%
correct 1,121 8.25%
incorrect 1,121 8.25%

In the Info dataset, the likelihood of encountering an error in a subordinate clause is
therefore approximately five times greater than in a main clause, which approximates
the proportion of sentences that contain a subordinate clause versus sentences that do
not contain a subordinate clause identified above (16.5 : 83.5) to the greatest possible

74The criteria for identifying subordinate clauses will be explained below.



4.1. GENERATION OF LEARNER-INFORMED PSEUDO DATA 52

extent given the amount of available data.75

To partly account for the identified errors resulting from misplacements of the ele-
ments this thesis cannot consider in detail (non-finite verb errors, infinitival complement
errors, prepositional complement errors), for the miscellaneous finite verb errors, and
for entirely unseen error types that may have missed the limited sample of learner sen-
tences analyzed, I introduce an element of randomly verb-permuted sentences R equal
to one third of the amount of incorrect clauses:76

R = 2242/3 ≈ 748 (4.2)

The random element follows the Verbs shuffle method introduced in the first part
of this thesis. This leaves the remaining 747 incorrect sentences per clause type to
be divided according to the distribution of the observed learner error tendencies. The
distribution of recreated errors in the main and subordinate clauses of the Info dataset
is illustrated in Table 4.3:

Table 4.3: Distribution of error position types in main and subordinate clauses in Info

Clause Position Error FV Amount % Analysis

– R: Verbs 748 – –

Main

clause-internal after subject 329 44% 30
clause-final 164 22% 15
clause-internal before subject 112 15% 10
clause-final before nfv 75 10% 7
clause-initial 67 9% 6

Total 747 100% 68

Subordinate

clause-internal after subject 433 58% 39
clause-initial 232 31% 21
clause-internal before subject 82 11% 7

Total 747 100% 67

I introduce errors into the grammatically correct sentences as follows: For subordinate
clauses, I retrieve whether a sentence contains a subordinate clause with the help of
the spaCy dependency parser. First, I check whether spaCy detects any subordinative
markers (mark) in a sentence. If there is a token whose dependency relation spaCy
identifies to be a subordinative marker, the position of which denotes the beginning of
the subordinate clause, I determine the limit of the subordinate clause by looking for
any coordinative conjunctions in a position after the subordinative marker. If there
are none, the subordinate clause is assumed to be the final clause of the sentence. I
then retrieve the subject of the subordinate clause and its finite verb, if present, by

75This is a simplification. A sentence typically consists of more than one clause, so the total ratio
of main clauses to subordinate clauses in the dataset as a whole is likely to be even greater. However,
since I only introduce a single error to each sentence, the 16.5 : 83.5 ≈ 1 : 5 ratio is a good estimate.

76I set the size of R to be one third of all erroneous sentences to approximate the amount
of identified errors that this thesis cannot consider in more detail: 22nfv + 17 ic + 10 pc +
15 fv miscellaneous / 200 = 64/200 ≈ 1/3. R follows the Verbs permutation method to account
for unseen verb order error types.
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again accessing the dependency relations and spaCy’s representation of morphological
information, respectively. If all elements are present, I either move the finite verb to the
first position behind the subject (clause-internal after subject), to the first position
before the subject (clause-internal before subject), or to the first position behind the
subordinative clausal complement (clause-initial).

For main clauses, I assume their initial token to be the first token of the sentence.77

I then check for the limit of the main clause in the same way as in subordinate clauses.
I retrieve the first finite verb spaCy detects by accessing the morphological information
and move it behind or before the subject (clause-internal after subject and clause-
internal before subject), before the first non-finite verb form (clause-final before nfv),
or into the absolute initial or final position, again following the sample principles as in
subordinate clauses (clause-initial and clause-final).

Figure 4.6: Recreation of a clause-final
before nfv error in main clause

ik wilde naar huis gaan

subject – – – –

– fv – – nfv

ik naar huis wilde gaan

retrieve relevant dependency
information, main clause

is only clause

retrieve relevant
morphological information

move fv to position
of nfv -1

Figure 4.7: Recreation of a clause-internal
after subject error in subordinate clause

ik weet dat hij gisteren

niet naar huis wilde gaan

– – mark subject –

– – – – –

– – – – –

– – – fv nfv

ik weet dat hij wilde

gisteren niet naar huis gaan

retrieve relevant dependency
information, subordinate clause
is not followed by other clause

retrieve relevant
morphological information

move fv to position
of subject +1

Figures 4.6 and 4.7 illustrate how I recreate a clause-final before nfv error in a main
clause and a clause-internal after subject error in a subordinate clause for the sentences
ik wilde naar huis gaan ‘I wanted to go home’ and ik weet dat hij gisteren niet naar
huis wilde gaan ‘I know that he did not want to go home yesterday’, respectively.

77This effectively means that I introduce errors only to the first main clause of any given sentence.



4.2. EVALUATION METRIC: F0.5 SCORE 54

Now that the types of errors and their distribution in the Info test dataset have been
explained in detail, in the following section I will introduce an additional evaluation
metric that is commonly used when working with learner data before presenting the
results the previously established classification approaches are able to achieve on both
the Info evaluation dataset and the 200 genuine learner sentences (Learn) themselves.

4.2 Evaluation Metric: F0.5 Score

Where in the first part of this thesis, the average F1 score presented itself as a suitable
evaluation metric because it attributes equal importance to both precision and recall
and therefore neatly illustrates the general capabilities of the explored classification
approaches in detecting erroneous word order, I now want to introduce an additional
evaluation metric that is commonly used in automated grammatical error correction:
the F0.5 score (4.3).

F0.5 =
(1 + 0.52) · precision · recall
(0.52 · precision) + recall

(4.3)

The F0.5 score is especially suitable for grammatical error correction as it deems preci-
sion twice as important as recall. Ng et al. (2014) explain:

When a grammar checker is put into actual use, it is important that its
proposed corrections are highly accurate in order to gain user acceptance.
Neglecting to propose a correction is not as bad as proposing an erroneous
correction.

In other words, a classifier that regularly classifies correct sentences as incorrect could
discourage learners. Thus, a less sensitive but more accurate classifier would always
be preferable if a trade-off between precision and recall was inevitable. This makes
the average F0.5 score more suitable to represent the performance of the classification
approaches I explore if they were to be implemented in a real-life application scenario,
which I try to approximate with the Info test dataset.
Furthermore, for the original learner sentences Learn, I report the recall score as
all of the sentences in the dataset are incorrect. The recall score, therefore, is directly
equivalent to the percentage of incorrect sentences the classification approaches identify
to be incorrect.
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4.3 Results

For comparative purposes, I illustrate the average F1 scores of all models sorted by
their respective train dataset on the Rand, Verbs and Info test datasets. For the
Transformer Classifier models, I again report the average performance scores over
three models (Figure 4.8):

Figure 4.8: F1 scores per model and test dataset
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Additionally, for each model I report the more practically relevant average F0.5 score
that emphasizes precision. For the original learner sentences, as all of them are incor-
rect, I report the recall score of the incorrect category (4.4):

Table 4.4: Average F 0.5 score of all models on Test Info and Recall score of all
models on Test Learn

Train Pool/Rand Verbs
Config Model Test Info Learn Info Learn

Parse
Lookup

Dop-tree-orig 0.27 0.99 – –
Dop-tree-simple 0.51 0.90 – –

PoS Classifier spaCy-tup 0.53 0.27 0.56 0.38

Parse
Classifier

Dop-tup-orig 0.60 0.31 0.61 0.36
Dop-tup-simple 0.61 0.29 0.60 0.33

Transformer
Classifier

BERTje 0.76 0.04 0.92 0.37
RobBERT 0.94 0.86 0.95 0.39
Gpt-2 0.96 0.94 0.92 0.29

�F0.5 Recall �F0.5 Recall

4.4 Discussion

The average F1 scores each model is able to achieve typically suffer a slight decrease
when tested on the Info dataset as opposed to the scores the models are able achieve
when trained and tested on data curated according to the same permutation method
for introducing word order errors (Figure 4.8). This effect is similar to Rand-trained
classifiers exhibiting lower scores on theVerbs test set, which has been observed earlier.
Info permutations are a subset of Verbs permutations, which in turn are a subset of
Rand permutations. Consequently, Rand-trained classifiers exhibit the highest scores
on the Rand test set, followed by the Verbs test set and finally the Info test set as
the error types contained within the test sets become more and more specific while the
classifiers become less and less sensitive for these types of errors. Likewise, classifiers
trained on the Verbs train data typically exhibit higher performance scores on the
Info test set than classifiers trained on the Rand data. This is due to the fact that
the Verbs train data, its permutations being a more restricted superset of the Info
permutations compared to the Rand permutations, is more likely to include the specific
error types that the Info test set contains. A notable exception form the RobBERT
and Gpt-2 Rand-trained models, which achieve higher performance scores on the
Info test set than on the Verbs test set. The Rand-trained Gpt-2 classifier even
outperforms its Verb-trained counterpart and presents itself as the best-performing
model on the Info test set. In the following sections, I will briefly shed light on the
performance of the different configurations by means of the more practically relevant
performance scores illustrated in Table 4.4.
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4.4.1 Parse Lookup

The Parse Lookup approaches, as expected, exhibit the lowest average F0.5 scores
out of all configurations and models. As has been mentioned before, this likely stems
from the insufficient representational power, the overprediction of correct sequences,
and the resulting oversimplification of tree structures. Both models, like previously,
significantly overpredict the incorrect category. This is also the reason for the extremely
high recall scores on the Learn sentences. In this case, they do not result from the
models’ excellent performance but from the fact that they classify almost any sentence
as incorrect, which is highly undesirable for a real-life application.

4.4.2 PoS and Parse Classifier

The models of the PoS and Parse Classifier configurations overall exhibit very
similar performance scores. The Parse Classifier approaches that have access to
syntactically richer information still manage to outperform the PoS Classifier ap-
proach on the Info dataset, but the Verbs-trained spaCy-tup classifier achieves the
highest recall on the Learn sentences. Simplifying the tree structures for theDop-tup-
simple implementation of the Parse Classifier configuration, just like before, does
not prove equally advantageous as it did for the Parse Lookup configuration. The
classifiers appear to learn to generalize equally well when presented with the original
tree structures as sources for their input. The performance of the Parse Classifier
approaches, in particular, is impressive as they have been trained on only a fraction
of the data the PoS Classifier model has been trained on (3.6%), stressing that
syntactic information is vital for solving the task of word order error detection.

4.4.3 Transformer Classifier

In this experiment, the most interesting differences within a configuration can be found
in the Transformer Classifier models. In the first part of this thesis, BERTje and
RobBERT outperform Gpt-2 when tasked to predict generic verb order errors while
having seen generic word order errors during training. Task-specific training and testing
results in almost perfect performance scores for all models. Here, Gpt-2 significantly
outperforms the BERT-based models when trained on data permuted according to the
Rand method. Training on data permuted to the Verbs method achieves the greatest
increase in performance for the BERTje model, but for Gpt-2 it effectively lowers
the performance. This is the case both for the Info data and the Learn sentences.
The differences are drastic: Where the GPT-2-based classifier is able to identify 94%
of the Learn sentences as erroneous, the BERTje-based model identifies only 4% of
them correctly. This indicates that when the transformer models are presented with
different types of error generation methods, their learned patterns from the pseudo
data they have been trained on translate differently well to the exact subset of errors
learners make. Since all classifiers have been trained on the same data, this must be
the result of the different architectures of the models. Gpt-2 is the model that can
identify actual learner errors most accurately and exhibits the highest F0.5 score on
the learner-informed evaluation data. This tells us that its precision is very good, too,
and it is unlikely to overpredict the incorrect category as was the case with the Parse
Lookupmodels that exhibited equally high recall scores on the Info data. Gpt-2must
therefore have a way of representing syntactic information that lets it generalize more
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efficiently than the BERT-based models, even thoughRobBERT significantly improves
on the performance of BERTje. The recall on the Learn sentences, when trained on
data permuted according to the Verbs permutation method, is also significantly lower
with all models, including Gpt-2, than that of the Rand-trained Gpt-2 model. This
suggests that the method of data permutation can affect the capability of all models
to generalize. With Gpt-2 trained on Rand data being the best model, I want to look
at its predictions per incorrect position category (Table 4.5):

Table 4.5: Best predictions of Gpt-2 Rand per incorrect position in Info

Clause Position Incorrect Correct

–
correct 4 11340
R: Verbs 333 415

Main

clause-initial 67 0
clause-internal before subject 112 0
clause-internal after subject 329 0
clause-final before nfv 74 1
clause-final 162 2

Subordinate
clause-initial 230 2
clause-internal before subject 82 0
clause-internal after subject 419 14

As it turns out, its performance is almost impeccable on the learner-informed errors
introduced, stressing that theRand-trainedGpt-2 seems to have found a way to adjust
its parameters in such a way that it is sensitive to errors learners are likely to make,
but not as sensitive to randomly introduced verb order errors.

Other than the fact that both sequences are complex sentences, the only two Learn
sentences the best Gpt-2 model predicts to be correct although all Learn sentences
are incorrect do not seem to have much in common:78

– *Inburgering 1 gaat over de autochtonen van Europese landen die volgens de schri-
jver en hoogleraar aan de Letterenfaculteit van de Katholieke Universiteit Leuven
Joop van der Horst zetten hun hakken in het zand met betrekking tot hun integratie
met de rest van de Europese Unie

– *Als ik moet mijn selectiecriteria opsommen zou ik zeggen dat mijn ideale partner
moet grappig zijn en bereid moet zijn om over hun gevoelens te praten

The first sentence contains a miscellaneous verb order error while the second sentence
holds clause-internal before subject errors in subordinate clauses while also exhibiting
a correct word order pattern in another subordinate clause, which could potentially
have led to the misclassification. It is even possible that although being trained on
randomly permuted data, the classifier learned a similar set of patterns in relation to
the subject or absolute positions to identify verb order errors as I have introduced for
analytical purposes, for clearly it is able to solve these types of errors while proving
to be less sensitive to randomly introduced verb order errors. Yet, how exactly the

78For better readability, in this example, I do not lowercase the tokens.
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models represent abstract information like this internally needs to be the subject of
future research.

From a practical perspective, where in an application scenario, all sentences intu-
itively follow learner error tendencies for they are the product of learners themselves,
this could potentially mean an even better performance on actual learner errors than
illustrated on the Info test set which includes the element R of random Verbs shuf-
fles. While the performance of the Rand-trained Gpt-2 classifier appears promising,
it is important at this point to acknowledge a number of limitations inherent in the
results of this thesis. These limitations could serve as intriguing avenues for subsequent
research.

4.4.4 Opportunities for Future Research

In addition to the limitations of the different classification approaches and of the method
of pseudo data generation touched upon earlier, which can occasionally lead to the
generation of correct sequences, I would like to briefly draw attention to a number
of other challenges that could potentially offer interesting starting points for future
research:

– Pseudo data dependency: Due to the lack of genuine data, both the training
and the evaluation of the models described here predominantly rely on pseudo
data. Although it is possible to reasonably estimate the models’ real-life perfor-
mance based on the combination of the Info and Learn test sets, their efficacy
on genuine data remains to some extent uncertain unless extensively tested on
genuine learner data. Moreover, the genuine learner sentences of the Learn test
set are modified to only contain verb order errors, ensuring a consistent input
format for the classification approaches. This indicates that the best-performing
model can reliably detect verb order errors made by learners. However, its ca-
pability to identify these errors in untreated learner data is not guaranteed. A
comprehensive annotation study with the objective of obtaining a dataset of gen-
uine learner data annotated for word order errors is thus still desirable.

– Multiple errors in learner sentences: Some learner sentences contain multi-
ple errors. In retrospect, it would have been more beneficial to have 200 sentences
with a single error each, rather than 184 sentences where some contain multiple
errors. This is because the classifiers might find it easier to identify errors in
sentences with multiple mistakes. This also relates back to the need for more
annotated genuine data.

– PoS and Parse Classifier input: The method of feeding positional information
into the models of the PoS and Parse Classifer approaches is rather rudimen-
tary. Apart from absolute position tuples, exploring alternative approaches such
as the probability score of parses, tree distance, or incorporating dependency in-
formation might yield better results for these classification approaches and could
be considered for future research.
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– Explorative nature of the thesis: Due to the exploratory nature of this thesis
and its limited scope, certain aspects such as feature ablation and hyperparameter
tuning were not considered. Investigating the optimization of these parameters
in future research could provide insights into their impact on model performance.

Finally, with generative artificial intelligence models gaining more and more popular
recognition, their potential benefits as readily available end-to-end solutions for a vari-
ety of natural language processing tasks cannot be overlooked. In the following section,
I will therefore briefly illustrate how a learner could immediately benefit from the use
of such a model.



Chapter 5

Outlook: Generative Artificial
Intelligence Models as Virtual
Teachers

With prompt-based generative artificial intelligence models like OpenAI’s Chat-GPT
receiving more and more popular attention,79 exploring the performance of these models
at different tasks can be beneficial as they are very easy to use. On the other hand,
however, these models are often proprietary, which makes their behavior difficult to
investigate, limits accessibility, and puts them at risk of being subject to undetectable
biases.

Figure 5.1: Distribution of accepted and challenged initial target hypotheses

75

20

5

(a) Human

Accepted
Challenged by 1
Challenged by 2

78

18

4

(b) AI

Prompt engineering offers the possibility to investigate the performance of these models.
In the applicational context of this thesis, I take on the role of a language learner who
wants to use the program to correct sentences I have produced so I can learn from the
errors I make. I let it correct half of the learner error sentences of the Learn test set
based on the following prompt:

I will present you with sentences containing errors in Dutch. I want you
to correct these sentences while staying as close as possible to the original
wording.

79https://openai.com/blog/chatgpt, last accessed: 15.08.2023.

61

https://openai.com/blog/chatgpt


5. OUTLOOK 62

The other half of the Learn sentences, I, an advanced learner of Dutch (CEFR B2–C1),
correct manually myself. These corrections serve as the target hypotheses I base the
analysis of the error type and of the position of the misplacement on. I let all target
hypotheses be evaluated by two first-language speakers and compare the number of
target hypotheses that are challenged by either one of the first-language speakers, both
of the first-language speakers, or none of them.80 In case the first-language speakers
do not agree with the presented target hypothesis, they are asked to provide a target
hypothesis themselves. If the target hypothesis for a given sentence is challenged by
both first-language speakers, I compare the suggested target hypotheses by both of the
first-language speakers and choose the one that appears to stay closer to the original
wording used by the learner, i.e., that tries to avoid as many additions to the sentence as
possible. This way, I can ensure that all the target hypotheses I use for the extraction of
verb order error tendencies are a possible correction of the given sentence accepted by
at least one first-language speaker. This tries to keep the focus of the corrections on the
verb order error.81 At the same time, I can show that the performance of the model at
correcting grammatical errors is slightly better than that of an advanced learner, which
proves the usefulness of these models for learners, even at higher proficiency levels
(Figure 5.1). Therefore, facilitating access to these models and more transparency
about their parameters could make them readily available, effective tools in the form
of end-to-end solutions. The BEA-2023 shared task whose results were published just
a month prior to this thesis investigates the performance of models that are based on
a corpus of teacher-student interactions. “The goal of the task was to benchmark the
ability of generative language models to act as AI teachers, replying to a student in
a teacher–student dialogue” (Tack et al., 2023, p. 1). In this thesis, I have isolated
a single capability such an AI teacher should possess, i.e., the detection of verb order
errors as the correct placement of verbs seems to be challenging for second language
learners.

80The instructions provided to the first-language annotators can be found in Appendix F.
81The correction styles of different annotators can differ and using target hypotheses that divert too

much from the original as a basis for the error type and structural analysis can make it harder to
analyze verb order errors.



Chapter 6

Conclusion

In this thesis, I have illustrated the performance of several classifiers based on different
natural language processing model architectures at the task of detecting word order
errors. I have focused on the detection of verb order errors in particular as verb order
appears to be challenging for second-language learners of Dutch. Word order error
correction, until now, has largely escaped the scope of public interest which is why there
is no annotated genuine data available that could be used for the purpose of training
classifiers for the task. Therefore, I have created pseudo datasets that introduce generic
word and generic verb order errors to correct source sentences.

I have shown that a naive lookup approach based on the tree output of a syntactic
constituency parser does not possess the representational power needed to effectively
model the allowed syntax patterns of Dutch. In a machine learning setup, however, I
have been able to show that classifiers having access to the syntactically richer output
of a parser as opposed to the output of a part-of-speech tagger fare significantly better
when tasked to detect both generic word and generic verb order errors. This indicates
that syntactic information is indeed crucial for solving the task of word order error
detection. This holds despite the fact that the parser-based approaches are trained on
a fraction of the data that the part-of-speech-based approach is trained on.

Finally, classifiers built upon the architectures of transformer models outperform
all previous classification approaches and almost exhibit perfect scores when trained
and tested on task-specific data. This indicates that transformers are able to reliably
solve natural language processing tasks that require syntactic information. However,
the exact mechanisms by which transformers achieve this remain to be explored in
subsequent research. By creating a final evaluation set containing only those errors
that learners are likely to make based on the structural analysis of genuine learner
sentences, I have illustrated how the general capability of the explored classification
approaches in detecting erroneous word order translates to more practical application
scenarios. While slight declines in performance are observable, I have show that training
classifiers on generic errors in the form of pseudo data only is effective and, in the case
of the transformer-based models, can generate highly accurate models that would be
suitable to be implemented in a real-life scenario with minor adaptations. The best
model is a Gpt-2-based classifier trained on generic word order errors as opposed to
generic verb order errors, which achieves an average F0.5 score of 0.96 on the learner-
informed evaluation dataset and exhibits a recall score of 0.94 on the genuine learner
sentences that served as the basis for the structural analysis of verb order error types.
During its fine-tuning on generic word order errors, the model appears to learn to
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pay attention to errors that learners commonly make. It exhibits an almost perfect
performance on the verb order errors that were introduced according to the learner
tendencies that emerged from the structural analysis of genuine learner data, but it
struggles to identify generic verb order errors even though these constitute a subset of
the errors the model has been trained on.

Lastly, prompt-based conversational agents show promising results in automated
grammatical error correction as a whole and could prove to be convenient end-to-end
solutions. Yet, providing a learner with feedback about specific areas of their target
language’s grammar that appear to be particularly challenging such as verb order is
also valuable. With this thesis, I have established the foundation for this pipeline,
beginning with the detection of verb order errors.



Appendix A

Abbreviations and Symbols

This list solely presents abbreviations not contained in the Leipzig Glossing Rules
(Comrie et al., 2008).

adj adjective
adp adposition
BEA Building Educational Applications
BERT Bidirectional Encoder Representations from Transformers
BPE Byte Pair Encoding
CEFR Common European Framework of Reference for Languages
CoNLL Conference on Natural Language Learning
ConvNet Convolutional Neural Network
det determiner, article
FV finite verb
GPT-2 Generative Pre-trained Transformer 2
HOO Helping Our Own
L1 first language
L2 second language
MLM Masked Language Modeling
NLI Natural Language Inference
np noun phrase
NFV non-finite verb
p preposition
PoS part-of-speech
pp prepositional phrase
RNN Recurrent Neural Network
RoBERTa Robustly optimized BERT approach
smain full sentence
V verb
� average

65



Appendix B

Illustration Verbs Shuffles

(ik, wil, geen, boeken, kopen)

ik geen boeken

(wil, ik, geen, kopen, boeken)
(ik, kopen, geen, wil, boeken)
(ik, wil, kopen, geen, boeken)
(kopen, wil, ik, geen, boeken)
(ik, wil, geen, kopen, boeken)
(ik, geen, wil, boeken, kopen)
(ik, geen, boeken, wil, kopen)
(ik, kopen, geen, boeken, wil)
(kopen, ik, geen, wil, boeken)
(kopen, ik, wil, geen, boeken)
(ik, geen, kopen, wil, boeken)
(ik, geen, kopen, boeken, wil)
(wil, ik, kopen, geen, boeken)
(wil, kopen, ik, geen, boeken)
(ik, geen, wil, kopen, boeken)
(kopen, ik, geen, boeken, wil)
(wil, ik, geen, boeken, kopen)
(ik, geen, boeken, kopen, wil)
(ik, kopen, wil, geen, boeken)

The relative order of the verb-unrelated tokens ik, geen, and boeken is preserved in
all permutations.
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Categories for Phrasal Analysis

Table C.1: Symbols used for analysis of clause structure

A adjective, adverb, or adverbial
FC finite clause
PC prepositional complement
CE coordinative element
SE subordinative element
M miscellaneous
O object
PO prepositional object
om om (in om + te-infinitivals)
P preposition
Q question word
S subject
te te (in om + te and te-infinitivals)
FV finite verb
NFV non-finite verb
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Results Overview

Table D.1: Combined Results of all Experiments

Model Train Test Class Prec. Rec. F1 F0.5 Acc.

Dop-Tree-Original Pool Rand incorrect 0.52 0.99 0.68 0.57 0.54
correct 0.88 0.08 0.15 0.30

Pool Verbs incorrect 0.52 0.99 0.68 0.57 0.53
correct 0.87 0.08 0.15 0.30

Pool Info incorrect 0.18 0.99 0.30 0.21 0.24
correct 0.99 0.09 0.16 0.33

Pool Learn incorrect – 0.99 – – 0.99

Dop-Tree-Simple Pool Rand incorrect 0.57 0.81 0.67 0.60 0.60
correct 0.67 0.38 0.49 0.58

Pool Verbs incorrect 0.55 0.76 0.64 0.58 0.57
correct 0.62 0.38 0.47 0.55

Pool Info incorrect 0.23 0.87 0.36 0.27 0.49
correct 0.94 0.42 0.58 0.75

Pool Learn incorrect – 0.90 – – 0.90

SpaCy-Tuple Rand Rand incorrect 0.74 0.68 0.71 0.73 0.72
correct 0.70 0.76 0.73 0.71

Rand Verbs incorrect 0.65 0.45 0.53 0.60 0.60
correct 0.58 0.76 0.66 0.61

Rand Info incorrect 0.22 0.34 0.27 0.24 0.69
correct 0.85 0.76 0.80 0.83

Rand Learn incorrect – 0.27 – – 0.27
Verbs Verbs incorrect 0.68 0.68 0.68 0.68 0.68

correct 0.68 0.68 0.68 0.68
Verbs Info incorrect 0.26 0.55 0.35 0.29 0.67

correct 0.89 0.69 0.78 0.84
Verbs Learn incorrect – 0.38 – – 0.38

Dop-Tuple-Original Rand Rand incorrect 0.80 0.75 0.77 0.79 0.78
correct 0.76 0.82 0.79 0.77

Rand Verbs incorrect 0.75 0.55 0.64 0.70 0.69
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correct 0.65 0.82 0.72 0.68
Rand Info incorrect 0.31 0.42 0.36 0.33 0.75

correct 0.88 0.82 0.85 0.86
Rand Learn incorrect – 0.31 – – 0.31
Verbs Verbs incorrect 0.76 0.67 0.71 0.74 0.73

correct 0.71 0.79 0.74 0.72
Verbs Info incorrect 0.33 0.53 0.41 0.36 0.74

correct 0.89 0.78 0.84 0.87
Verbs Learn incorrect – 0.36 – – 0.36

Dop-Tuple-Simple Rand Rand incorrect 0.80 0.72 0.75 0.78 0.77
correct 0.74 0.82 0.78 0.76

Rand Verbs incorrect 0.77 0.60 0.68 0.73 0.71
correct 0.67 0.82 0.74 0.70

Rand Info incorrect 0.33 0.46 0.38 0.35 0.75
correct 0.88 0.81 0.85 0.87

Rand Learn incorrect – 0.29 – – 0.29
Verbs Verbs incorrect 0.75 0.68 0.71 0.73 0.73

correct 0.71 0.77 0.74 0.72
Verbs Info incorrect 0.31 0.53 0.39 0.34 0.72

correct 0.89 0.76 0.82 0.86
Verbs Learn incorrect – 0.33 – – 0.33

BERTje I Rand Rand incorrect 0.99 0.99 0.99 0.99 0.99
correct 0.99 0.99 0.99 0.99

Rand Verbs incorrect 0.99 0.63 0.77 0.89 0.81
correct 0.73 0.99 0.84 0.77

Rand Info incorrect 0.92 0.31 0.46 0.66 0.88
correct 0.88 0.99 0.93 0.90

Rand Learn incorrect – 0.04 – – 0.04
Verbs Verbs incorrect 0.99 0.98 0.98 0.98 0.98

correct 0.98 0.99 0.98 0.98
Verbs Info incorrect 0.91 0.75 0.82 0.87 0.95

correct 0.95 0.99 0.97 0.96
Verbs Learn incorrect – 0.35 – – 0.35

BERTje II Rand Rand incorrect 1.00 0.99 0.99 1.00 0.99
correct 0.99 1.00 0.99 0.99

Rand Verbs incorrect 0.99 0.58 0.74 0.87 0.79
correct 0.71 1.00 0.83 0.75

Rand Info incorrect 0.94 0.28 0.43 0.64 0.88
correct 0.87 1.00 0.93 0.90

Rand Learn incorrect – 0.04 – – 0.04
Verbs Verbs incorrect 0.99 0.98 0.98 0.98 0.98

correct 0.98 0.99 0.98 0.98
Verbs Info incorrect 0.91 0.78 0.84 0.88 0.95

correct 0.96 0.98 0.97 0.96
Verbs Learn incorrect – 0.35 – – 0.35
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BERTje III Rand Rand incorrect 1.00 0.99 0.99 0.99 0.99
correct 0.99 1.00 0.99 0.99

Rand Verbs incorrect 0.99 0.50 0.67 0.83 0.75
correct 0.67 1.00 0.80 0.72

Rand Info incorrect 0.93 0.24 0.38 0.58 0.87
correct 0.87 1.00 0.93 0.89

Rand Learn incorrect – 0.03 – – 0.03
Verbs Verbs incorrect 0.99 0.98 0.98 0.98 0.98

correct 0.98 0.99 0.98 0.98
Verbs Info incorrect 0.91 0.79 0.84 0.88 0.95

correct 0.96 0.98 097 0.96
Verbs Learn incorrect – 0.41 – – 0.41

RobBERT I Rand Rand incorrect 1.00 1.00 1.00 1.00 1.00
correct 1.00 1.00 1.00 1.00

Rand Verbs incorrect 1.00 0.48 0.65 0.82 0.74
correct 0.66 1.00 0.79 0.71

Rand Info incorrect 1.00 0.67 0.80 0.91 0.94
correct 0.94 1.00 0.97 0.95

Rand Learn incorrect – 0.76 – – 0.76
Verbs Verbs incorrect 0.99 0.99 0.99 0.99 0.99

correct 0.99 0.99 0.99 0.99
Verbs Info incorrect 0.96 0.80 0.88 0.93 0.96

correct 0.96 0.99 0.98 0.97
Verbs Learn incorrect – 0.39 – – 0.39

RobBERT II Rand Rand incorrect 1.00 1.00 1.00 1.00 1.00
correct 1.00 1.00 1.00 1.00

Rand Verbs incorrect 1.00 0.48 0.65 0.82 0.74
correct 0.66 1.00 0.79 0.70

Rand Info incorrect 0.99 0.75 0.86 0.94 0.96
correct 0.95 1.00 0.98 0.96

Rand Learn incorrect – 0.92 – – 0.92
Verbs Verbs incorrect 0.99 0.99 0.99 0.99 0.99

correct 0.99 0.99 0.99 0.99
Verbs Info incorrect 0.96 0.80 0.87 0.92 0.96

correct 0.96 0.99 0.98 0.97
Verbs Learn incorrect – 0.38 – – 0.38

RobBERT III Rand Rand incorrect 1.00 1.00 1.00 1.00 1.00
correct 1.00 1.00 1.00 1.00

Rand Verbs incorrect 1.00 0.58 0.74 0.87 0.79
correct 0.71 1.00 0.83 0.75

Rand Info incorrect 1.00 0.76 0.86 0.94 0.96
correct 0.96 1.00 0.98 0.96

Rand Learn incorrect – 0.89 – – 0.89
Verbs Verbs incorrect 0.99 0.99 0.99 0.99 0.99

correct 0.99 0.99 0.99 0.99
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Verbs Info incorrect 0.96 0.80 0.87 0.92 0.96
correct 0.96 0.99 0.98 0.97

Verbs Learn incorrect – 0.39 – – 0.39

GPT-2 I Rand Rand incorrect 1.00 1.00 1.00 1.00 1.00
correct 1.00 1.00 1.00 1.00

Rand Verbs incorrect 1.00 0.42 0.59 0.78 0.71
correct 0.63 1.00 0.78 0.68

Rand Info incorrect 1.00 0.81 0.89 0.95 0.97
correct 0.96 1.00 0.98 0.97

Rand Learn incorrect – 0.99 – – 0.99
Verbs Verbs incorrect 0.99 0.97 0.98 0.98 0.98

correct 0.97 0.99 0.98 0.98
Verbs Info incorrect 0.92 0.77 0.84 0.89 0.95

correct 0.96 0.99 0.97 0.96
Verbs Learn incorrect – 0.30 – – 0.30

GPT-2 II Rand Rand incorrect 1.00 1.00 1.00 1.00 1.00
correct 1.00 1.00 1.00 1.00

Rand Verbs incorrect 1.00 0.43 0.60 0.79 0.71
correct 0.64 1.00 0.78 0.69

Rand Info incorrect 1.00 0.81 0.89 0.95 0.97
correct 0.96 1.00 0.98 0.97

Rand Learn incorrect – 0.97 – – 0.97
Verbs Verbs incorrect 0.99 0.97 0.98 0.98 0.98

correct 0.97 0.99 0.98 0.98
Verbs Info incorrect 0.92 0.74 0.82 0.87 0.95

correct 0.95 0.99 0.97 0.96
Verbs Learn incorrect – 0.28 – – 0.28

GPT-2 III Rand Rand incorrect 1.00 1.00 1.00 1.00 1.00
correct 1.00 1.00 1.00 1.00

Rand Verbs incorrect 1.00 0.42 0.59 0.78 0.71
correct 0.63 1.00 0.77 0.68

Rand Info incorrect 1.00 0.73 0.84 0.93 0.96
correct 0.95 1.00 0.97 0.96

Rand Learn incorrect – 0.86 – – 0.86
Verbs Verbs incorrect 0.99 0.97 0.98 0.99 0.98

correct 0.98 0.99 0.98 0.98
Verbs Info incorrect 0.92 0.75 0.82 0.88 0.95

correct 0.95 0.99 0.97 0.96
Verbs Learn incorrect – 0.28 – – 0.28



Appendix E

Data Statements

E.1 KU Leuven - Instituut voor Levende Talen - Leerder-
corpus

Size: 3121 unique short to mid-length essays.

Curation Rationale: The corpus’s precise curation rationale is unknown. It holds
annotations for different kinds of word order errors made by L2 learners of the Dutch
language and can therefore serve as a) a source of commonly made errors by learners
and b) a guideline for teachers as to how to correct their students’ work.

Language Variety: Standard Dutch as taught in Belgium and as written by learners
of the language on the proficiency levels A2 through C1 according to the CEFR.

Speaker Demographic: The learners’ mother tongues represent a range of linguis-
tic backgrounds: Abkhazian, Albanian, Amharic, Antankarana-Malagasy, Randabic,
Randmenian, Azerbaijani, Bosnian, Brazilian Portuguese, Bulgarian, Cantonese, Cata-
lan, Chinese, Croatian, Czech, Danish, Dari, Dutch, Edo, English, Estonian, Éwé, Farsi,
Filipino, Finnish, French, Georgian, German, Greek, Gujarati, Hebrew, Hindi, Hun-
garian, Igbo, Indian, Indonesian, Italian, Japanese, Kanarese, Kinyarwanda, Kirundi,
Konkani, Korean, Kurdish, Latvian, Lebanese, Lingala, Lithuanian, Luganda, Lux-
embourgish, Mandarin, Nepali, Oriya, Pashto, Persian (general), Polish, Portuguese,
Romanian, Russian, Serbian, Serbo-Croatian, Sindhi, Slovak, Slovenian, Somali, Span-
ish, Swahili, Swedish, Tabasaran, Tagalog, Taiwanese, Tamil, Telugu, Thai, Tigrinya,
Turkish, Twi, Ukrainian, Urdu, Vietnamese, Yoruba, Zulu. The dataset includes infor-
mation on the learners’ language proficiency, as assessed according to the CEFR. The
represented proficiency levels range from A2 to C1. No further information about the
speaker demographics is given.

Annotator Demographic: Precise annotator demographics are unknown, but the
corpus has been annotated by experienced teachers, most likely native speakers of
Dutch. However, the annotations are tentative and are to be understood as corrections
of errors as provided to their students by teachers. No annotation guidelines were
provided to the teachers.
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Speech Situation: The precise speech situation is unknown. However, it is likely
that the texts were mostly produced as homework exercises which were then handed in
to the teacher for correction.

Text Characteristics: The texts in the corpus were produced as part of the learners’
coursework and therefore mostly are short essays as typically written in foreign language
classes.

Recording Quality: n.a.

Additional Information: n.a.

Provenance Appendix: n.a.

E.2 Synthetic Dataset

Size: Up to 2,245,188 sentences.

Curation Rationale: The synthetic dataset is intended to represent a variety of text
types learners are likely to be prompted to produce in a class room setting.

Language Variety: Standard Dutch.

Speaker Demographic: Unknown.

Annotator Demographic: No annotations. The method of pseudo data generation
automatically labels incorrect sentences as incorrect.

Speech Situation: Unknown.

Text Characteristics: The sentences are taken from texts of the following text
types: news items, fiction, academic journals, educational content, informational con-
tent, newsletters, websites, Wikipedia, press releases, books, brochures, flyers, manuals,
legal texts, newspapers, policy docs, proceedings, reports, webcrawls, Wikipedia, news-
paper articles in easy-to-read Dutch.

Recording Quality: n.a.

Additional Information: n.a.

Provenance Appendix: For further details refer to
https://www.edia.nl/resources/elg/downloads;
https://taalmaterialen.ivdnt.org/download/lassy-klein-corpus6/;
https://wortschatz.uni-leipzig.de/de/download/Dutch#nld-nl_web_2019;
https://taalmaterialen.ivdnt.org/download/wai-not-corpus1-0/.

https://www.edia.nl/resources/elg/downloads
https://taalmaterialen.ivdnt.org/download/lassy-klein-corpus6/
https://wortschatz.uni-leipzig.de/de/download/Dutch#nld-nl_web_2019
https://taalmaterialen.ivdnt.org/download/wai-not-corpus1-0/


Appendix F

Annotation Prompt

The annotators were presented with the following prompt before beginning their anno-
tations process:

You will now see a pair of sentences. The first sentence is a sentence that was produced
by a learner of Dutch as a second language. Your task is to evaluate whether the sec-
ond sentence is a possible correction of the first sentence. For many sentences, there is
more than one possible correction. Your task is only to evaluate whether the corrected
version presented to you is one of them. For your evaluation, keep in mind that ideally,
the corrected version of the sentence should stick as closely as possible to the original
wording used by the learner. If you agree with the proposed target hypothesis (the
corrected sentence), you will proceed to the next sentence pair. If you do not agree,
please provide a corrected version of the learner sentence yourself. Sometimes, the
corrected sentence does not cover the whole original sentence produced by the learner.
This is usually the case if the learner sentence consists of a combination of phrases or
sentences that would typically be separated. In this case, please only evaluate the part
that is covered by the corrected sentence presented to you.
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Appendix G

Generative AI Statement

This thesis has been written in accordance with the ACL 2023 Policy on AI Writing
Assistance (https://2023.aclweb.org/blog/ACL-2023-policy/).

If generative artificial intelligence models have been used to help in the generation
of code, this is clearly indicated in the respective scripts.
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Appendix H

Licenses

H.1 Lassy License

Overeenkomst voor niet-commercieel gebruik

Randtikel 1. Definities
Product: Het Lassy Klein-Corpus, volledige, correcte naam: Lassy Klein-corpus, ver-
sie 4.0, Nederlandse Taalunie, 2016, alsmede de totale inhoud van de gedownloade
of meegeleverde bestanden, daaronder begrepen maar niet beperkt tot (i) eventueel
meegeleverde of van Product deel uitmakende software of computerinformatie en (ii)
bijbehorende schriftelijke materialen of bestanden ter uitleg;
Overeenkomst: de onderhavige licentieovereenkomst;
Gebruiker: de natuurlijke persoon die deze Overeenkomst via de Webwinkel heeft geac-
cepteerd overeenkomstig het in artikel 3 bepaalde;
INT: Het Instituut voor de Nederlandse Taal, gevestigd in Leiden;
Webwinkel: De service beschikbaar op de website van INT waarbij software en data
gedownload kan worden.

Randtikel 2. Toepasselijkheid
Deze gebruiksvoorwaarden zijn van toepassing op Product dat door het INT beschik-
baar worden gesteld op basis van deze gebruiksovereenkomst en op de daarmee samen-
hangende rechtsverhouding tussen INT en Gebruiker.

Randtikel 3. Totstandkoming Overeenkomst
De overeenkomst komt tot stand indien Gebruiker bij de bestelprocedure van het prod-
uct bij de Webwinkel op de knop ‘Akkoord’ heeft geklikt.

Randtikel 4. Gebruiksvoorwaarden
4.1 INT verleent hierbij aan Gebruiker, en Gebruiker accepteert, het niet-exclusieve
recht om: a. Product te raadplegen en/of te gebruiken voor eigen onderzoek en ter
toelichting bij het eventueel door Gebruiker gegeven onderwijs; b. Product te ge-
bruiken ten behoeve van het ontwikkelen van nieuwe producten (hierna: “Nieuwe Pro-
ducten”), mits (de inhoud van) Product, een gedeelte van Product of een kwalitatief
of kwantitatief substantieel gedeelte daarvan niet herkenbaar in de Nieuwe Producten
is opgenomen, verveelvoudigd of overgenomen en mits daarmee niet in strijd wordt
gehandeld met Randtikel 4.2 en 4.6 van deze Overeenkomst. Het is Gebruiker niet
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toegestaan Product voor commerciële doeleinden te gebruiken.
4.2 De overeenkomstig Randtikel 4.1 sub b van deze Overeenkomst ontwikkelde Nieuwe
Producten mogen uitsluitend door Gebruiker worden gebruikt voor eigen oefening,
studie of gebruik en niet worden openbaar gemaakt, aan derden verkocht, uitgeleend
en/of op andere wijze aan derden ter beschikking worden gesteld, tenzij en voor zover
de INT daarvoor uitdrukkelijk schriftelijk toestemming heeft gegeven overeenkomstig
Randtikel 8 van deze Overeenkomst.
4.3 Gebruiker is gerechtigd in openbare presentaties, wetenschappelijke publicaties of
publicaties voor onderwijsdoeleinden naar Product te verwijzen, melding te maken van
het gebruik van Product en/of verslag te doen van werk waarbij van Product gebruik
is gemaakt. Gebruiker noemt daarbij expliciet de volledige juiste naam van Product.
Gebruiksovereenkomst Lassy Klein-Corpus 2/4 Niet-commercieel
4.4 Voor zover software onderdeel uitmaakt van Product, mag de software uitsluitend
worden gëınstalleerd op de computers van de Gebruiker.
4.5 INT verleent aan Gebruiker het recht kopieën van Product te maken die dienen
als back-up. Gebruiker is niet gerechtigd om meer kopieën van Product te maken dan
strikt noodzakelijk is voor het in Randtikel 4.1 omschreven doel.
4.6 Gebruiker heeft uitsluitend het recht Product te gebruiken voor de doeleinden om-
schreven in Randtikel 4.1 van deze Overeenkomst. Gebruiker heeft niet het recht (de
inhoud van) Product of enig (kwalitatief of kwantitatief substantieel) gedeelte daarvan
te reproduceren en/of te verveelvoudigen, tenzij dit noodzakelijk is voor het doeleinde
genoemd in Randtikel 4.1 sub b van deze Overeenkomst of wanneer dit is toegestaan op
grond van Randtikel 4.4 en/of Randtikel 4.5 van deze Overeenkomst. Gebruiker heeft
niet het recht (de inhoud van) Product of enig (kwalitatief of kwantitatief substantieel)
gedeelte daarvan openbaar te maken, aan derden te verkopen, uit te lenen en/of op
andere wijze aan derden ter beschikking te stellen.
4.7 Gebruiker heeft niet het recht om op eventuele met Product meegeleverde software
of software die onderdeel uitmaakt van Product technieken toe te passen waarmee de
interne werking kan worden achterhaald, hieronder begrepen maar niet beperkt tot ‘re-
verse engineering’.
4.8 De rechten die middels deze Overeenkomst aan Gebruiker worden verleend, zijn niet
overdraagbaar. Gebruiker heeft niet het recht de middels deze Overeenkomst verleende
licentie in sublicentie te geven.

Randtikel 5. Vergoeding, betaling en levering
5.1 Voor de aan Gebruiker verleende rechten, zoals bedoeld in Randtikel 4 van deze
Overeenkomst, is geen vergoeding verschuldigd.

Randtikel 6. Fouten en onvolkomenheden
6.1 Indien Gebruiker in welk onderdeel dan ook van Product fouten (bugs), onvolkomen-
heden, inconsequenties e.d. aantreft, dan wordt Gebruiker verzocht die aan INT
schriftelijk of elektronisch te melden. INT verplicht zich ertoe gemelde fouten (bugs),
onvolkomenheden, inconsequenties e.d. te publiceren. Het publiceren van lijsten van
fouten, onvolkomenheden e.d. is voorbehouden aan INT. Het is Gebruiker wel toeges-
taan om fouten (bugs), onvolkomenheden, inconsequenties e.d. te melden in open-
bare presentaties, wetenschappelijke publicaties of publicaties voor onderwijsdoelein-
den, wanneer verwezen wordt naar Product, melding wordt gemaakt van het gebruik
van Product en/of verslag wordt gedaan van werk waarbij van Product gebruik is
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gemaakt.
6.2 INT geeft geen enkele garantie en accepteert geen enkele verantwoordelijkheid voor
welke beperkingen of fouten in Product dan ook en accepteert geen enkele aansprakeli-
jkheid voor schade, verlies of ongerief dat zou kunnen voortkomen uit het gebruik van
Product. 6.3 INT geeft geen enkele garantie dat Product of een gedeelte ervan voor
bepaalde specifieke doeleinden kan worden gebruikt.

Randtikel 7. Intellectuele Eigendomsrechten
7.1 In geen geval zal Gebruiker auteursrechten, databankrechten en of andere (intel-
lectuele eigendoms)rechten ten aanzien van Product verwerven.
7.2 Gebruiker erkent dat het gebruik van Product onderworpen is aan de restricties
die op grond van Nederlands recht door wetten van intellectuele eigendom en andere
vormen van wettelijke bescherming worden opgelegd, waaronder begrepen maar niet
beperkt tot auteursrechten, naburige rechten, databankenrechten en rechten op soft-
ware en dat schendingen van zulke restricties leiden tot wettelijke aansprakelijkheid.
Gebruiker onthoudt zich van het schenden van deze restricties. Bijgevolg publiceert
Gebruiker geen onderdelen van Product (zoals teksten, geluidsfragmenten of andersoor-
tige data en/of tools), anders dan korte voorbeelden in wetenschappelijke publicaties of
publicaties voor onderwijsdoeleinden. Gebruiksovereenkomst Lassy Klein-Corpus 3/4
Niet-commercieel
7.3 Voor zover blijkt dat door aanpassingen, bewerkingen en/of aanvullingen van Prod-
uct door Gebruiker eigen of nieuwe rechten zouden kunnen ontstaan ten aanzien van
Product, worden deze hierbij bij voorbaat volledig en onbezwaard door Gebruiker aan
INT overgedragen. INT aanvaardt hierbij deze overdracht.
7.4 Voor zover de overdracht zoals bedoeld in het vorige lid middels deze Overeenkomst
niet wordt bewerkstelligd of niet mogelijk blijkt, verbindt Gebruiker zich om op eerste
verzoek van INT kosteloos alles te doen wat nodig is om de overdracht van alle in-
tellectuele eigendomsrechten ten aanzien van Product te effectueren. Voorts verleent
Gebruiker hierbij voor zover nodig tot het moment van volledige overdracht een on-
beperkte exclusieve licentie aan INT, welke licentie INT hierbij aanvaardt.

Randtikel 8. Optierecht
8.1 Indien Gebruiker de overeenkomstig Randtikel 4.1 sub b ontwikkelde Nieuwe Pro-
ducten openbaar wenst te maken en/of aan derden ter beschikking wenst te stellen
en/of anderszins wenst te exploiteren, dient hij eerst aan INT een exclusieve licentie
aan te bieden inhoudende dat INT gerechtigd is de nieuwe producten middels de Web-
winkel ter beschikking te stellen. INT zal binnen twee maanden na ontvangst van het
aanbod van Gebruiker beslissen of zij een exclusieve licentie wenst.
8.2 Middels de exclusieve licentie bedoeld in het vorige lid zal Gebruiker aan INT in
elk geval de volgende rechten verlenen: a. het recht de Nieuwe Producten openbaar
te maken en te verveelvoudigen; b. het recht om sublicenties aan derden te verlenen
ten behoeve van het gebruik van de Nieuwe Producten voor onderzoeks- en onder-
wijsdoeleinden; c. het recht om sublicenties aan derden te verlenen ten behoeve van
het ontwikkelen en exploiteren van nieuwe producten door deze derden, onder de voor-
waarde dat de Nieuwe Producten of een kwalitatief of kwantitatief substantieel gedeelte
daarvan niet herkenbaar in de door de derden te ontwikkelen nieuwe producten zijn
opgenomen, verveelvoudigd of overgenomen; d. het recht om de Nieuwe Producten te
gebruiken ten behoeve van het (laten) ontwikkelen en exploiteren van nieuwe producten.
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Randtikel 9. Duur en einde Overeenkomst
9.1 Deze Overeenkomst vangt aan op het moment dat Gebruiker akkoord is gegaan met
deze Voorwaarden en het Product heeft gedownload (zie Randtikel 3).
9.2 INT is gerechtigd deze Overeenkomst tussentijds met onmiddellijke ingang zonder
voorafgaande opzegging te beëindigen, indien:
9.3 Licentienemer in strijd handelt met één van de bepalingen van deze Overeenkomst en
indien Licentienemer niet binnen 14 (veertien) dagen na aanschrijving dienaangaande
door INT is nagekomen;
9.4 Licentienemer zelf het faillissement, surseance van betaling of toepassing van de
schuldsaneringsregeling natuurlijke personen aanvraagt, indien Licentienemer failliet
is verklaard, indien aan Licentienemer surseance van betaling is verleend of indien ten
aanzien van Licentienemer de schuldsaneringsregeling natuurlijke personen van toepass-
ing is verklaard.
9.5 Indien deze Overeenkomst om welke reden dan ook eindigt, is INT niet aansprake-
lijk voor eventuele schade die Licentienemer lijdt ten gevolge van het beëindigen van
de Overeenkomst.
9.6 Vanaf het moment dat de Overeenkomst om welke reden dan ook eindigt, beschikt
Licentienemer niet langer over de rechten, die INT middels deze Overeenkomst aan
Licentienemer heeft verleend.
9.7 Licentienemer verplicht zich, indien de Overeenkomst om welke reden dan ook
eindigt, met ingang van de datum van beëindiging ieder gebruik van (de inhoud van)
Product, of een gedeelte daarvan, te staken en gestaakt te houden.
9.8 Licentienemer is verplicht om binnen dertig (30) dagen na de datum van beëindiging
van deze Overeenkomst (alle verkregen en gebruikte gegevens en componenten van)
Product samen met de door Licentienemer gemaakte back-up(s) te vernietigen en die
vernietiging schriftelijk aan INT te bevestigen. Gebruiksovereenkomst Lassy Klein-
Corpus 4/4 Niet-commercieel

Randtikel 10. Geschillen en toepasselijk recht
10.1 Op deze Overeenkomst is Nederlands recht van toepassing.
10.2 In geval van geschillen, voortvloeiend uit deze Overeenkomst of uit daarop voort-
bouwende overeenkomsten, zullen deze worden voorgelegd aan de bevoegde rechter te
Den Haag.
10.3 Afwijkende bedingen, wijzigingen van en/of aanvullingen op deze Overeenkomst
gelden slechts indien en voor zover deze tussen Licentienemer en INT uitdrukkelijk
schriftelijk zijn overeengekomen.
10.4 Indien een bepaling van deze Overeenkomst nietig is of vernietigd wordt, blijven
de overige bepalingen volledig van kracht. Licentienemer en INT zullen dan in overleg
treden teneinde een nieuwe bepaling ter vervanging van de nietige of vernietigde bepal-
ing overeen te komen, waarbij zo veel mogelijk met het doel en strekking van de nietige
of vernietigde bepaling rekening zal worden gehouden.
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H.2 Wai-Not License

Overeenkomst voor niet-commercieel gebruik

Randtikel 1. Definities
Product: Het WAI-NOT corpus, volledige, correcte naam: WAI-NOT Corpus, alsmede
de totale inhoud van de gedownloade of meegeleverde bestanden, daaronder begrepen
maar niet beperkt tot (i) eventueel meegeleverde of van Product deel uitmakende soft-
ware of computerinformatie en (ii) bijbehorende schriftelijke materialen of bestanden
ter uitleg;
Overeenkomst: de onderhavige licentieovereenkomst;
Gebruiker: de natuurlijke persoon die deze Overeenkomst via de Webwinkel heeft geac-
cepteerd overeenkomstig het in artikel 3 bepaalde.
INT: Het Instituut voor de Nederlandse Taal, gevestigd in Leiden.
Webwinkel: De service beschikbaar op de website van INT waarbij software en data
gedownload kan worden.

Randtikel 2. Toepasselijkheid
Deze gebruiksvoorwaarden zijn van toepassing op Product dat door het INT beschik-
baar worden gesteld op basis van deze gebruiksovereenkomst en op de daarmee samen-
hangende rechtsverhouding tussen INT en Gebruiker.

Randtikel 3. Totstandkoming Overeenkomst
De overeenkomst komt tot stand indien Gebruiker bij de bestelprocedure van het prod-
uct bij de Webwinkel op de knop ‘Akkoord’ heeft geklikt.

Randtikel 4. Gebruiksvoorwaarden
4.1 INT verleent hierbij aan Gebruiker, en Gebruiker accepteert, het niet-exclusieve
recht om: a. Product te raadplegen en/of te gebruiken voor eigen onderzoek en ter
toelichting bij het eventueel door Gebruiker gegeven onderwijs; b. Product te ge-
bruiken ten behoeve van het ontwikkelen van nieuwe producten (hierna: “Nieuwe Pro-
ducten”), mits (de inhoud van) Product, een gedeelte van Product of een kwalitatief
of kwantitatief substantieel gedeelte daarvan niet herkenbaar in de Nieuwe Producten
is opgenomen, verveelvoudigd of overgenomen en mits daarmee niet in strijd wordt
gehandeld met Randtikel 4.2 en 4.6 van deze Overeenkomst. Het is Gebruiker niet
toegestaan Product voor commerciële doeleinden te gebruiken.
4.2 De overeenkomstig Randtikel 4.1 sub b van deze Overeenkomst ontwikkelde Nieuwe
Producten mogen uitsluitend door Gebruiker worden gebruikt voor eigen oefening,
studie of gebruik en niet worden openbaar gemaakt, aan derden verkocht, uitgeleend
en/of op andere wijze aan derden ter beschikking worden gesteld, tenzij en voor zover
de INT daarvoor uitdrukkelijk schriftelijk toestemming heeft gegeven overeenkomstig
Randtikel 8 van deze Overeenkomst.
4.3 Gebruiker is gerechtigd in openbare presentaties, wetenschappelijke publicaties of
publicaties voor onderwijsdoeleinden naar Product te verwijzen, melding te maken van
het gebruik van Product en/of verslag te doen van werk waarbij van Product gebruik
is gemaakt. Gebruiker noemt daarbij expliciet de volledige juiste naam van Product.
Gebruiksovereenkomst WAI-NOT Corpus 2/4 Niet-commercieel
4.4 Voor zover software onderdeel uitmaakt van Product, mag de software uitsluitend
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worden gëınstalleerd op de computers van de Gebruiker.
4.5 INT verleent aan Gebruiker het recht kopieën van Product te maken die dienen
als back-up. Gebruiker is niet gerechtigd om meer kopieën van Product te maken dan
strikt noodzakelijk is voor het in Randtikel 4.1 omschreven doel.
4.6 Gebruiker heeft uitsluitend het recht Product te gebruiken voor de doeleinden om-
schreven in Randtikel 4.1 van deze Overeenkomst. Gebruiker heeft niet het recht (de
inhoud van) Product of enig (kwalitatief of kwantitatief substantieel) gedeelte daarvan
te reproduceren en/of te verveelvoudigen, tenzij dit noodzakelijk is voor het doeleinde
genoemd in Randtikel 4.1 sub b van deze Overeenkomst of wanneer dit is toegestaan op
grond van Randtikel 4.4 en/of Randtikel 4.5 van deze Overeenkomst. Gebruiker heeft
niet het recht (de inhoud van) Product of enig (kwalitatief of kwantitatief substantieel)
gedeelte daarvan openbaar te maken, aan derden te verkopen, uit te lenen en/of op
andere wijze aan derden ter beschikking te stellen.
4.7 Gebruiker heeft niet het recht om op eventuele met Product meegeleverde software
of software die onderdeel uitmaakt van Product technieken toe te passen waarmee de
interne werking kan worden achterhaald, hieronder begrepen maar niet beperkt tot ‘re-
verse engineering’.
4.8 De rechten die middels deze Overeenkomst aan Gebruiker worden verleend, zijn niet
overdraagbaar. Gebruiker heeft niet het recht de middels deze Overeenkomst verleende
licentie in sublicentie te geven.

Randtikel 5. Vergoeding, betaling en levering
5.1 Voor de aan Gebruiker verleende rechten, zoals bedoeld in Randtikel 4 van deze
Overeenkomst, is geen vergoeding verschuldigd.

Randtikel 6. Fouten en onvolkomenheden
6.1 Indien Gebruiker in welk onderdeel dan ook van Product fouten (bugs), onvolkomen-
heden, inconsequenties e.d. aantreft, dan wordt Gebruiker verzocht die aan INT
schriftelijk of elektronisch te melden. INT verplicht zich ertoe gemelde fouten (bugs),
onvolkomenheden, inconsequenties e.d. te publiceren. Het publiceren van lijsten van
fouten, onvolkomenheden e.d. is voorbehouden aan INT. Het is Gebruiker wel toeges-
taan om fouten (bugs), onvolkomenheden, inconsequenties e.d. te melden in open-
bare presentaties, wetenschappelijke publicaties of publicaties voor onderwijsdoelein-
den, wanneer verwezen wordt naar Product, melding wordt gemaakt van het gebruik
van Product en/of verslag wordt gedaan van werk waarbij van Product gebruik is
gemaakt.
6.2 INT geeft geen enkele garantie en accepteert geen enkele verantwoordelijkheid voor
welke beperkingen of fouten in Product dan ook en accepteert geen enkele aansprakeli-
jkheid voor schade, verlies of ongerief dat zou kunnen voortkomen uit het gebruik van
Product.
6.3 INT geeft geen enkele garantie dat Product of een gedeelte ervan voor bepaalde
specifieke doeleinden kan worden gebruikt.

Randtikel 7. Intellectuele Eigendomsrechten
7.1 In geen geval zal Gebruiker auteursrechten, databankrechten en of andere (intel-
lectuele eigendoms)rechten ten aanzien van Product verwerven.
7.2 Gebruiker erkent dat het gebruik van Product onderworpen is aan de restricties
die op grond van Nederlands recht door wetten van intellectuele eigendom en andere
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vormen van wettelijke bescherming worden opgelegd, waaronder begrepen maar niet
beperkt tot auteursrechten, naburige rechten, databankenrechten en rechten op soft-
ware en dat schendingen van zulke restricties leiden tot wettelijke aansprakelijkheid.
Gebruiker onthoudt zich van het schenden van deze restricties. Bijgevolg publiceert
Gebruiker geen onderdelen van Product (zoals teksten, geluidsfragmenten of andersoor-
tige data en/of tools), anders dan korte voorbeelden in wetenschappelijke publicaties
of publicaties voor onderwijsdoeleinden. Gebruiksovereenkomst WAI-NOT Corpus 3/4
Niet-commercieel
7.3 Voor zover blijkt dat door aanpassingen, bewerkingen en/of aanvullingen van Prod-
uct door Gebruiker eigen of nieuwe rechten zouden kunnen ontstaan ten aanzien van
Product, worden deze hierbij bij voorbaat volledig en onbezwaard door Gebruiker aan
INT overgedragen. INT aanvaardt hierbij deze overdracht.
7.4 Voor zover de overdracht zoals bedoeld in het vorige lid middels deze Overeenkomst
niet wordt bewerkstelligd of niet mogelijk blijkt, verbindt Gebruiker zich om op eerste
verzoek van INT kosteloos alles te doen wat nodig is om de overdracht van alle in-
tellectuele eigendomsrechten ten aanzien van Product te effectueren. Voorts verleent
Gebruiker hierbij voor zover nodig tot het moment van volledige overdracht een on-
beperkte exclusieve licentie aan INT, welke licentie INT hierbij aanvaardt.

Randtikel 8. Optierecht
8.1 Indien Gebruiker de overeenkomstig Randtikel 4.1 sub b ontwikkelde Nieuwe Pro-
ducten openbaar wenst te maken en/of aan derden ter beschikking wenst te stellen
en/of anderszins wenst te exploiteren, dient hij eerst aan INT een exclusieve licentie
aan te bieden inhoudende dat INT gerechtigd is de nieuwe producten middels de Web-
winkel ter beschikking te stellen. INT zal binnen twee maanden na ontvangst van het
aanbod van Gebruiker beslissen of zij een exclusieve licentie wenst.
8.2 Middels de exclusieve licentie bedoeld in het vorige lid zal Gebruiker aan INT in
elk geval de volgende rechten verlenen: a. het recht de Nieuwe Producten openbaar
te maken en te verveelvoudigen; b. het recht om sublicenties aan derden te verlenen
ten behoeve van het gebruik van de Nieuwe Producten voor onderzoeks- en onder-
wijsdoeleinden; c. het recht om sublicenties aan derden te verlenen ten behoeve van
het ontwikkelen en exploiteren van nieuwe producten door deze derden, onder de voor-
waarde dat de Nieuwe Producten of een kwalitatief of kwantitatief substantieel gedeelte
daarvan niet herkenbaar in de door de derden te ontwikkelen nieuwe producten zijn
opgenomen, verveelvoudigd of overgenomen; d. het recht om de Nieuwe Producten te
gebruiken ten behoeve van het (laten) ontwikkelen en exploiteren van nieuwe producten.

Randtikel 9. Duur en einde Overeenkomst
9.1 Deze Overeenkomst vangt aan op het moment dat Gebruiker akkoord is gegaan met
deze Voorwaarden en het Product heeft gedownload (zie Randtikel 3).
9.2 INT is gerechtigd deze Overeenkomst tussentijds met onmiddellijke ingang zonder
voorafgaande opzegging te beëindigen, indien:
9.3 Licentienemer in strijd handelt met één van de bepalingen van deze Overeenkomst en
indien Licentienemer niet binnen 14 (veertien) dagen na aanschrijving dienaangaande
door INT is nagekomen;
9.4 Licentienemer zelf het faillissement, surseance van betaling of toepassing van de
schuldsaneringsregeling natuurlijke personen aanvraagt, indien Licentienemer failliet
is verklaard, indien aan Licentienemer surseance van betaling is verleend of indien ten



H.2. WAI-NOT LICENSE 83

aanzien van Licentienemer de schuldsaneringsregeling natuurlijke personen van toepass-
ing is verklaard.
9.5 Indien deze Overeenkomst om welke reden dan ook eindigt, is INT niet aansprake-
lijk voor eventuele schade die Licentienemer lijdt ten gevolge van het beëindigen van
de Overeenkomst.
9.6 Vanaf het moment dat de Overeenkomst om welke reden dan ook eindigt, beschikt
Licentienemer niet langer over de rechten, die INT middels deze Overeenkomst aan
Licentienemer heeft verleend.
9.7 Licentienemer verplicht zich, indien de Overeenkomst om welke reden dan ook
eindigt, met ingang van de datum van beëindiging ieder gebruik van (de inhoud van)
Product, of een gedeelte daarvan, te staken en gestaakt te houden.
9.8 Licentienemer is verplicht om binnen dertig (30) dagen na de datum van beëindiging
van deze Overeenkomst (alle verkregen en gebruikte gegevens en componenten van)
Product samen met de door Licentienemer gemaakte back-up(s) te vernietigen en die
vernietiging schriftelijk aan INT te bevestigen. Gebruiksovereenkomst WAI-NOT Cor-
pus 4/4 Niet-commercieel

Randtikel 10. Geschillen en toepasselijk recht
10.1 Op deze Overeenkomst is Nederlands recht van toepassing.
10.2 In geval van geschillen, voortvloeiend uit deze Overeenkomst of uit daarop voort-
bouwende overeenkomsten, zullen deze worden voorgelegd aan de bevoegde rechter te
Den Haag.
10.3 Afwijkende bedingen, wijzigingen van en/of aanvullingen op deze Overeenkomst
gelden slechts indien en voor zover deze tussen Licentienemer en INT uitdrukkelijk
schriftelijk zijn overeengekomen.
10.4 Indien een bepaling van deze Overeenkomst nietig is of vernietigd wordt, blijven
de overige bepalingen volledig van kracht. Licentienemer en INT zullen dan in overleg
treden teneinde een nieuwe bepaling ter vervanging van de nietige of vernietigde bepal-
ing overeen te komen, waarbij zo veel mogelijk met het doel en strekking van de nietige
of vernietigde bepaling rekening zal worden gehouden.
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