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Abstract

This thesis investigates the application of automatic labeling techniques and sequence-
to-sequence (Seq2Seq) models for disfluency removal in Automatic Speech Recognition
(ASR) transcriptions. The increasing consumption of audio and video media necessi-
tates the need for accurate and accessible transcriptions. However, speech disfluencies
often disrupt comprehension and readability, posing a significant challenge to tran-
scription services. To address this, we explore two data labeling techniques for training
token classification models and the use of Seq2Seq models for disfluency correction.

The first labeling technique generates disfluent elements and inserts them into clean
data, while the second technique labels words based on the difference between a raw
ASR transcript and its cleaned version. The models trained with these techniques were
able to accurately identify disfluencies.

The Seq2Seq model, trained using a parallel corpus of raw and clean transcriptions,
demonstrated strengths in correcting grammatical errors and enhancing stylistic ele-
ments, readability, and clarity. However, it struggled with removing certain types of
disfluencies, particularly interjections, and was prone to hallucinations, especially with
longer and noisier inputs.

In conclusion, this thesis highlights the potential of automatic labeling techniques
for training token classification models and the promise of Seq2Seq models in disfluency
removal. Despite some limitations, these methods offer promising possibilities for future
research and development in disfluency removal in ASR applications.
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Chapter 1

Introduction

Average weekly audio and video media consumption has increased by 6.5 hours over the
past five years to 17 hours (Wyzowl, 2023). People are watching more videos, listening
to more podcasts, and attending more virtual events. Local and national governmental
debates must often be recorded and made public. To ensure such media is fully ac-
cessible, many broadcasting agencies and government bodies require media transcripts
or subtitles. The European Accessibility Act even requires everyday products and ser-
vices to be accessible to people with disabilities (European Parliament and Council of
the European Union, 2019). Transcriptions and subtitles are one step in this process
and allow those who are hard of hearing or have other linguistic impairments to access
media and information.

The amount of media that needs to be transcribed is so large that it is too expensive
and time-consuming to do so manually. For every audio or video media hour, many
transcribers estimate a minimum of 4 hours required to create a transcript (Walford,
2001; Chen, 2022). Automatic speech recognition (ASR) software can speed up this
process immensely. It can be used as an intermediate step that creates an initial draft
of the transcript, which a human transcriber can then clean up.

Amberscript, the company hosting this thesis project, offers automatic and manual
transcripts and subtitles. If a customer requests a manual transcript, the ASR output is
only used to create an initial transcript of an audio source. A large team of transcribers
then perfects this to ensure high-quality clean-read transcripts.

The automatic transcripts created by the ASR are verbatim. A verbatim transcript
is a word-for-word transcript of a given audio source, which contains all kinds of speech-
specific mannerisms and is not always as readable as one might like. Although not
bothersome in spoken language, some words are usually avoided in written forms. Such
speech disfluencies can make a text hard to follow. The reader needs to actively filter
the interruptions to extract the meaning of the text. This can be especially true for
complex texts, where the addition of disfluencies can make an already challenging text
even more difficult to follow.

As a result, disfluencies often need to be omitted when transcribing audio for the
purpose of reading along (such as subtitles) or for data archiving. To further enhance
the usefulness of ASR systems, disfluencies that appear in the raw ASR transcripts
should be automatically detected and removed.

1
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Speech Disfluencies

Speaking is a wonderfully complex task that is easy for most people. It starts by
collecting our thoughts to form a message we intend to convey. Then we have to
structure this message to follow a logical pattern, form the sentences, and find the
right words. To produce words, we need to vibrate our vocal cords and activate the
muscles required to shape the oral tract. If done right, we create a sound sequence that
makes up each word in our planned message (Levelt et al., 1999). As expected, much
can go wrong in this process, and much does go wrong.

When people talk, they often use words or sounds that do not help them communi-
cate their message. Someone might need some time to think before they can continue
their sentence and might fill that silence with uhm or with actual words such as like or
you know. Such speech disfluencies are usually caused by having an incomplete plan
of our message. While speaking, we might realize we want to take the message in a
different direction, and we need to adjust what has already been said (Lickley, 2015).
This can cause us to restart or repair our utterances. Planning the new route could
take some time, which can be filled with interjections. Disfluencies can also be caused
simply by accidentally pronouncing a different sound than intended. Many disfluencies
exist, but we focus on same-turn disfluencies in this thesis. These disfluencies are re-
stricted to a single turn in a conversation (Shriberg, 1994). They can be grouped into
several categories (Honal and Schultz, 2003):

• Filled pauses
‘Their cooking is amazing, yesterday they made uh spaghetti’

• Repetitions
‘I, I, I can do that’

• Interjections
‘So he said like, well, I like you!’

• Repairs
‘I went to the store. . . the supermarket’

• False starts
‘Would you. . . I really like the food’

Speech disfluencies are often viewed as a sign of poor linguistic ability, but they are
a natural part of speech production. It is challenging to produce fully fluent speech in
spontaneous conversations, and even people following a script may struggle to achieve
it. Within Chomsky’s theory of syntax (Chomsky, 1965), speech is affected by linguis-
tic competence and performance. Linguistic competence is a speaker’s subconscious
knowledge of language rules like syntax and semantics. Linguistic performance is how
well someone uses language in real-life situations. Different factors, such as memory
limitations, distractions, and the social context of the conversation, influence it. Even
those with a high level of competence may still produce speech disfluencies, making it
more likely for speech disfluency to fall under linguistic performance. Better speakers
don’t necessarily have a better understanding of the language. Instead, they might
better understand the social context or be better resistant to distractions.
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Removing Disfluency

Some ASR systems directly ignore disfluencies. However, such models tend to lag
behind the state-of-the-art pipeline where the ASR output is processed by a separate
model from the disfluency removal (Mendelev et al., 2021). When seeing disfluency
removal as an independent task, sequence tagging is one of the more straightforward
approaches. Each word in a sequence is tagged as fluent/disfluent.

Another approach to the task uses sequence-to-sequence models, which can be used
to create text free of disfluencies. Here, disfluency removal is treated as a translation
problem, where an ASR transcript that contains disfluencies is considered one language,
and a model is trained to translate it into a fluent version of the transcript. This method
does not require word-level labels, but it does require sentence pairs containing both
raw and cleaned ASR output. However, Wang et al. (2020c) have used this approach
and relied on pseudo data for the disfluent sentence.

The present thesis focuses on sequence tagging, or token classification, and sequence-
to-sequence text generation (Seq2Seq). Token classification models face a major lim-
itation in disfluency removal due to the scarcity of labeled data. The Switchboard
dataset Godfrey et al. (1992) offers disfluency labels for English, but such resources are
lacking for low-resource languages. This thesis concentrates on Dutch, which may not
be classified as low-resource overall but lacks direct disfluency-labeled datasets.

The Dutch dataset Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN)
contains Dutch and Flemish audio fragments, including transcripts (Oostdijk et al.,
2002). By combining the various annotations, it is possible to approximate speech
disfluencies. Unfortunately, not all disfluencies can be extracted from this structure.

To overcome the labeled data shortage, Passali et al. (2022) generate disfluent ele-
ments and insert them into clean text. The proposed Large-scale Artificial Disfluency
Generation (LARD) method allows them to generate repetitions, repairs, and false
starts. While this approach can create a large amount of labeled data, the generated
data may not be representative of real-world disfluencies, thus hindering generalization.

Seq2Seq models do not require word-level labels. They are usually used in ma-
chine translation. The task in machine translation is comparable to the present task
of transforming disfluent text into fluent text. To train machine translation models,
one requires a parallel corpus. Each sentence in the source language has a correspond-
ing translation in the target language. These models can improve texts beyond just
disfluency removal.

1.1 Motivation

Speech disfluencies present a significant challenge to providing accurate and readable
transcripts. These disfluencies often disrupt the comprehension process, leading to
confusion and misunderstanding. The issue becomes even more critical when consid-
ering individuals with hearing disabilities or other linguistic impairments who rely on
transcripts or subtitles to understand and access the content. Therefore, it is crucial
to establish an effective method to eliminate these disfluencies, ensuring readability in
transcripts and subtitles.

Disfluencies pose an added challenge for companies like Amberscript that provide
transcription services. Transcribing large volumes of audio and video content is time-
consuming and costly. It becomes even more laborious when the transcripts have



4 CHAPTER 1. INTRODUCTION

to be cleaned up by human transcribers to remove the speech disfluencies. This is
expensive and increases the turnaround time for delivering the transcripts to the clients.
An automated approach to disfluency removal has the potential to improve efficiency,
reduce costs, and enhance the quality of transcripts.

In the context of Amberscript, the need for disfluency removal goes beyond man-
ual transcripts. The company’s automatic transcript service, which directly provides
the raw output from ASR, also faces issues with speech disfluencies. These disfluen-
cies often compromise the readability of the transcripts and, consequently, the overall
customer experience. An effective method for automatic disfluency removal can dra-
matically improve the quality of these automatic transcripts, reducing the need for
further manual intervention. Furthermore, it can expedite the production of subtitles,
as the majority of the time spent on subtitle creation is on removing disfluent elements
from the transcript.

1.2 Contributions

This thesis addresses several research questions related to disfluency removal and its
applications in ASR systems. The research questions that guided this study are:

RQ1. Can automatic labeling techniques be reliably used to create datasets used to train
effective transformer-based token classification models for disfluency removal?

• Can artificially generated disfluencies (following the LARD method proposed by
Passali et al. (2022)) be used as an effective training dataset for token classification
models?

• Can automatically labeled data using the raw and clean transcript pairs approach
be used as an effective training dataset for token classification models?

RQ2. Can sequence-to-sequence models be reliably trained using automatically aligned
fluent-disfluent data to create effective disfluency correction models?

To answer these questions, the thesis investigates the effectiveness of two data la-
beling techniques for generating training data for token classification models. One of
these techniques is a novel approach to automatically label disfluencies, which is par-
ticularly useful in settings where only raw transcripts and human-perfected transcripts
are available.

The first labeling approach generates disfluent elements and inserts them into clean
data following the method by Passali et al. (2022). This input data lacks any ASR-
specific errors. The second approach deals with this potential downside by using raw
ASR output and labeling each word in the raw data by its existence in the cleaned-up
version of the transcript. Significant edits can cause the two versions to be misaligned,
and heuristics are applied to select candidate sentences that have enough overlap be-
tween the two versions. The unsupervised nature of this approach can result in imper-
fect training data.

The two labeling techniques result in various datasets used as input for a Large
Language model, specifically the Dutch RobBERT (Delobelle et al., 2020). The model
is fine-tuned with a binary classification head categorizing each token as fluent’ or
disfluent’.
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The Seq2Seq model uses the raw and cleaned transcript pairs to fine-tune the T5
model (Raffel et al., 2020). Although the model may produce some hallucinations,
the similarity in length and meaning between the two texts could minimize this effect.
However, the model may still hallucinate if the input is nonsensical due to the noisy
ASR output.

The results of this thesis contribute to the development of better disfluency removal
data by comparing two labeling methods and providing insights into their strengths and
weaknesses. In response to RQ1, our findings indicate that automatic labeling tech-
niques are promising for training transformer-based token classification models. The
Levenshtein-based models were particularly effective, with a precision rate of approxi-
mately 75% on the disfluent class and a recall rate of around 50%. However, the method
proposed by Passali et al. (2022), despite offering reasonable precision, showed reduced
effectiveness in recall. This highlights that the Levenshtein-based models outperformed
those based on the LARD approach, stressing the benefits of realistic representation of
conversational language in labeled data.

In response to RQ2, the results show that while the Seq2Seq models did not surpass
the token classification models in terms of the BLEU score, they demonstrated an array
of strengths, including the correction of grammatical errors and improvements in stylis-
tic elements, readability, and clarity. Particularly, the model exhibited proficiency in
handling single and multi-word repetitions and repairs, though it showed less efficiency
in removing interjections. The model’s tendency towards hallucinations under certain
conditions warrants further exploration.

In conclusion, our research demonstrates the potential of automatic labeling tech-
niques for training token classification models and the promise of Seq2Seq models in
disfluency removal. These findings not only illustrate the potential of these methods
but also highlight the inherent complexity of disfluency removal tasks, underlining the
need for continued research and development in this field.

1.3 Outline

The coming chapters of this paper discuss different elements of the thesis. Chapter 2
presents a comprehensive review of previous works, discussing speech disfluencies and
how transformer models aid in identifying them via token classification and sequence-
to-sequence text generation. Chapter 3 explores the approaches used in this study,
explaining the data sources, automatic labeling techniques, and the structure of the
models. In Chapter 4, the results are shared, examining the fine-tuning steps and the
effectiveness of the models. An in-depth error analysis for both model types is offered in
Chapter 5, focusing on how input length and noise amount influence performance and
on specific errors made by the models. Chapter 6 opens a dialogue about the results
and their potential implications, as well as opportunities for further research. Finally,
Chapter 7 concludes the research.
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Chapter 2

Literature Review

Automatic speech recognition (ASR) has seen significant advancements over the past
few years, with applications ranging from transcript services to voice assistants. One
of the challenges in this field is to provide readable transcripts. This partly means
providing accurate word-for-word transcripts of the spoken text. The next step is
detecting and handling disfluencies - interruptions in the flow of speech that include
repetitions, repairs, and interjections.

Despite the importance of this issue, there is little literature on disfluency removal,
particularly in languages other than English. This gap is especially pronounced in
Dutch, where no specific research on disfluency removal appears to have been con-
ducted. This lack of research is needed to ensure the development of more readable
Dutch ASR system outputs.

This chapter provides an overview of the literature on speech disfluency and its
automatic removal using Large Language Models. We explore the nature of disfluencies
and their impact on spoken and written communication. We delve into machine learning
for disfluency removal, giving a brief insight into Large Language Models. Finally,
we highlight the difficulties encountered in present disfluency removal research and
potential solutions.

2.1 Speech Disfluency

Disfluencies in speech are a natural occurrence that can be observed during sponta-
neous conversation. Disfluencies are not necessarily indicative of a speech or language
disorder, as even fluent speakers tend to use 6 to 10 disfluent words for every 100 spo-
ken words (Rochester, 1973; Shriberg and Stolcke, 1996; Ferreira and Bailey, 2004).
These disfluencies often serve communicative and cognitive functions such as helping
the speaker retain the conversational floor, signaling uncertainty, or managing the social
dynamics of the conversation.

This thesis will focus on same-turn disfluencies, specifically filled pauses, repetitions,
interjections, repairs, and false starts. It is important to clarify that the scope does not
include dysfluencies, which refer to speech that is not fluent due to speech disorders
(Bloodstein et al., 2021). Additionally, we will not be discussing cross-speaker or cross-
turn disfluencies, such as uh huh (affirmation) and ooooh (astonishment), which are
vocal responses to other speakers and are often produced during another’s turn or as
turn-taking cues (Goodwin, 1986).

7
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Disfluencies are influenced by various factors, including message structuring, utter-
ance planning, socioeconomic circumstances, discourse factors, and the communication
context (Clark and Tree, 2002; Shriberg, 1994; Holmes, 1988). They typically indicate
issues with speech planning and can be impacted by elements such as sentence length,
complexity, lexical context, and prosodic phrasing (Goldman-Eisler, 1958; Tannenbaum
et al., 1965; Beattie and Butterworth, 1979; Bell et al., 2003; Nakatani and Hirschberg,
1994; Lickley, 2015).

Models of speech production often utilize disfluencies as evidence, suggesting a
hierarchical process that encompasses stages such as syntactic planning, lexical selection
and access, phonological planning, and motor control, with disfluencies potentially
occurring at any stage (Levelt, 1983; Holmes, 1988; Ferreira and Pashler, 2002).

Contextual variables like the topic of conversation and familiarity with the speaker
can also influence the rate of disfluent speech (Schachter et al., 1991; Moniz et al.,
2014; Bortfeld et al., 2001; Shriberg, 1994; Arnold et al., 2007). Higher disfluency
rates are often observed in more demanding contexts, such as speaking to a stranger
or discussing complex topics. However, at the same time, disfluency rates drop in
unfamiliar situations, such as human-machine communication. This could be due to
sociolinguistic variables. Age, gender, register, and language variations systematically
impact the use and frequency of filled pauses (Fruehwald, 2016; Tottie, 2011, 2014).

In short, sociological, neurological, and linguistic factors impact the realization of
disfluency. The large variability can make systematic annotation challenging. Various
approaches define and structure disfluency to simplify annotation and create helpful
corpora for further research. In this thesis, we will discuss the methods and converge
into a categorization we will use throughout this thesis.

2.1.1 Patterns in Speech Disfluencies

The classification of disfluencies mentioned in Section 1 is not the only possible group-
ing. Some early works regarding speech disfluencies focused on a clinical perspective to
distinguish normal and disordered speech. Such categories were often highly specific.
For example, Mahl (1956) mentions categories as repetition of partial words (stutter-
ing), intruding incoherent sound, or tongue slip. Johnson (1961) had a similar goal and
introduced eight categories, such as incomplete phrases and broken words. Although
these categorizations effectively contrast speech with and without stuttering, they are
not as suitable for characterizing typical speech.

Shriberg (1994) took a computational linguistics approach and developed a system
that included five categories. The goal was to highlight the regularity found in speech
disfluency. Due to technological advancements, there was a growing need to compare
spontaneous spoken language with written language. In their paper, they stress the
structured nature of speech disfluencies. A disfluent segment includes several parts: the
word, partial word, phrase, or partial phrase that needs to be fixed (called the reparan-
dum), the point where the interruption occurs, the pause between the interruption and
the resumed speech (known as the interregnum), the word or phrase that is repeated
or corrected, and the continuation of fluent speaking. Figure 2.1 visually represents
speech disfluency components.

Any disfluent element follows this structure to some degree. Shriberg states that
an interregnum is optionally filled with a word but can also be left silent. The repair is
usually vocalized but can be left out under certain circumstances. For example, if the
speaker is interrupted or assumes the repair is unnecessary to make their utterance’s
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Figure 2.1: The structure of a disfluent phrase. Image from Shriberg (1994)

essence understood. Henceforth we will refer to the phrase that corrects the disfluent
element as correction, not repair. We deviate from this since we will use the word repair
as the specific class of disfluencies explained below.

2.1.2 Categorizing Disfluencies

Honal and Schultz (2003) introduced an intuitive categorization that follows the pat-
terns described by Shriberg. Their paper discusses correcting errors in automatic speech
recognition by implementing a disfluency correction system. They explain that their
categorization method was based on the dataset annotation method used in their re-
search. While Honal’s classification system differs slightly from Shriberg’s, as it uses
broader categories, each disfluency type follows the same pattern as in Shriberg’s sys-
tem.

Filled Pauses Filled pauses are often non-semantic noises that fill a silence between
utterances. Words like uh and um often give the speaker time to process or plan their
utterance. On average, 1 to 4% of our speech comprises filled pauses (Lickley, 2015;
Shriberg, 1994). Filled pauses are generally caused by high cognitive load, choices, or
uncertainty (Arnold et al., 2007; Brennan and Williams, 1995; Smith and Clark, 1993).
In Shriberg’s structure, filled pauses are typically used as an interregnum.

Interjections Interjections share similarities with filled pauses and are commonly
labeled as fillers. However, referring to them as such could lead to confusion with filled
pauses. For clarity purposes, we will use the term interjections. Unlike filled pauses,
interjections are standalone words. Although they may not have semantic meaning
when used as interjections, they do have meaning in other contexts. For instance, the
word like is commonly used as an interjection in English but can also hold significant
meaning in typical usage. To illustrate this, consider the following example sentences:
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(1) Examples of typical and interjectional use of like.

a. I really like to go swimming

b. I really like want to go swimming.

Example (1b) shows the disfluent realization of the word. Aside from a filled pause,
the interjection can also fill the interregnum slot in Shriberg’s structure.

Repetitions Repetitions are repeated words or phrases. It’s important to differenti-
ate between intentional and unintentional repetitions. Deliberate repetitions are used
to emphasize a specific word. For instance, when saying I really really like swimming,
the speaker wants to express their adoration for swimming. However, the use of I in I I
I really like swimming does not emphasize that the speaker specifically likes swimming.
This distinction is crucial as categorizing both types of repetitions as disfluency could
result in losing important information if they’re removed.

There is a ten times higher likelihood of unintentionally repeating a function word
than a content word (Clark and Wasow, 1998). Function words may be more easily
retrieved from memory when articulating a message due to their higher frequency,
whereas content words may be more challenging to recall. However, repetitions may
also indicate a speaker’s attempt to maintain speech continuity when dealing with high
cognitive demand (Hieke, 1981). This theory explains why repetition is more likely to
occur at the beginning of complex clauses and more focused on content words appearing
in that part of the sentence (Clark and Wasow, 1998).

Repairs The previous disfluencies are fairly straightforward and easily spotted. Re-
pairs are disfluencies that are not as easily detected. Figure 2.1 shows a typical repair
where the speaker intended to produce from Denver on Monday but instead uttered
the name Boston. While Boston is the only error the speaker made, they correct it by
also repeating surrounding the content words from and on as well. The entire section
that needs to be corrected is called the reparandum, not just the one wrong word. We
can determine what makes up the reparandum based on the repeated words in the
correction.

Repairs can come in various forms. The disfluency type can include repetitions
(as seen in Figure 2.1) or can include only a substitute for a single-word reparandum.
Shriberg (1994) has identified multiple repair methods, including inserting, deleting, or
substituting words. They show that a repair can also include interjections and filled
pauses in the place of the interregnum. The many possible variations in repairs are
also illustrated by Levelt’s (Levelt, 1983) concept of covert repairs. Covert repairs refer
to repairs where the reparandum is not vocalized. The assumption is that the speaker
has the wrong word prepared in their mental plan of an utterance but corrects the
error right before producing the word. Since this version of a repair is not audibly
recognizable, we ignore it as it is realized as either a repetition (if surrounding words
are repeated) or not as disfluency at all.

False starts A false start is when a speaker starts to speak, stops abruptly, and then
resumes differently. False starts and repairs have similarities, and Shriberg does not
differentiate them. The interrupted part follows the pattern of Shriberg’s reparandums,
while the restarted utterance speech is similar to corrections. However, false starts only
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occur at the beginning of a sentence and can have longer reparandums than those found
in repairs. Furthermore, false starts are usually not caused by an error in a content
word, and the new sentence can be completely unrelated to the initial start. Another
reason to differentiate false starts from repairs is that corrections in false starts involve
a complete utterance, whereas corrections in repairs may only involve partial utterances
(Tree, 1995).

2.2 Disfluency Detection

ASR systems typically provide a raw output consisting of a sequence of words that
includes the speech disfluency in the audio. Having such verbatim transcripts can be
useful since disfluency can carry pragmatic meaning, for example, in investigating lin-
guistic phenomena or predicting sentiment in a text. However, a cleaner transcript
is sometimes desired, and downstream models are used to improve the ASR output.
A punctuation model can automatically predict sentence boundaries and capitalize
sentence-initial words. A Named Entity Recognition model can identify and capitalize
person names, company names, locations, and other entities. On top of adding punc-
tuation and capitalization, detecting and removing speech disfluency from transcripts
can improve their readability.

Rule-based approaches can target some disfluencies, but it soon becomes clear that
the patterns of disfluency are difficult to capture. Repetitions can often be easily
detected. However, not all repetitions are grammatically incorrect. Thus one would
have to allow the model either to remove some repetitions falsely. Or one would have to
specify which words would always be allowed to be repeated. Going into the territory
of repairs and interjections, we realize that relying solely on rule-based approaches is
no longer possible. All words that are considered an interjection in one utterance can
be required in another. Any reparandum is also a correct word in its own right, and
it is even hard for humans to identify them accurately. Machine learning is necessary
for creating an automatic method of detecting and removing such disfluencies. Recent
machine learning techniques offer a better semantic understanding of texts by machines,
which is essential for detecting disfluencies.

2.2.1 Introduction to Machine Learning and Deep Learning

Machine Learning Machine learning focuses on developing algorithms and statisti-
cal models that enable machines to perform tasks otherwise only possible by humans.
It draws on ideas from various fields, such as information theory, statistics, cognitive
science, and mathematics (Cherkassky and Mulier, 2007).

Machine learning began with simple rule-based systems, where machines were pro-
grammed with specific rules to follow in processing data (Liu et al., 2015). Over time,
researchers developed algorithms that allowed machines to identify patterns in data
and make predictions without being explicitly engineered.

Machine learning can be categorized into three main types: supervised, unsuper-
vised, and reinforcement learning (Qiu et al., 2016). Supervised learning involves train-
ing a model on a labeled dataset, where the correct answers (or labels) are provided.
The model learns to predict the correct label for new, unseen data. Unsupervised learn-
ing does not require labeled data. The model learns to identify patterns and structure
in the data without specific guidance about a correct answer. Reinforcement learning is
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a type of machine learning where the model learns to make decisions by taking actions
to maximize some cumulative reward (Shinde and Shah, 2018).

Common machine learning algorithms include linear regression, decision trees, sup-
port vector machines, and k-nearest neighbors. Each of these algorithms has its
strengths and weaknesses and is used in different machine-learning tasks. However,
they all rely on shallow architectures that involve only one layer of non-linear feature
transformation. This single layer converts the raw input signals or features into the
desired output, such as a class or label (Yu and Deng, 2010).

The architecture of shallow structures can be limiting because some features are
too complex to transform with just one layer (LeCun et al., 2015). Deeper structures
can overcome this issue by utilizing hierarchical structures to learn more complex rep-
resentations automatically (Yu and Deng, 2010).

Deep Learning The start of deep learning marked a significant milestone in artificial
intelligence. Deep learning leverages neural networks with many layers - hence the term
deep. This approach was motivated by the need to overcome challenges that traditional
machine learning techniques struggled with, such as image and speech recognition tasks
(LeCun et al., 2015).

Several key factors facilitated the rise of deep learning. Firstly, the architecture of
the models allows them to process large amounts and diverse types of data. Secondly,
advancements in computing power, particularly the development of Graphics Processing
Units (GPUs), made it feasible to process this data and train large neural networks
(Dean et al., 2012).

Neural networks are at the center of deep learning. These are computational models
inspired by the human brain, designed to recognize patterns. The networks consist of
layers of nodes (or neurons), and they use a system of weights and bias adjustments
in a process known as training to learn from data (Gardner and Dorling, 1998). The
depth of these layers is what differentiates a deep neural network from a shallow one
(Hornik et al., 1989).

While traditional machine learning and deep learning both fall under artificial intel-
ligence, the two have fundamental differences. Traditional machine learning algorithms
are often limited in their ability to process data in its raw form (LeCun et al., 2015).
For instance, a piece of text, which is a string of characters, would require a feature ex-
traction step to find words, syntactic features like word order, dependencies, and more.
Conversely, deep learning models are designed to automatically learn these features,
given enough training data.

Moreover, deep learning models are particularly well-suited to handling high-dimensional
data, such as images, audio, and complex natural language processing (NLP) tasks. As
we go further into the architectures of a specific deep learning architecture, a trans-
former, these advantages will become even more apparent (Vaswani et al., 2017).

2.2.2 Transformers

Before transformer models, much of the work in NLP with deep learning models used
Recurrent Neural Networks (RNNs) and their extended variant, Long Short-Term Mem-
ory (LSTM) networks (Rumelhart et al., 1985; Hochreiter and Schmidhuber, 1997).
These models processed input sequentially, making them suitable for handling the tem-
poral dynamics of language. However, they had significant limitations, particularly
when dealing with long-range dependencies in text. As the distance between relevant
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pieces of information increased, RNNs and LSTMs struggled to maintain the necessary
context (Bengio et al., 1994).

Attention The concept of attention was a possible solution to this problem. For
neural networks, attention was first introduced by Bahdanau et al. (2014) in the context
of neural machine translation. The idea was to allow the model to focus on only the
relevant parts of the input sequence when producing each word in the output sequence.
This would reduce the bottleneck of having to look at the entirety of a fixed-length
vector. The soft-search was achieved by assigning a weight to each word in the input
sequence for each word in the output sequence. These weights were learned during the
training process, allowing the model to automatically learn which parts of the input
were relevant for each part of the output.

The transformer model, introduced by Vaswani et al. (2017) took this concept of
attention and extended it with the idea of multi-headed self-attention. Not only do
the words in the target sentence attend to the words in the source sentence, but they
also attend to each other. This is referred to as self-attention. Furthermore, instead of
having a single self-attention mechanism, the transformer model has multiple attention
heads. Each head learns a different set of attention weights, allowing the model to
focus on different types of information. For example, one head might learn to pay
attention to syntactic information, like the subject of a sentence, while another head
might focus on semantic information, like the overall sentiment of the sentence. This
multi-head attention mechanism allows the transformer model to capture a richer set
of dependencies in the input data than possible with a single attention mechanism
(Vaswani et al., 2017).

Scaled Dot-Product Attention Multi-Head Attention

Figure 2.2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
consists of several attention layers running in parallel. Taken from Vaswani et
al. (2017)

In Figure 2.2, Q, K, and V stand for Query, Key, and Value, respectively. They
are essential elements in the attention mechanism, which allows the model to focus
on different parts of the input when generating the output. The Query represents the
current word or context the model focuses on. The Key can be considered a set of
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possible words or contexts that could answer the Query. Finally, the Value is the word
or context corresponding to each Key. When a Key is selected as the answer to the
Query, the corresponding Value is returned.

In the transformer model, Q, K, and V are vectors that are learned from the data
during the training process. Specifically, they are created by multiplying the input
(e.g., word embeddings for a given sentence) by weight matrices that are learned during
training.

The multi-headed self-attention mechanism is used in the model’s encoder and de-
coder parts. Multi-head attention allows the model to focus on different parts of the
input simultaneously, which can capture various aspects of the data. The attention
mechanism (Scaled Dot-Product Attention) is applied to the input (Q, K, V) h times
(where h is the number of heads) using different learned weight matrices. This pro-
duces h different sets of Q, K, and V. These output vectors are concatenated and then
linearly transformed once more to produce the final output.

Vaswani et al. (2017) used stacks of multi-head attention and fully connected feed-
forward neural networks to create the transformer. The model used the more common
encoder-decoder structure following the example of competitive models at the time
(Bahdanau et al., 2014; Sutskever et al., 2014; Cho et al., 2014)

The introduction of the transformer model was a breakthrough in the field of NLP.
It paved the way for a new generation of models that could handle complex language
tasks more effectively than their predecessors. Since the publication of Attention is All
You Need, transformer models have rapidly evolved, each iteration seeking to refine and
improve upon the original concept.

2.2.3 Pre-training and Transfer Learning

This evolution has led to the development of models like BERT (Bidirectional Encoder
Representations from Transformers), which used bi-directional attention architecture
and presented and split the encoding layer from the decoding layer (Devlin et al., 2018).
It introduced a novel pre-training method on a large corpus of text, enabling the model
to function as a language model. This could then be fine-tuned for specific tasks.

BERT was a significant development in this area (Devlin et al., 2018). BERT was
pre-trained on a large corpus of text using two tasks: Masked Language Model (MLM)
and Next Sentence Prediction (NSP). The MLM task involved randomly masking words
in a sentence and training the model to predict the masked words based on their context.
The NSP task involved training the model to predict whether one sentence follows
another. Through these tasks, BERT learned a rich representation of language that
captured both the meaning of individual words and the relationships between words in
a sentence.

Once a model like BERT has been pre-trained, it can be fine-tuned on a specific task
with a smaller amount of task-specific data. This process is known as transfer learning.
The idea is that the model can transfer the knowledge it gained during pre-training to
the new task.

2.2.4 Large Language Models

After BERT, many models appeared that used similar architectures and included pre-
training on large amounts of data. One popular adaptation was the Robustly Optimized
BERT (RoBERTa) (Liu et al., 2019). RoBERTa is a variant of BERT designed to
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further optimize the model’s performance on NLP tasks. Like BERT, RoBERTa is
pre-trained on a large corpus of text, but it uses a longer training time and a larger
batch size, among other tweaks, to improve upon BERT’s performance.

The architecture of Roberta is similar to that of BERT, consisting of a multi-layer
bidirectional transformer encoder. However, Roberta removes the Next Sentence Pre-
diction (NSP) objective used in BERT’s pre-training and trains with much larger mini-
batches and learning rates. Roberta also uses byte-level Byte-Pair Encoding (BPE),
which allows for a more robust handling of word pieces. BERT uses a technique called
WordPiece tokenization (Wu et al., 2016). This method breaks words into smaller
units, or WordPieces, which allows the model to handle rare and out-of-vocabulary
words. However, WordPiece tokenization is not without its limitations. It can struggle
with languages that do not use whitespace to separate words and can sometimes split
words in ways that do not align with linguistic boundaries.

BPE is a method that iteratively merges the most common pair of consecutive bytes
in the data Sennrich et al. (2015). This method allows Roberta to handle a broader
range of linguistic units without needing to split them in potentially unnatural ways.
BPE is also language-agnostic, as it operates on raw bytes rather than language-specific
characters or words. This makes Roberta more versatile and capable of handling a wider
range of languages and linguistic phenomena compared to BERT.

RoBERTa achieved state-of-the-art performance on various benchmarks, demon-
strating the effectiveness of its optimizations over BERT. It has since been used in a
wide range of NLP tasks, including sentiment analysis and named entity recognition
(Tian et al., 2020; Wang et al., 2020d).

Another significant development was the Text-to-Text Transfer Transformer (T5)
model, which adopted a unified text-to-text format for a multitude of language tasks
(Raffel et al., 2020). This approach allowed the model to handle tasks as diverse as
translation, summarization, and question answering with a single, consistent frame-
work.

The architecture of T5 is similar to other transformer models, with an encoder-
decoder structure. However, it introduces several unique features and improvements.
For example, T5 uses a causal masking strategy in its encoder, unlike the bidirectional
encoders used in models like BERT and Roberta. This strategy only allows the T5
to use words prior to the mask being used (and attended to) in the prediction of the
masked word. This limitation allows the model to be used for generative tasks, where
the output is a sequence of tokens that can be generated one at a time. This type of
model is also often referred to as a sequence-to-sequence (Seq2Seq) model.

T5 has been used in a wide range of NLP tasks, including translation, summariza-
tion, and question-answering. It has achieved state-of-the-art performance on several
benchmarks, demonstrating the effectiveness of the text-to-text framework and the
versatility of the T5 model.

Models like BERT, RoBERTa, and T5 motivated others to develop language-specific
versions and multilingual versions. Usually, such adaptations stay consistent with the
original structurally. Instead, they use alternate training data. For example, the Dutch
version of RoBERTa, aptly named with a common Dutch name, RobBERT, is trained
on Dutch data. The model was pre-trained on the Dutch section of the OSCAR corpus.
This large multilingual corpus was extracted from the Common Crawl corpus (Suárez
et al., 2019). The authors follow the exact method with which RoBERTa was trained.

Inspired by the success of language models like BERT, RoBERTa, and T5, re-
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searchers started creating language-specific and multilingual versions of these mod-
els. These adaptations typically maintain the original structural design but are distin-
guished by the unique datasets they are trained on. For example, the Dutch adaptation
of RoBERTa, fittingly named RobBERT, a common Dutch name. RobBERT’s training
is based on Dutch data, specifically pre-training on the Dutch segment of the OSCAR
corpus (Suárez et al., 2019). This expansive multilingual corpus was extracted from
the Common Crawl corpus. The creators of RobBERT followed the original RoBERTa
training methodology to create this Dutch-focused adaptation.

The multilingual T5, or mT5, is designed to handle tasks in multiple languages. It
leverages the same transformer-based architecture as the standard T5 but is trained
on a multilingual dataset containing over 100 languages. This makes it capable of
understanding and generating text in a wide variety of languages, thereby broadening
the applicability of the T5 model beyond English and into a global context.

2.3 Disfluency Detection with LLMs

Token classification The pre-trained strength of transformers has also been applied
to the task of detecting disfluencies. In a study by Bach and Huang (2019), a BERT
model was fine-tuned on the Switchboard dataset, which is a large collection of English-
language telephone conversations from the 1990s that includes annotations for various
types of disfluencies (Godfrey et al., 1992). The researchers trained BERT to classify
each word in a sentence as either fluent or falling into one of several disfluency categories,
such as filled pauses, repetitions, repairs, and false starts. Results showed that the fine-
tuned BERT model outperformed other models used in their experiments.

In their study, Wang et al. (2020a) enhanced the BERT model by fine-tuning it on
the Switchboard dataset and incorporating an extra training layer. They implemented
a self-training technique that exposed the model to both fluent and non-fluent data.
The non-fluent data was generated by randomly adding or removing a word from a
sentence. They found that this additional training step resulted in better performance
compared to solely fine-tuning BERT.

Rocholl et al. (2021) also suggest that it’s important to adjust a language model
for conversational data before fine-tuning it. They believe that the BERT model’s
pre-training data doesn’t have enough conversational data, making it less effective in
handling this type of data. To address this issue, they conduct additional pre-training
on the model using the same tasks as its original pre-training (MLM and NSP). Their
study shows that this approach enhances the model’s performance.

Previous methods have a disadvantage due to the lack of disfluency datasets an-
notated by humans. Most of these methods utilize the Switchboard data since it is
one of the few datasets with human-annotated disfluencies. Although unsupervised
approaches have been suggested, they tend to be less robust (Wang et al., 2020b; Saini
et al., 2021).

In their additional pre-training step,Wang et al. (2020a) included artificial data
by randomly adding or removing words from sentences to create disfluent sentences.
Building on this idea, Passali et al. (2022) used more complex rules to generate disflu-
ency, which closely follow the patterns described by Shriberg (Shriberg, 1994). They
achieved near state-of-the-art results on the Switchboard using their method.
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Sequence-to-sequence translation Aside from token classification approaches, dis-
fluency removal can also be approached as a translation task, where a disfluent sentence
is translated into a fluent one. Saini et al. (2021) used an unsupervised method to train
a translation model based on previous research in style transfer models (He et al., 2020).
Instead of labeling disfluent words and phrases, this method corrects them when gen-
erating a fluent version of the sentence. The unsupervised approach achieved a 79.39
BLEU score on the switchboard dataset. However, fine-tuning the model on a small set
of parallel data improved the performance significantly, reaching an 85.28 BLEU score.

However, the BLEU score does not tell us much about one of the biggest risks
in such generative models. Hallucination is defined as the generated content that is
nonsensical or unfaithful to the provided source content (Filippova, 2020; Zhou et al.,
2020). Ji et al. (2022) categorizes hallucinations into two types.

• Intrinsic Hallucinations: The generated output that contradicts the source con-
tent.

• Extrinsic Hallucinations: The generated output that cannot be verified from the
source content

Even within intrinsic hallucinations, not all novel generations necessarily contradict
the source content. When paraphrasing, one might generate a sentence that contains
only novel words yet not change the source content. Similarly, simply adding one nega-
tion can flip the meaning of the generated text. Hence, as opposed to the assumption
underlying the BLEU score, not all deviations from the source text are equal.

Fine-tuning a Seq2Seq model can reduce its hallucinatory tendencies. To do so, one
requires parallel data. Parallel data consists of text in one language and its correspond-
ing translation in another. The sentences need to be semantically aligned to make the
parallel corpus useful for machine learning algorithms. Sentence alignment then refers
to the process of finding corresponding sentences in two different language versions of
a text. For example, if you have a book in English and its French translation, sentence
alignment would involve identifying which sentence in the French version corresponds
to each sentence in the English version.

The quality of the sentence alignment directly affects the quality of the resulting
MT system. If the alignment is incorrect, the MT system might learn incorrect transla-
tions. Therefore, much effort is put into creating accurate sentence alignment methods.
These methods often use linguistic knowledge (like punctuation or sentence length) and
statistical methods to identify the most likely correspondences between sentences.

Past approaches to sentence alignment follow a dynamic programming approach.
Gale and Church use the lengths of sentences in characters as the main criterion for
alignment (Gale and Church, 1993). This method assumes that the length of the trans-
lated sentence in characters will be proportional to the length of the source sentence.
It can also handle one-to-many and many-to-one alignments (where one sentence in
the source language corresponds to several sentences in the target language and vice
versa).

Another well-known method is Moore’s, which relies on a greedy algorithm (Moore,
2002). Like Gale and Church’s method, it uses the lengths of sentences as a criterion for
alignment, but it also incorporates a lightweight translation model to further improve
the alignment.

More recent approaches use LLMs to calculate the semantic similarity between two
sentences. First, this method calculates the sentence embedding by pooling the word
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embeddings extracted from an LLM. Then it measures the cosine similarity between
the two embeddings, where a higher score refers to more similar sentences. One such
approach is popularized by Reimers and Gurevych (2019).

All methods offer distinct sentence alignment approaches, each with unique strengths
and weaknesses. The Gale and Church, and Moore methods rely heavily on the lengths
of sentences as a primary criterion for alignment, making them simple and broadly
applicable to a wide range of languages. However, this reliance on sentence length can
lead to inaccuracies when sentence length doesn’t correspond well across languages.
This is also highlighted in disfluency removal as the targeted languages are the same,
yet one of the key differences between a fluent and disfluent sentence is its length.

On the other hand, Reimers and Gurevych’s approach focuses on semantic similarity
between sentences, providing potentially more accurate alignments by going beyond
mere sentence length and incorporating deeper linguistic information. However, this
approach is more computationally intensive and might be slower when dealing with
large corpora. This approach is also less sensitive to single words. Adding a few words
will not change the embedding of an entire sentence much, while the alignment might
decrease significantly.

Most of these approaches might not be necessary when creating parallel data for
disfluency removal. Simple word-level comparisons might suffice since the source and
target text are in the same language. Edit distance metrics can compare two sequences
against each other and highlight what edits need to be made to go from one to the other.
If no edits need to be made, we can assume the sequences are aligned. Usually, such
metrics, like the Levenshtein edit distance (Vladimir, 1966), output a single score which
is often used as a similarity score of the two texts (Wubben et al., 2010; Kutuzov, 2013).
Texts with high similarity can be seen as good candidates for paraphrasing datasets
since there is much word-for-word overlap.

Disfluency Removal in Dutch The field of disfluency removal has yet to be widely
explored in Dutch, with few studies addressing this language specifically. Notably,
none of these Dutch-focused studies incorporate deep learning methods, and all utilize
the Corpus Gesproken Nederlands (CGN) dataset, which lacks predefined labels for
disfluencies, thus constraining the scope and generalizability of their findings.

The first study investigated spontaneous speech recognition, highlighting disfluen-
cies such as filled pauses, abbreviations, and repetitions. They proposed a method for
detecting fillers prior to speech recognition, aiming to improve recognition accuracy
by eliminating detected filled pauses from the recognizer input. This methodology,
however, did not address other forms of disfluencies (Stouten and Martens, 2004).

A more comprehensive approach to disfluency removal was taken in another study,
which defined disfluencies as any element that is not part of the main syntactic tree
of a sentence as annotated in the CGN dataset. Beyond filled pauses, this included
fragmented words, laughter, self-corrections, repetitions, abandoned constituents, and
hesitations. Utilizing a memory-based learning algorithm (with a k-nearest neighbor
algorithm), the researchers aimed to detect disfluent chunks based on a relatively small
set of low-level features (Lendvai et al., 2003).

Although the existing research on Dutch disfluency removal has identified certain
important aspects, such as filled pauses and a broader spectrum of disfluencies, it is
evident that utilizing deep learning and conducting further research would be advan-
tageous.
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2.4 Summary

The primary purpose of this chapter is to define and categorize disfluencies and in-
troduce previous attempts to detect them using transformer models. The discussed
disfluency categories include filled pauses, repetitions, repairs, and false starts. These
categories are based on the grouping by Honal Honal and Schultz (2003) and the dis-
fluency patterns identified by Shriberg (Shriberg, 1994).

In this chapter, transformers were introduced, and their importance in recent NLP
advancements was emphasized. Their most significant advantage is their ability to
understand text in context, both semantically and syntactically. This makes them
particularly effective in identifying disfluencies.

This chapter demonstrates two approaches to detecting disfluencies: token classifica-
tion and sequence-to-sequence. Token classification trains the model to label each word
in a sentence as fluent or one of several disfluency categories. Sequence-to-sequence
treats disfluency removal as a translation task, transforming a disfluent sentence into a
fluent one. Both approaches show promising results in disfluency removal and correc-
tion.

To achieve high-performing models, we learned that labeled or parallel data is neces-
sary regardless of the approach used. However, due to the shortage of data in this field,
researchers have explored unsupervised techniques and data augmentation methods as
alternatives.

These methods are the basis for the approaches used in this thesis. The next section
will explain the data used for the experiments and the labeling techniques applied to
transform the data into datasets ready for training. We will also provide more details
on the specific models used as a foundation and the evaluation setup done to evaluate
the resulting models.
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Chapter 3

Data and Methods

This chapter outlines this thesis’s methodologies and data sources for disfluency re-
moval. Our approach comprises two methods: token classification and Seq2Seq trans-
lation. Each method involves unique data processing and evaluation procedures, ex-
plained in the upcoming subsections.

The data for our experiments are derived from both Amberscript’s proprietary data
and the publicly accessible Spoken Dutch Corpus (CGN). These diverse data sources
bring about specific challenges and benefits, which we discuss in this chapter.

We fine-tune the Dutch Large Language Model variant of RoBERTa (RobBERT)
and T5 model on our datasets. Detailed information about the model selection and the
evaluation metrics will be further elaborated in the subsequent sections.

3.1 Data

Both sources of data used for this thesis have opposing downsides. The in-house data,
henceforth Amberdata, comprises raw transcripts generated by the company’s ASR.
Training any model on this means that there is no dissimilarity between training and
future inference data. However, this data is not labeled, which requires automatic
labeling techniques and heuristics to prepare it for training token classification models.

The CGN data, comprised of human-perfected verbatim transcripts, can be labeled
for disfluency using the various existing annotations. It is openly available, which helps
the reproducibility of the experiments. However, the transcripts differ from future
inference data, likely causing the resulting models to perform worse than those trained
on the Amberdata.

For Seq2Seq models, labels are not required, but we must collect correct sentence
pairs of fluent and disfluent sentences. Here, automatic methods are also used to extract
such pairs from the dataset.

3.1.1 Amberdata

When an Amberscript customer requests a manual transcript of their audio file, the file
first gets processed by the ASR system. A professional transcriber then perfects the
automatic transcript. Both versions of the transcript, the raw and clean-read transcript
are stored separately. This allows us to extract both versions of transcripts whenever
customers request a perfected transcript.

21
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Professional transcribers correct any recognition errors made by the ASR system.
If the customer requests a clean-read transcript, as opposed to a verbatim transcript,
the transcriber will also clean up the texts by removing disfluencies and grammatical
errors. Sometimes, a transcriber might even rephrase what was said to capture the
speaker’s intentions. Since verbatim transcripts maintain any speaker errors, including
disfluencies, these transcripts are not suitable for training. Table 3.1 shows an example
of the Amberdata.

Table 3.1: Example of the Amberdata. The first column shows a snippet of an
automatic transcript, and the second column shows its clean-read version.

Raw ASR Clean-Read

1 Het is krijg ik een. Ik geloof ik. Ja,
volgens mij moet ik het dan ook er-
gens zien. Ik zie nog niks. Juist.
Ik zie het nu wel een ja, ja. Oké,
nou hartstikke fijn. Ehm. Dr zijn
een aantal vragen waarvan we afge-
sproken hebben dat we die allemaal
zullen stemmen, maar die heb je vol-
gens mij ook al gekregen in de mail.
Nobetter u, misschien heb ik schrok
gekregen, maar ik heb ze niet opges-
lagen in mn hoofd. In ieder geval.
Ah, nou, ik heb ze hier bij de hand.

Dus krijg ik een melding, geloof ik.
Ja, volgens mij moet ik het dan ook
ergens zien. Ik zie nog niks. Ja, ik
zie het nu wel een rood knopje, ja.
Ja. Oké, nou hartstikke fijn. Er zijn
een aantal vragen waarvan we afge-
sproken hebben dat we die allemaal
zullen stellen, maar die heb je vol-
gens mij ook al gekregen in de mail.
Nou, misschien heb ik ze wel gekre-
gen, maar ik heb ze niet opgeslagen
in mijn hoofd in ieder geval. Oh,
nou, ik heb ze hier bij de hand.

2 En ehm, hoe vindt zij dat je je ex
vrouw? Hoe noem ik haar niet of je
vriendin? Mijn vrouw of vriendin,
acht jaar dus, ze zegt ook: ze zegt:
het went wel een beetje.

Hoe vindt zij dat, je ex-vrouw?
Hoe moet ik haar nu noemen, je
vriendin? Mijn vrouw of vriendin,
wij kennen elkaar al acht jaar, dus ze
zegt ook: “Het went wel een beetje”

The first thing that stands out in Table 3.1 is that the clean-read version is slightly
longer than the raw transcript. The clean-read transcript contains some words that do
not appear in the raw transcript, like melding (notification) in the first sentence of the
first example. Perhaps this word was mumbled, not uttered, or missed by the ASR.
There are very few instances where the ASR transcribed a word that the transcriber
removed. Only one instance of disfluency removal can be found in this example. In the
fourth line, the ASR transcribes Ehm, which is considered a filled pause and is removed
in the clean-read version.

Often the transcriber needs to edit more of the ASR transcript than seen in the
first example. The second example shows a transcript where a transcriber had to
remove multiple repetitions and correct some grammar due to left-out words. The
second sentence in this example also shows how transcribers sometimes rephrase a text
to improve its readability. Freely translated, the raw ASR transcript reads: “How do
I call her not or your girlfriend?”. This is changed to be: “How should I call her,
your girlfriend?”. The result of this edit may not match the exact words spoken in
the audio. However, if the transcriber can be certain about the intent, they have this
freedom. Overall, the clean-read transcripts contain more changes than fixing ASR
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errors. They fill in words a speaker skipped, correct punctuation, and remove words
that are repeated or repaired.

All data for which customers had given their permission to be used for training
was collected. This data includes the raw ASR and clean-read transcripts. The ASR
system used by the company has improved over time, affecting the transcript quality.
Not all examples given accurately represent the ASR’s current quality. This gathering
process resulted in a full dataset of 4709 texts. The data was split into a training,
validation, and test set using an 80/10/10 split. Each text is a full transcript of an
audio file. The lengths of these files range from 5 to 80611 words, with an average of
6374 words. For token classification models, each text is split into sentences. Since the
data is unlabeled, 2000 semi-random sentences are taken from the validation and test
set to be labeled manually. We explain more about the annotation process in section
3.1.2.

The sentences were selected to correctly represent various levels of noise found
in real-life data. The ASR used in the company can sometimes easily transcribe the
speech in an audio source, whereas other times, it has a harder time. Background
sounds, mumbled speaking, and cross-speech all influence the accuracy of the ASR. We
calculated the noise of a sentence based on its edit distance between the raw transcript
and the clean-read transcript (for the full explanation of this process, please see Section
3.2.1). We created five noise levels using various thresholds and extracted sentences
on each level. Level AA refers to verbatim text perfected by human transcribers, then
levels A through D are increasingly noisy raw transcripts. Please refer to Appendix B
for a further explanation of each noise level and the heuristic used to create it.

The Amberdata does not contain any labels, making it impossible to be used to
train token classification models. Due to the data size, it is not feasible to label dis-
fluency manually through annotation projects. Thus two different automatic methods
are employed to label disfluency in the Amberdata. In the next section, we explain the
process of each method and elaborate on the training datasets that result from them.

The nature of the Amberdata, in that for each text, a raw automatic transcript exists
alongside a professionally cleaned version, makes the data ideal for training Seq2Seq
models. However, due to the size of the transcripts, they need to be segmented into
chunks that have the same meaning in both versions. The training dataset is created
by selecting the best-aligned pairs using a similarity metric and other heuristics. For
more information about the preprocessing method and data exploration, please refer
to Section 3.3.

3.1.2 Annotation Study

To annotate the data, the help of four professional transcribers with significant expe-
rience working for Amberscript was enlisted. Each editor was asked to edit a total of
1000 sentences. Before beginning the annotation process, the editors participated in a
training session conducted via video call. During this session, the editors were provided
with detailed explanations of the task and annotation guidelines. Afterward, a trial
round was conducted to see if the instructions were clear or if the guidelines needed to
be adapted.

The trial round consisted of annotating 200 sentences following the guidelines pro-
vided. After completing the trial round, each annotator received feedback on their work
and was able to give feedback on the task and guidelines.
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Table 3.2: Inter Annotator Agreement of the annotation on the Trial Round.

Annotator
Pair

Krippendorff’s
Alpha

1 - 2 0.417
1 - 3 0.523
1 - 4 0.661
2 - 3 0.287
2 - 4 0.379
3 - 4 0.572

Average 0.473

The task assigned to the annotators was to remove any disfluent words from the
sentences they were given. The annotators were provided with a Google Sheets file con-
taining two identical columns. While one column was provided for reference purposes,
the annotators were instructed to use the second column to make necessary edits. They
were only allowed to remove words and not replace them. Nor were they allowed to
correct grammar or spelling. The annotators were told what disfluencies to look for
following the disfluency types explained in Section 2.1.1. The full guidelines can be
found in Appendix C.1 and C.2 for English and Dutch, respectively.

During the trial round, all annotators were given the same 200 sentences to annotate.
An Inter Annotator Agreement (IAA) score was calculated with these annotations using
Cohen’s Kappa and Krippendorff’s Alpha score (Krippendorff, 1970). The value of this
score is not entirely representative of the final performance since the guidelines were
adjusted based on the outcomes of the trial round. However, it does represent an early
assessment of the task’s difficulty.

Table 3.2 shows the IAA scores between each annotator and the average of those
scores. Unfortunately, Krippendorff’s Alpha has relatively low scores. A score of at
least 0.67 is considered acceptable, but a good score should be around 0.80 Krippen-
dorff (2004). Even the most aligned annotators (1 and 4) did not reach the minimum
score during the trial round, indicating the complexity of the task. The data provided
to the annotators is noisy, and the sentences they need to correct are cut pieces from
a larger text, which can contain numerous word recognition errors. Some of the sen-
tences are also incomprehensible. The low scores make it challenging to expect high
performance from any model when evaluating them on the human-annotated validation
set. Although excluding incomprehensible sentences from the validation and test sets
would improve the scores, it would also reduce the validity of the evaluation since the
datasets would no longer accurately represent real-life data. Therefore, it is crucial to
maintain the integrity of the evaluation to avoid falsely positive expectations.

Additionally, we found that the annotators would often remove words that improved
readability but did not match the patterns found in disfluencies.

(2) Original
Cleaned

sentence:
sentence:

And
Ø

then
Ø

we
we

were
were

able
able

to
to

also
Ø

train
train

them
them

up
Ø

better
Ø

While it is true that the edited sentence in this example is easier to read, the
deleted words do not fully follow speech disfluency patterns. Since there is little context
available, it could be possible that the words then and also served a semantic purpose.
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The guidelines were adapted to address the issue found during the trial to clarify the
differences between disfluencies and non-disfluent words and emphasize the importance
of only removing disfluencies. The transcribers were given feedback on their work
during the trial round and were given the new guidelines.

For the main annotation task, each transcriber received the 1000 sentences they
were to annotate. The setup was identical to the trial round. Throughout the project,
close contact was maintained with the annotators to answer any questions they had.

The annotators were only instructed to remove disfluent words and not to label each
word individually. This approach was chosen to keep the annotators’ task as simple as
possible. However, this means that a different method must be employed to label the
disfluencies in the original sentences. To do this, a comparison is made between the
original and edited sentence word by word, starting at the end of the sentence. If the
word is identical in both sentences, the corresponding word in the disfluent sentence is
marked as fluent. Next, in both sentences, we move backward by one word, and the
similarity between the words is assessed again. If the words differ, the corresponding
word in the disfluent sentence is marked as disfluent, and only the disfluent sentence
moves backward by one word. This process is illustrated in Figure 3.1.

isThis an uh sentenceexample that that that is labeled

isThis an sentenceexample that is labeled

1 0000 0000 11

Figure 3.1: An illustration of the labeling process of disfluency. Labeling is
done from right to left. Words in the source text (above) are labeled with 1 if
the reference is identical, else 0. In case of 0, the target in the reference text
moves one position forward.

This labeling process only works when the annotators follow the rule of only remov-
ing words. The process is consistently applied to all datasets for token classification,
ensuring that the same disfluency pattern is always followed. For instance, in repe-
titions, the last word of the repeated sequence is marked as fluent, while the others
are marked as disfluent. If the first word were marked as fluent, the sentence would
remain the same, but the tokens would be labeled differently. This pattern also applies
to repairs and false starts.

After the annotators completed their work on the full validation and test sets,
the results were inspected for accidental mistakes, such as skipped sentences and the
removal of non-disfluent words. Then the data is labeled using the method described
above. The resulting sets are henceforth referred to as Amber-val and Amber-test. For
inspection, we only use Amber-val. The 2000 sentences in this set have an average length
of 16.52 words. Each sentence consists of around 12.8% disfluent words. However, this
disfluency ratio depends significantly on the length of the sentence. Figure 3.2 shows
the ratio for the sentence lengths that appear in the data.

We can mainly see that in sentences containing only three words, 60% are disfluent.
In sentences of more than three words, the ratio is mostly between 0.1 and 0.2.

Figure 3.3 shows the normalized disfluency placement in a sentence. In the valida-
tion set, the disfluency predominantly appears at the start and gradually decreases as
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Figure 3.2: Disfluency ratio per sentence length in Amber-val.
The x-axis denotes the lengths of texts in the dataset. The colored blocks show
the average ratio of disfluent words in the texts.

0 10 20 30 40 50 60 70 80 90 100
Sentence Position of Disfluency

Amberval

0.0

0.2

Da
ta

 R
at

io

Figure 3.3: Normalized placement of disfluency in Amber-val.
The x-axis represents the length of a sentence where at 0, the sentence just
started, and the first word would be placed. At 100, the last word is placed,
and the sentence ends. Any length sentence is transformed to fit this range.
The colored blocks show the ratio of sentences containing disfluencies at various
places in the sentence.

we move to the end of the sentence. We also see that final disfluency is not occurring.
This fits disfluency patterns, as any disfluency is followed by fluent words (either as a
repair or repetition).

3.1.3 CGN

The Corpus Gesproken Nederlands (CGN) is a spoken language corpus containing
recordings of spoken Dutch conversations from various regions in the Netherlands and
Belgium (Schuurman et al., 2003). The corpus comprises scripted and unscripted
speech, including monologues, dialogues, and spontaneous conversations. The CGN
dataset is annotated with various linguistic information, such as parts of speech, de-
pendency, and morphological tags. It has been used extensively in linguistic research,
including studies on prosody, syntax, and speech recognition. The CGN is one of the
largest spoken Dutch language corpora available, and it provides a valuable resource
for researchers studying Dutch language and speech.

The full dataset consists of 900 hours of speech where every word was transcribed, in-
cluding repetitions and incomplete words. Background noises and non-linguistic sounds,
such as laughter, were marked separately. This verbatim transcript was done manually
using the PRAAT software (Boersma and Weenink, 1992). A part of the data was
annotated to show the dependency relations between words and phrases.

The data in CGN is categorized into 15 domains based on the content type. These
domains include conversations between an interviewer and a teacher, live commentaries
on sports, and political debates. However, not all of the domains contain unscripted
speech. Scripted speech is less likely to have disfluencies, so only a portion of the data
was chosen based on the audio source.

The dataset was refined by selecting Dutch texts (excluding Flemish) annotated
with dependency relations. The resulting dataset consists of 71961 texts. This was
further reduced using heuristics relying on the many layers of annotations as explained
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below.

Labeling repetitions and repairs The CGN project has annotation guidelines
available for all levels of annotation, including dependency tagging. In the syntax
annotation guidelines, Hoekstra et al. (2003) explain that spoken language contains
constructions that can be seen as malformed in written language. The authors highlight
that annotators should create a separate dependency tree for the first instance of the
repetition and the reparandum for repetitions and repairs. This smaller tree is not
connected to the main tree. This means marking any word not attached to the main
tree will capture all repairs and repetitions. No other information from the syntax
annotations was needed.

Labeling filler words Having captured repetitions and repairs, we still need a way
to label filler words. Even though filler words can be explicitly considered spoken lan-
guage constructions, these words were added to the dependency trees. Luckily, such
words are partly marked in the part-of-speech (POS) tagging procedure. In the guide-
lines of the POS tagging procedure, the authors categorize three types of interjection:
onomatopoeia (expressing a dog’s bark with woof ), expression of emotions (describing
pain with ouch), and specific formulas of social interaction (such as greetings, apolo-
gies) (Van Eynde, 2004). Each of these was tagged with ‘TSW()’. Tagging these words
as disfluent also captures most filler words, including filled pauses.

The guidelines also explain the usage of ‘special labels’. Eight special labels de-
note partial words, unintelligible words, background noises, and more. The ASR sys-
tem employed by Amberscript is not capable of transcribing partial words or denoting
background noises. So texts containing such elements are invalid candidates for model
training. Specifically, any text containing the special labels: T002, T003, T008, and
T009 were discarded. They represent partial words, unintelligible words, descriptions
of background noise, and annotator comments, respectively.

This process tags all three categories of disfluency: repetitions, repairs, and filler
words (or pauses). However, inspection shows that the process is sometimes too harsh
or lenient. In the examples below, words that are marked with Ø are labeled as disfluent
following the process described above.

(3) Examples of disfluency marking in CGN.

a. nou ze
Ø

eten
Ø

ze eten hier ontzettend veel vis

‘well they eat they eat a lot of fish here’

b. ze
Ø

heeft
Ø

voorsprong,
Ø

tien meter.

‘She is in the lead, ten meters.’

Example (3a) shows an example where the tagging process missed a word that could
be considered disfluency. The first word, nou (well), is often seen as a filler and here has
no additional value to the text. The text preceding this may explain the decision not
to mark this word, but any resulting model will not have this contextual insight either.
However, such words remain unmarked in the CGN annotations and can thus not be
automatically labeled as disfluency. The Amberscript transcribers do often remove such
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words when editing the transcripts. This discrepancy is likely to affect performance
models trained on the CGN data.

The opposite is shown in example (3b), which shows how too many words are labeled
as disfluent. The entire phrase ‘she is in the lead’ is marked as disfluent since this part
is not attached to the main dependency tree. This could again be due to contextual
information. However, the aim is to limit ourselves to disfluency following the patterns
of filler words, repetitions, or repairs. Using such data for training could result in a
model that marks too many words as disfluent.

Applying heuristics Since the aim of CGN was not to annotate disfluencies directly,
imperfect results are expected. To ensure the sentences used for training and testing
are as valid as possible, some additional heuristics were implemented to select good
candidate sentences. First, texts with less than one fluent word and fewer than two
total words were removed. These texts are shorter than what is expected in future
unseen data. Second, texts similar to the one in example (3b) were also removed,
where more than 60% of the words are marked as disfluent. While somewhat arbitrary,
the specific threshold of 60% was chosen to balance between removing too much data
(and potentially useful learning examples) and retaining data that might negatively
impact the learning of the model. Time constraints prevented empirical testing of
different versions of the CGN data.

Finally, any duplicate found in the data was removed. Applying the heuristics
further reduced the amount of data to 35939 texts. The number of remaining texts
gathered from each of the relevant domains is shown in Table 3.3.

Table 3.3: Number of texts per domain in the processed CGN data

Domain Count
Live commentaries 1949
Political discussions/debates/meetings 816
Spontaneous telephone dialogues 5145
Interviews/discussions/debates 3857
Spontaneous conversations 24172

All texts are then labeled in the same labeling method explained in Figure 3.1.
Within the resulting data, there exists no predetermined split for training, validation,
and test data. Thus the resulting dataset is randomly split into a train, validation, and
test dataset using an 80/10/10 split. Figure 3.4 shows some details on the distribution
of disfluent words in the training split of the selected CGN data.

0 10 20 30 40 50 60 70 80 90 100 110
Sentence Length

CGN 0.25

0.50

D
is

flu
en

t R
at

io

Figure 3.4: The ratio of disfluent words per sentence length in the training
split of preprocessed CGN data.

The average percentage of disfluent words in a text is 11%, which is reflected in
short sentences seen in Figure 3.4. For texts longer than approximately 40 words, we



3.2. TOKEN CLASSIFICATION 29

see that percentage becomes higher. Meaning that in longer texts, on average more
words are deleted. Longer sentences contain more information and thus allow for more
instances of disfluency to arise. Furthermore, some disfluency types, like repairs and
especially false starts, can only appear in long sentences. These multi-word disfluencies
will cover more of a text than single-word disfluencies.
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Figure 3.5: The normalized placement of disfluencies in a sentence in the CGN
dataset.

Figure 3.5 shows that the distribution of disfluency is slightly more uniform across
the sentence compared to the human-annotated data from Amberscript. A second
difference is the second peak toward the end of the sentence, between 70%-80% of the
sentence. However, like the Amber-val set, the CGN data also does not have sentence-
final disfluency.

3.2 Token Classification

Token classification is the task of categorizing individual words in a sentence into pre-
defined categories. Disfluency removal is one such task, where the goal is to identify
disfluent tokens in a sentence.

Each automatic labeling technique is discussed in detail, including its advantages
and disadvantages. The resulting datasets are analyzed and compared. Finally, the
model that is fine-tuned using these datasets is explained. The process of fine-tuning the
model is discussed, including the hyperparameter tuning and the main training process.
Finally, the evaluation metric that is used for assessing the model’s performance is
presented.

3.2.1 Automatic Labeling

The first method uses the approach by Passali et al. (2022) to insert automatically
generated disfluencies into clean-read transcripts. This approach runs the risk of pro-
ducing unrealistic examples of spoken language or examples that are dissimilar to ASR
transcripts. However, this method allows for the creation of large datasets with ease,
potentially overcoming the aforementioned risk.

The second approach avoids this issue. It uses ASR transcripts and clean-read
transcripts and uses the Levenshtein distance methodology to find all minimal edits
needed to transform one text into another. This method provides realistic disfluencies
similar to future inference data. However, the process could also mark words as disfluent
that do not follow disfluency patterns.

LARD - Generate Disfluencies

The LARD method allows for the inclusion of repetitions, false starts, and reparandums
Passali et al. (2022). The authors of the method explain how they add disfluencies of
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each type to a sentence. We only use the clean-read transcript from the Amberdata
as a base to insert disfluencies into. However, since the clean-read transcript can be
very long, it was first split into sentences. This resulted in approximately 1.7 million
sentences in the training data split of the Amberdata. Sentences with fewer than three
words were ignored as they are unlikely to contain valid disfluencies.

This dataset was divided into four equal parts, with three parts utilized for gen-
erating various disfluency types and one part left untouched. As a result, the dataset
includes an equal representation of fluent sentences and sentences with one of the three
disfluency types. The process by Passali et al. for generating each type of disfluency is
explained below.

Repetitions Following the LARD process, given a fluent sentence, 1 to 3 consecutive
random words are picked. This word or phrase is then repeated a maximum of three
times.

(4) Examples of repetitions generated with the LARD method. Sf/Sdis refer to fluent
and disfluent sentences, respectively. words between ‘[ ]’ are inserted.

a. Sf:
Sdis:

She
She

was
was

working
working

very
very

hard
hard [to to]

to
to

finish
finish

the
the

project
project

b. Sf:
Sdis:

She
She

was
was

working
working

very
very

hard
hard [to finish]

to
to

finish
finish

the
the

project
project

c. Sf:
Sdis:

She
She

was
was

working
working [very]

very
very

hard
hard

to
to

finish
finish

the
the

project
project

Example (4a) shows a first-degree repetition, a single-word repetition, and is re-
peated two times. Example (4b) shows a second-degree repetition, a two-word phrase,
and is repeated once. While this approach works well and is straightforward, there are
some downsides. Example (4c) shows one downside. In most languages, words can be
repeated to emphasize a message, which is more common in speech than in writing
but is not considered spoken disfluency. Additionally, there are occasions where word
repetition is acceptable, such as in the sentence, “I can’t believe that that movie was
so popular”. This holds true for Dutch as well, especially the words: je (you) and dat

(that).

False Starts False starts occur when an utterance is abruptly stopped and restarted
differently. To create a false start, a fluent sentence is selected, and a second sentence
is randomly chosen from the dataset. If the second sentence is not identical to the
target sentence, it is cut at a random point in the first half of the sentence and added
to the beginning of the target sentence. To minimize the chance of fluent words being
outnumbered by disfluent words in the resulting disfluent sentence, only sentences that
are at least four words long are eligible for a false start.

(5) Examples of false starts generated with the LARD method.

a. Sf1:
Sf2:
Sdis: [Yesterday he]

Yesterday
I
I

he
will
will

said
go
go

some
to
to

strange
the
the

things.
store.
store.
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b. Sf1:
Sf2:
Sdis: [Yesterday he]

Yesterday
Yesterday
Yesterday

he
he
he

said
went
went

some
to
to

strange
the
the

things.
store.
store.

The authors note it is important to ensure that the start of the two fluent candidate
sentences is not identical. Otherwise, the resulting disfluent sentence could be identical
to a repetition, as shown in example (5b).

Reparandums The third type of disfluency is a reparandum, which involves selecting
a random noun, verb, or adjective from a sentence as a repair candidate. Using the
Python NLTK package (Bird et al., 2009), a list of synonyms and antonyms is obtained
from WordNet (Fellbaum, 1998). A random synonym or antonym is then selected and,
optionally, a random selection of 0 to 3 words that precede the candidate may also be
chosen. Together with the antonym or synonym, these words form the reparandum and
are inserted before the repair candidate.

(6) Examples of reparandums generated with the LARD method.

a. Sf:
Sdis:

That
That [are]

is
is

very
very

nice!
nice

b. Sf:
Sdis:

He
He

went
went

dancing
dancing [with a buddy]

with
with

a
a

friend
friend

c. Sf:
Sdis:

Then
Then

I
I
wish
wish

you
you [good luck {I mean}]

all
all

the
the

best!
best!

Example (6a) shows a sentence where only a single synonym was added in front
of the original word. Note that examples are not limited to the official synonym or
antonym definition. The process following Passali et al. also allows for different verb
conjugations.

Example (6b) shows a sentence where, in addition to the synonym, one word was
repeated. Finally, example (6c) shows that aside from the reparandum, it is possible
to add a filler between the reparandum and the repair. It is randomly decided whether
a filler is to be added. If one should be added, they randomly pick one from a list.

The LARD method is specifically designed to process English language data and
search for synonyms and antonyms on the English WordNet. However, the Dutch
WordNet (Postma et al., 2016) is less extensive, resulting in fewer recorded synonyms
and antonyms for Dutch words. This limitation resulted in a reduced pool of replace-
ment options, and some sentences had to be excluded during the generation process
due to the lack of suitable candidate words. In cases where no reparandums can be
generated, the entire sentence is ignored.

For each disfluency type, the generated elements are labeled as disfluent and all
original elements as fluent. Each part of the data is collected back into a single dataset,
and the order is then randomized.

The synthetic nature of the dataset is visible when examining the distribution of
disfluent words per sentence in Figure 3.6. As sentences become longer, the ratio
of disfluent words decreases. This is because each sentence only contains one disfluent
element, which takes up more space in a shorter sentence than in a longer one. In actual
speech, disfluencies can occur more frequently and unpredictably in longer sentences,
which may not be fully captured by the LARD disfluency generation process.
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Figure 3.6: The number of disfluent words per sentence length in LARD data.
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Figure 3.7: The normalized placement of disfluencies in a sentence in the
LARD data.

In Figure 3.7, a similar trend to that in the human-annotated set can be seen, but
much steeper. More sentences have disfluent words at the beginning of the sentence,
whereas fewer are in the middle and end. This is likely due to a large number of false
starts present in the dataset resulting from this method. In real data, false starts do
not occur as often.

Levenshtein - Label Disfluencies

Levenshtein distance is a metric used to measure the difference between two sequences
of characters. It is the minimum number of single-character edits (insertions, deletions,
or replacements) required to transform one sequence into another. Using the standard
Levenshtein example, the distance between the words kitten and sitting is 3, since
three edits are needed to change kitten to sitting: replace s for k, replace i for e,
and insert a g at the end. There are other ways to change the original string, but those
will require more edits.

We use the Levenshtein Distance to label tokens in a sentence as either delete,
replace, or insert based on the difference between the original ASR transcript sentence
and the reference clean-read transcript. To do this, we used the Levenshtein package
by Max Bachmann (Bachmann, 2022). The module labels elements in an original list
according to a reference list using the shortest Levenshtein Distance. In the present
case, we use a list of tokens that comprise a full text.

Figure 3.8: Example of a sentence tagged using the Levenshtein Distance.

Figure 3.8 shows an example of an original sentence from the Amberdata tagged
with the Levenshtein labels. The words i, just, and uh are all labeled as delete since
they are not present in the reference sentence. The word store received two labels:
insert and replace. The insert label is given due to the word big in the reference
sentence. Then, store would need to be replaced with supermarket as the next word
later is present in both sentences.
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Figure 3.9: Example of an Amberdata sentence tagged using the Levenshtein
Distance. Target translation: ‘How should I call her, your girlfriend?’

Figure 3.9 shows an example using a sentence from the Amberdata. Here we see
that there are no deletions but only replacements. We can see that such replacements
serve no use for labeling disfluency. Problematic speech is caused by more than speech
disfluencies. Grammatical errors are often left unrepaired because perhaps our conver-
sational partners understand our intent or we do not realize the error.

Sometimes a transcriber judges an entire sentence as unnecessary and removes it
completely. Perhaps the sentence is identical in meaning to the next but phrased
differently. When we split the ASR transcript and the clean-read version into sentences,
it is unlikely for the sentences to align. Thus, labeling the text on a sentence level is
likely not going to work well. Instead, the text is labeled before splitting into sentences
which can cause a sentence to only receive labels as delete or replace.

As seen in table 3.1, the transcriber also adjusts punctuation. This can affect the
labeling method since words that have differing punctuation attached to them between
the original and reference sentence are no longer identical. For example, the final
word in Figure 3.9 is vriendin?. If the reference were not seen as a question, it
would receive a replace label because the reference word would be vriendin.. For
this reason, all punctuation is removed from the words before applying the Levenshtein
labeling technique. Similarly, all words are ensured to be fully lowercase to ensure the
casing does not affect the edit distance.

3.2.2 Data Selection

As described in the previous section, the method of using Levenshtein edit distance for
labeling in disfluency removal is not perfect. Some sentences end up being completely
deleted due to misalignment, while others are heavily edited with multiple replacements.
Using heuristics, we can select optimal candidate sentences to reduce as much noise as
possible. We define noise as words that either end up labeled as disfluent yet do not
follow the definition described in Section 2.1 or words labeled as fluent but do follow
that definition.

In this section, we will explain the different heuristics used to create various datasets.
The novel nature of this application means experimentation is required to discover what
heuristics create well-suited data for disfluency removal.

We implement a variety of parameters to create three initial datasets. These
datasets are used for fine-tuning a pre-trained Large Language Model (see Section
3.2.5. The different heuristics we employ are the following:

• Ratio of replacements

• Ratio of insertions

• Ratio of deletions

• Sentence-final disfluency
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• Class balance

The first decision is whether a sentence can have insertions or replacements and,
if so, how many of each. Words with these labels cannot be labeled as disfluency, as
shown in the previous section. However, sentences from ASR transcripts with many
replacements or insertions are likely very different from the clean-read version. Any
word labeled as delete in such sentences is not sure to be disfluent. Conversely, in
sentences with solely correct and deleted words, the sentences are more similar, and
words with the delete label are more likely to be disfluencies. Take the following
examples:

(7) Examples of noisy Levenshtein tagging.

a. Nee, de die
replace

rugzak
insertx4+replace

‘No, the that backpack’

b. En
replace

die
replace

goeie
replace

vriendin
replace

Jane
replace

Smith.
replace

‘And that good friend Jane Smith’

c. Jep,
delete

dus
delete

ik ben begonnen.

‘Yeah, so I have started’

Both sentences are part of a larger text. The labels given to the words do not
follow disfluency definitions. If we correct example (7a) using only the sentence itself
as context, all words would be correct except de, which is repaired with die. Instead,
it’s labeled as replace. Furthermore, the Levenshtein labeling process claims rugzak
should be preceded by four other words and replaced. It is possible that the original
and reference texts were misaligned or the ASR had recognition mistakes.

In example (7b), all words are labeled as replace even though no clear disfluency is
present in the text. Thus it is important to select sentences carefully. When selecting
sentences like example (7c) that only contain the labels correct and delete, we get a
good approximation of disfluency, at the risk of not introducing enough noise.

The number of disfluent words in a sentence can vary a lot in a sentence. Similar
to example (7b), sometimes all words in a sentence can be labeled as delete. Looking
at context beyond the scope of the sentence, it might be clear that the entire sentence
is disfluent. It could be an entire repetition or repair. Though in the scope of a single
sentence, it is impossible to tell. If we use such sentences as training data, the model
can learn to over-delete words regardless of whether they are disfluent in the scope
of the single sentence. For insertions and replacements, and deletions, we can set a
maximum ratio that is allowed to be in a sentence.

Sentence-final disfluency refers to sentence-final words labeled as disfluent by the
Levenshtein labeling process. Following the definition of speech disfluencies, it is not
possible for a disfluency to be sentence-final. Either through a repair or a repetition,
disfluencies are always followed by fluent words. An exception might be filled pauses,
which are easily removed in a rule-based manner. However, not having such sentences
could limit the data available for training, while the impact might not be very big.
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Severe class imbalance affects model performance since few examples are present for
the model to learn the characteristics of underrepresented classes (Johnson and Khosh-
goftaar, 2019). While the transformer architecture is less sensitive to class imbalance
than other deep learning models, the effect could still be present if the imbalance is
very large (Mustakim et al., 2022). On average, sentences only contain 20% disfluency.
Balancing the number of fluent and disfluent tokens would not be feasible. However,
if most of our data consists of completely fluent sentences, the model might not learn
to mark disfluent words. To remedy this, we can balance the number of sentences with
and without disfluency.

A final decision regards sentence length. Sentences shorter than three words are
ignored. Such sentences are unlikely to contain disfluency, and it has little influence on
readability if such short sentences are noisy. Since the source of the data is identical to
future inference data, no upper limit is set across all datasets.

Several datasets are created using these heuristics. Table 3.4 gives an overview of
the datasets and their heuristics.

Table 3.4: Heuristics overview of the Amberdata LS datasets

Heuristic LS1 LS2 LS3 LS4 LS5

Insertion ratio 0 0 0 0 0
Replacement Ratio 0 0 < 0.20 < 0.40 < 0.40
Deletion Ratio < 0.60 < 1.0 < 0.60 < 0.80 < 1.0
Sentence-final Disfluency False True False False True
Class Balance True False False True False

The first dataset in the table (LS1 ) was created to serve as the cleanest dataset we
can make. The classes are balanced to ensure imbalance is not preventing the model
from learning to remove disfluencies. No insertions or replacements are allowed to
ensure alignment between the automatic and the clean-read transcripts. Furthermore,
limiting insertions and replacements ensures no ASR errors are present in the automatic
transcripts. The maximum ratio of disfluencies is limited to 0.60.

Datasets LS2 and up all have a greater allowance of the various heuristics. Each is
slightly more noisy than the last.

3.2.3 Dataset Overview

We investigate the performance of token classification models trained on six separate
datasets. One dataset is the manually labeled CGN, and five are made using automatic
labeling techniques (4 with Levenshtein and one with LARD). Table 3.5 shows some
statistics on each dataset. One highlight from these statistics is that the LS2 dataset
has a higher disfluency ratio than LS3 and LS4, which are supposedly more noisy.
Remember that the term noisy here means the amount of possible incorrect labels in
a sentence. These are increased when a sentence has many insertions or replacements
as assigned by the Levenshtein labeling technique. This does not reflect the amount of
disfluency present in the resulting datasets.

In addition to the LS, LARD, and CGN datasets, we combine all three into one
large dataset. Under the assumption that each dataset is capable of capturing different
patterns, combining the datasets might improve the performance. We combined the
LARD and CGN datasets with the best-performing LS dataset on the validation set.
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Table 3.5: Overview of all datasets used for token classification.

Dataset Samples Sentence Length Disfluency ratio1

CGN 28k 9.60 0.107
Amberdata-LS1 278k 9.99 0.116
Amberdata-LS2 337k 9.62 0.212
Amberdata-LS3 560k 14.13 0.131
Amberdata-LS4 661k 14.24 0.144
Amberdata-LS5 796k 14.00 0.204
Amberdata-LARD 1.443k 26.44 0.163
Combo 1.808k 24.55 1.71
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Figure 3.10: Disfluency ratio per sentence lengths in all Amber-LS datasets.
To reduce space, the delete ratio is not displayed via bar height but via color
changes

Figure 3.10 shows the distribution of disfluencies per sentence length. It is clear to
see the effect of limiting deletions as LS1, LS3, and LS4 limit the number of deletions
to 60% and 80%. The height of the bars in the short and long sentences is lower than
in datasets LS2 and LS5, which do not limit the number of deletions. Allowing more
replacements increases the total amount of data. This increase minimizes the variability
between sentences of a given length and reduces the size of the error bars. For this
reason, we see short error bars in all graphs in short sentences and taller error bars in
long sentences.

In Figure 3.11, we can see that the average placement of disfluencies in a sentence
follows the overall trend seen in the CGN and annotated data. However, we do see
some differences within the various Amberdata-LS datasets.
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Figure 3.11: The normalized placement of disfluencies in a sentence in all
Amber-LS datasets. To reduce space, the data ratio is not displayed via bar
height but via color changes

Again, datasets LS1, LS3, and LS4 show a similar distribution, with an almost
linear trend where the most disfluencies occur at the start of the sentence. However,
datasets LS2 and LS5 have more sentences with sentence-initial disfluencies and more
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sentences with middle-to-end disfluencies. The trend of these two datasets is closer to
the CGN data, albeit with a higher overall disfluency ratio.

3.2.4 Rule-based model

We developed a rudimentary rule-based model alongside token classification models
trained on the LS, LARD, and CGN datasets. While not the primary focus of the
thesis, the rule-based model serves as a baseline for comparison with the other models.
Given the novelty of disfluency removal in Dutch transcripts, there is no existing prior
research to compare our results to.

The rule-based model simply removes all repetitions that span N words. It allows
for M words to interrupt the repetition of the phrases, which will not be removed. Since
some words in the Dutch language are allowed to repeat once, these words are ignored.
We find the optimal N and M by validating the baseline on the validation set. The
optimal values are found when we achieve the highest recall on the disfluent class while
keeping the precision at 1.00. This resulted in N=3, M=1, and the ignored words je

and dat. The rule-based model also removes filled pauses such as uh and uhm 2.

3.2.5 Model Design and Setup

Base model All created datasets are separately used as training data for fine-tuning
the large language model RobBERT (Delobelle et al., 2020). RobBERT is a robust large
language model based on RoBERTa. The authors report that the model outperforms
other BERT models on small datasets and performs similarly on large datasets. The
model was extensively tested on various classification tasks like sentiment analysis,
NER, and POS tagging. The latter two tasks are relevant to the present task as they
show the model is capable of word-level predictions on Dutch data.

Hyperparameter Tuning A hyperparameter tuning round was done to identify
the optimal set of parameters for our models. It involves training multiple models
with different combinations of hyperparameters and selecting the set that performs the
best on the validation set. Only the CGN model and one of the Levenshtein datasets
(LS2) are used for this. Fine-tuning RobBERT is an expensive task, especially on large
datasets such as Amberdata. Doing hyperparameter tuning on all datasets was deemed
too expensive and time-consuming. However, only doing hyperparameter tuning on
either CGN or Amberdata could lead to unoptimized parameters as the datasets vary
significantly in size and quality.

Fine-tuning Once we have identified the optimal hyperparameters, we fine-tune the
remaining six models. The fine-tuning process involves training RobBERT on the target
dataset.

3.3 Sequence-to-Sequence Text Generation

Seq2Seq models are a type of machine learning model used for generating sequences
(Sutskever et al., 2014). A Seq2Seq model can be trained to generate well-written text
based on a verbatim transcript. Token classification models can only identify disfluent

2A full overview of filled pauses can be found in Appendix A



38 CHAPTER 3. DATA AND METHODS

words, and removing those words may result in ungrammatical text. On the other
hand, the Seq2Seq model generates text based on its training data, so it’s more likely
to produce grammatically correct output if the training data is grammatical. Therefore,
it would not only remove disfluent elements but also correct grammar.

3.3.1 Parallel Dataset Creation

As described in Section 3.1.1, the Amberdata consists of an automatic audio transcript
and a clean-read edit of the same text. If the raw transcript is used as the input for
the Seq2Seq model and the clean-read version as the target, the model can be trained
to transform one to the other. The large size of many transcripts does not allow for
such transformation. Thus the text needs to be split into smaller chunks.

The chunks of the raw and the clean-read transcripts must be semantically aligned.
If not, the model might learn to replace words with semantically unrelated words or
learn nothing at all, as the input is too varied. To ensure sentence alignment, the
following process was followed.

Text alignment We use the Levenshtein labeling technique (see Section 3.2.1) to
compare two texts and determine the minimal edits needed to change the raw version
into a clean-read transcript. We then identify the first span of at least five words
that should not be edited according to the Levenshtein process. The middle of this
overlapping span serves as a chunk-point for both texts to ensure the start and end
of each chunk are aligned. A minimum length of five was chosen since any shorter
span could result in coincidentally overlapping phrases. Much longer overlapping spans
could cause the resulting chunks to be too long.

Furthermore, if the chunk-point appears within the first ten words of the raw text,
we ignore it and look for the next span. This is due to two reasons. First, since small
texts are less likely to contain apparent disfluency, slightly longer texts can help the
model learn the patterns. The second reason is to give ourselves some space, as the
next step could shorten the text further. Our downstream Seq2Seq model can handle
inputs of any length, but the computational cost increases quadratically with the input
length (Raffel et al., 2020). To manage this, we’ve implemented a maximum length
of 250 words for each input chunk. If a chunk exceeds this limit, we split the text at
that length. This length allows one or more sentences to make up the chunk, each with
disfluent elements.

The chunks produced by this process may not be ideal, as the overlapping spans
can appear in the middle of a sentence. We considered moving the chunk-point to the
nearest sentence boundary by searching for periods, question marks, or exclamation
marks within a limited search window. This would improve the resulting chunks by
having them start and finish normally. However, the ASR-generated transcript already
has gone through a punctuation model that automatically predicts sentence boundaries.
This model can be wrong, and some boundaries are not aligned with the clean-read
version. This causes the alignment between the chunks to often deviate.

Data Selection Since the above-mentioned process is unsupervised, some pairs might
coincidentally fit all constraints when chunking the full text but are semantically un-
related. Several heuristics are employed for selecting good training candidates. First,
the cosine similarity between the raw and clean-read texts can give insights into the
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semantic relatedness between the two (Reimers and Gurevych, 2019). The sentences
are embedded using the paraphrase-MiniLM-L12-v2 model (Reimers, 2022). Using
the resulting vectors, the cosine similarity is calculated. Table 3.6 shows texts with
various cosine-similarity scores.

Table 3.6: heuristics applied to the Seq2Seq training data.

Raw Clean Cosine
Sim.

auto. Nee, nee, nee, klopt de kerk
en achter. Dus om te weten: we
gaan ons best doen, we gaan

auto. Nee, klopt. En we hebben
een grote caravan erachter. Dus
goed om te weten. We gaan ons
best doen, we gaan

0.4

dit plan om goed te keuren. Dat
wil eigenlijk onzichtbaar. Dank u
wel. De heer van Janssen heeft een

dit plan ook goed te keuren. Dat
was onze bijdrage. Dank u wel.
Dank u wel. De heer Van Janssen
heeft een

0.5

is geweest bij het hele ontwerp van
een pak en daar hebben wij

is geweest bij het hele ontwerp van
een park, en daar hebben wij

0.6

kan natuurlijk ook nog, hé voor
wat lastig gespit want je zou
denken

kan natuurlijk ook nog. Wat lastig
is dit. Want je zou denken

0.7

auto, en dat heb ik dus gedaan en
zij zeggen dat er geen Nederlandse
Sensita is binnengekomen waarop
gewerkt was. Ja, ik ben. Nee.
Even kijken, nou, dan ga ik naar

auto, en dat heb ik dus gedaan en
zij zeggen dat er geen Nederlandse
Mercedes Vito is binnengekomen
bij hun op de werkplaats. Ja.
Even kijken. Dan ga ik naar

0.8

In Table 3.6, the sentences with a cosine similarity score of 0.4 or 0.5 semantically
deviate. The edited sentences show that the ASR had significant recognition errors
that could possibly encourage hallucination. However, higher-scoring texts still have
some misalignment, although they become less problematic as the score increases. For
example, the sentence-pair scoring 0.6 is identical except for a comma and the words
pak and park. Supported by further manual assessment, a threshold of 0.65 is used,
and text pairs with a score below this threshold are not used for training.

Even the example with a high cosine similarity score is not perfectly aligned. The
word Mercedes Vita appears in the clean-read text with a 0.8 similarity score, but it’s
not included in the raw chunk, which shows a recognition error in the ASR transcript.
Even pairs with high similarity can show multiple errors that are not disfluency errors.
To avoid such instances, additional heuristics are added to remove most of these pairs.
These heuristics limit the ratio of insertions, replacements, and deletions, similar to the
Levenshtein-based heuristics applied in the token classification data. Table 3.7 shows
the full heuristics for selecting training candidates. The resulting dataset has 613k text
pairs ranging from 5 to 250 words.
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Table 3.7: heuristics applied to the Seq2Seq training data.

Heuristic Thresholds

Insertion ratio < 0.40
Replacement Ratio < 0.60
Deletion Ratio < 0.60
Cosine Similarity > 0.65

3.3.2 Model Design and Setup

Base Model The T5 model, specifically the T5-base version, is used for this task
(Raffel et al., 2020). The T5 is a Seq2Seq model that reframes all NLP tasks into
a unified text-to-text format. This framework allows the same model, loss function,
and hyperparameters to be used on any NLP task, including machine translation,
document summarization, question answering, and classification tasks. The T5 model
is pre-trained on a large dataset called the Colossal Clean Crawled Corpus (C4) and
can be fine-tuned on smaller labeled datasets for specific tasks. The T5 model has been
trained solely on English data from the C4 dataset. On the other hand, the mT5 version
has been trained on the entire dataset containing multiple languages, including Dutch
Xue et al. (2021). However, due to limited computational capacity, we have decided to
use the T5-base model as even the smallest mT5 model is larger. Although our target
language is Dutch, we are assured that the large amount of data used for fine-tuning and
the specificity of the task will yield satisfactory results. The purpose of the experiments
described in this thesis is not to achieve a state-of-the-art disfluency removal system,
but rather to demonstrate various approaches through proof of concepts.

Training Setup The training setup includes specific hyperparameters and the use of
prefixes in training. When fine-tuning a T5 model, one can opt to use a prefix. When
giving the model an input text, a prefix can be added that ‘tells’ the model what it
must do. During its pretraining, the T5 model is prompted with several prefixes, like
summarize or translate from X to Y. We set up a new prefix as no pre-existing prefix fits
the present task. The prefix used in fine-tuning is Clean transcription: , which should
guide the model to generate a clean version of the input text. Raffel et al. explain
that while the prefix is essentially a hyperparameter, its influence when fine-tuning the
model was limited.

3.4 Evaluation

The token classification models are evaluated with the precision, recall, and F1-score
metrics. Additionally, we calculate the BLEU score so the models can be compared to
the Seq2Seq model. The Seq2Seq model is only evaluated using the BLEU score.

Token classification It is standard practice to evaluate the performance of classifi-
cation models with precision, recall, and F1-score.

• Precision is the proportion of true positive results among all positive results re-
turned by the model. It measures the proportion of the items that the model
identified as disfluent are actually disfluent.
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• Recall is the proportion of true positive results among all actual positive results.
It measures the proportion of the actual disfluent words the model was able to
identify.

• F1-score is the harmonic mean of precision and recall. It provides a single metric
that balances both precision and recall.

A deviation is made from the standard practice of relying on overall accuracy or
averaged F1-scores during training. We focus solely on the scores of the disfluent class.
This is due to the significant class imbalance present in our datasets, which results
in averaged F1-scores providing a skewed representation of the model’s performance.
An overestimation of the model’s performance can occur when relying on averaged F1-
scores. Furthermore, the aim is for the resulting model to make as few false predictions
that a word is disfluent. This will ensure all predicted disfluencies can be trusted.
In addition, the goal of the model is to reduce the load of removing disfluencies by
human transcribers. If the model removes too many words, the transcript can become
unreadable, increasing the load for the transcribers instead. Thus, we focus specifically
on the precision score of the disfluent class. Perfecting this will result in a sentence
where no fluent items are missing.

BLEU The BLEU metric, BiLingual Evaluation Understudy (Papineni et al., 2002),
is proposed for automated assessment of machine-translated texts. It offers quick,
cheap, and language-independent evaluations that align well with human judgment.
The concept of BLEU revolves around the idea of closeness. A machine translation
is considered of superior quality if it mirrors the precision of a professional human
translation. The BLEU score mainly determines the number of matching n-grams
between a proposed translation and the reference translation without considering their
positions.

More recent evaluation methods have emerged and are often preferred over tradi-
tional metrics like BLEU (Sai et al., 2022). Much like BLEU, they draw comparisons
between the generated and reference texts but use syntactic structures or even word em-
beddings. Recent studies suggest that neural-based learned metrics outperform overlap
metrics like BLEU, which do not have a strong correlation with human ratings (Freitag
et al., 2022). However, due to the simplicity of implementing BLEU and the nature
of the present thesis being a proof-of-concept for using Seq2Seq methods for disfluency
removal, we choose to use standard BLEU.

For the purpose of this thesis, the machine translation expected by BLEU refers
to the text that our model produces as fluent text. Additionally, a reference text is
required for BLEU, for which we use the test data created for token classification. By
eliminating all tokens marked as disfluent by the annotators, we can create a fluent
sentence that serves as a reference. However, this method is not without drawbacks.
Aside from disfluencies, these texts also contain grammatical errors and ASR errors.
Therefore, it is not possible to view these references as a completely perfect or gold
standard. However, to ensure some level of comparability between the token classifi-
cation models and the Seq2Seq model, these references are used for the metric rather
than a separate test set containing the edited transcripts (including grammatical and
recognition corrections).
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3.5 Summary

This chapter discussed the methods used for token classification in the context of disflu-
ency removal. The chapter introduces the concept of token classification and describes
the data used for training, which includes both labeled and unlabeled data. Automatic
labeling methods are explored that potentially circumvent the need for labeled data.
The approach from Passali et al. (2022) generates disfluencies by adding repetitions,
false starts, and reparandums to sentences, while the Levenshtein labeling technique
labels words based on the difference between the original and reference sentences. The
heuristics used for data selection are explained, including the limitations and consid-
erations in labeling disfluencies. The model design and setup are discussed, including
rule-based baseline, the base model used (RobBERT), data formatting, hyperparameter
tuning, fine-tuning process, and evaluation metrics.

The chapter also provides an in-depth explanation of the preparation of a parallel
corpus for training a Seq2Seq machine learning model for text generation. The dataset
is created using a raw ASR transcript and a clean-read version of the same text, which
is cut into smaller, semantically aligned pieces. The cutting process involves using
the Levenshtein labeling technique and finding overlapping phrases between the texts.
Various heuristics are then employed to select good training candidates. The training
setup makes use of a T5-base model, a Seq2Seq model pre-trained on the Colossal
Clean Crawled Corpus (C4), which is then fine-tuned on the specific task of generating
clean text from the raw transcript. The evaluation of the model’s performance focuses
on the use of the BLEU (BiLingual Evaluation Understudy) score, a widely accepted
automatic evaluation tool for machine-translated texts.

Figure 3.12 gives an overview of all experimental components of the thesis.
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Figure 3.12: Overview of the experimental components of the thesis.



Chapter 4

Experimental Setup & Results

In this chapter, we first detail the setup of the experiments. We detail the specific,
concrete steps we took to implement and evaluate these models. This includes the
data preparation, the ranges of parameters used for hyperparameter tuning in the
case of token classification, and the specifics of the training procedures for both token
classification and Seq2Seq models. For each approach, we also discuss what metrics are
used for the evaluation and on what test sets they are evaluated.

Then we give an overview of the results from a broad perspective. We show the
results of the rule-based baseline, the eight token classification models, and the Seq2Seq
model. We report on their performance using precision, recall, and F1-score for the
token classification models and the BLEU score for all models. We briefly discuss visible
trends and additional insights and compare the results to the rule-based baseline.

These scores in this chapter only give an initial insight into the models’ perfor-
mances. A deep dive into the performance is done in Chapter 5.

4.1 Experimental Setup

4.1.1 Dataset Overview

The data used in this study was partitioned into training, validation, and test sets (see
Section 3.1.1 for the Amberdata and 3.1.3 for the CGN data). The training set was used
to train the models, the validation set was used to fine-tune the hyperparameters, and
the test set was used to evaluate the final model’s performance. This partitioning was
crucial to avoid overfitting and to ensure that the model’s performance was evaluated
on unseen data.

Token Classification We utilize seven distinct datasets for training token classifi-
cation models. One of these datasets uses the CGN corpus and adds approximated
disfluency labels through various existing annotations present in the corpus. The re-
maining six are the various Amberdata sets. These were automatically labeled using
two labeling techniques. Five were labeled using the Levenshtein labeling technique
(LS1-5), and one with the method proposed by Passali et al. (2022) (LARD).

In addition to these, we also created a combined dataset under the assumption that
each dataset could capture different patterns, potentially improving the performance
of the models. This combined dataset (Combo) included the LARD and CGN datasets
along with the best-performing LS dataset based on the validation set.
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Seq2Seq The single sequence-to-sequence dataset was made by cutting the raw tran-
script and clean-read version into semantically aligned pairs. This was done by again
labeling the raw transaction using the Levenshtein labeling technique. The resulting
dataset consists of 613k samples.

4.1.2 Data Pre-processing

Token Classification: Automatic labeling The novel approach using the Leven-
shtein edit distance uses a package of the same name (Bachmann, 2022). Specifically,
we apply the editops() function using the raw transcript as the source and the clean
transcript as the reference. Using the output, consisting of the name of the edit and the
index in both the source and reference text, we label all tokens in the source text. Since
a word in the source text can appear multiple times in the output of editops() when
the reference text has multiple insertions at this index, we concatenate any multiple
edits to create a layered label. Each part of layered labels counts toward the total of
edits used in the heuristics.

Once we have the raw transcript with all the edits as labels for each word, we split
the text into sentences using the SpaCy sentencizer (Honnibal and Montani, 2017). We
then create a fluent sentence by removing all words that received the edit label delete.
Using the two sentences, we relabel the disfluent sentence following the labeling process
outlined in Figure 3.1. Finally, sentences are filtered to a minimum of 4 and a maximum
of 250 tokens for all datasets.

The datasets used for the fine-tuning are stored as json files containing a column
with the full sentence and a column containing the final labels.

Seq2Seq: Parallel Data Creation The preprocessing for the Seq2Seq data is lim-
ited. To cut the transcripts on overlapping spans, we apply the Levenshtein package’s
editops() function in the same way as for the token classification data preparation.
However, in this case, after applying it, we find spans of indices where no edits are
made. Once all pairs are extracted, we reapply the Levenshtein labeling technique and
calculate the cosine similarity between the texts. We then use that information to apply
heuristics, thus removing any severely misaligned pairs.

Formatting for fine-tuning The token classification datasets are labeled at the
word level. However, the large language model used on these models, RobBERT,
tokenizes the input into WordPieces, or tokens. This means that one word can be
split into multiple tokens, and each token needs to be assigned a label. To align the
word-level labels with the tokens, each token was assigned the label of its corresponding
word.

The data preparation process, including tokenization and label alignment, was done
using the Hugging Face package. This library was chosen due to its ease of use and its
comprehensive set of tools for both data preparation and model training. In this setup,
we use the tokenizer that is part of the RobBERT model hosted on Hugging Face to
split each word into WordPieces. For the Seq2Seq data, we use the T5 tokenizer to
split the text into tokens.
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4.1.3 Model Configuration and Parameter Settings

Hyperparameter tuning In order to save on computation, we decided to do a lim-
ited hyperparameter tuning setup. No hyperparameter tuning is done for the Seq2Seq
model as the size of this model is large, and training the model multiple times is too
expensive. Due to the lighter architecture of token classification models, we decided
to do hyperparameter tuning for these models. However, since the datasets are so var-
ied in size, we decided to do hyperparameter tuning on two datasets: CGN and LS2.
These datasets were chosen due to their size, CGN is a relatively small dataset, and
LS2 is large. While Other LS datasets are larger, fine-tuning those would be even more
expensive. LS2 will represent all automatically labeled datasets, and the best param-
eters found in its tuning will be applied to all other datasets. The ranges explored in
the tuning are shown in Table 4.1, with the best-performing parameters highlighted in
bold.

Table 4.1: Parameters used for Hyperparameter-tuning. Bolded values re-
sulted in the best performance

Parameter Ranges

Batch Size 8, 16, 32, 64
Learning Rate 3e-4, 3e-5, 3e-6
Warm-up Steps 500, 100

Training Procedure The token classification models created in the hyperparameter
tuning step are evaluated using precision, recall, and F1-score. We choose the best-
performing model based on its precision of the disfluent class.

Once the best parameters are found, we start the fine-tuning process for each
model1. During fine-tuning, the model’s performance on the validation set is monitored
with MLFlow (Databricks, 2018), and early stopping is used to prevent overfitting. We
specifically set an early-stopping patience of 3. This means that if the model does not
improve its performance on the validation set for three evaluation steps, training will
be interrupted, and the best model will be saved. Once again, we use the disfluent
precision to judge a model’s performance. We do this evaluation twice every epoch.

All token classification models are trained using four Nvidia V100 GPUs, each with
16GB of memory. On average, fine-tuning a model on a 300k sample dataset for a
single epoch took around 4 hours.

The Seq2Seq model is trained on a single Nvidia T4 with 16GB of memory. All
hyperparameters, except for the batch size, are kept to the default as used in the original
T5 paper. The batch size had to be decreased from 128 to 16 to avoid memory issues.

The model’s performance is also tracked on the validation set, and similar to the
token classification model training, we also implement early-stopping patience of 3 to
avoid overfitting the model. However, since the validation set contains only the raw
texts and word-level labels, we cannot use it directly to evaluate a generative model.
From the raw text, we strip all disfluent words resulting in a fluent version of the text.
This fluent version is used as the target for the Seq2Seq model. We then calculate
the BLEU score using Hugging Face’s evaluate(). Specifically, we use the sacreBLEU

metric.

1The results of the hyperparameter tuning can be found in Appendix D
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4.1.4 Model Evaluation

To fully evaluate the token classification models, we use the precision, recall, and F1-
score metrics. We use the SKLearn package’s implementation classification_report()

function (Pedregosa et al., 2011).

Since the task is novel (in the case of Dutch and its approach), no existing scores
are available on public datasets. Using a dummy-classifier (one that always predicts
the majority class) as a baseline will not be very helpful due to the highly imbalanced
data. Instead, we use the rule-based model as a baseline (see Section 3.2.4.

In order to evaluate the Seq2Seq model, we rely on the BLEU score as the main
metric for evaluation. To prepare the raw test data texts, we remove all disfluent words
that were marked by the annotators and create a gold fluent version. As a secondary
measure, we also calculate the BLEU score for the token classification models. To do
this, we use the predictions of each token classification model to create fluent versions
of the raw transcripts. We then calculate the BLEU scores between the predicted fluent
texts and the gold target.

4.2 Results

4.2.1 Token Classification

When the precision of the disfluent class is high, the model rarely classifies a word as
disfluent when it is not. If the model removes a word even though it is actually fluent,
it can reduce the readability of the transcript rather than improve it.

Table 4.2: Full precision, recall, F1-score results on the human-annotated test
set. The best performances on the disfluent class are highlighted in bold.

Fluent Disfluent
Model Precision Recall F1-score Precision Recall F1-score

Rule-based 0.89 1.00 0.94 0.97 0.16 0.27
LS1 0.94 0.97 0.95 0.74 0.55 0.63
LS2 0.93 0.98 0.96 0.79 0.51 0.62
LS3 0.94 0.97 0.96 0.76 0.58 0.66
LS4 0.94 0.98 0.96 0.77 0.54 0.64
LS5 0.94 0.97 0.96 0.74 0.58 0.65
CGN 0.92 0.97 0.94 0.66 0.41 0.51
LARD 0.89 0.99 0.94 0.69 0.17 0.28
Combo 0.94 0.96 0.95 0.69 0.60 0.64

Table 4.2 Shows the results of precision, recall, and F1-score for the disfluent class.
The rule-based baseline was designed to ensure high precision by avoiding any risks,
resulting in a low recall score and many missed disfluencies. The main goal for the
other models is to increase the recall while limiting the loss in precision.

The LS datasets all show comparable performance, as shown by the similar F1-
scores. Models with the highest precision score low on recall and vice versa. No LS
model outperforms another LS model on both precision and recall.

We can observe that the models with higher precision (LS3, LS4, LS2 ) have lower
recall, while models with lower precision (LS1, LS5 ) have a higher recall. This suggests
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a trade-off between precision and recall: models that are stricter about labeling tokens
as disfluent (higher precision) tend to miss more actual disfluencies (lower recall), while
models that are more liberal about labeling tokens as disfluent (lower precision) manage
to catch more of them (higher recall). The F1 score, which combines precision and
recall, is highest for LS3 and LS4. These models seem to strike the best balance
between precision and recall.

The datasets LS3, LS4, and LS5 allow a higher replacement ratio. This affects
the total amount of samples available for training and the amount of noise in longer
sentences (see Figure 3.10. The respective models show higher precision but lower recall
for the disfluent class than LS1 and LS2, suggesting that allowing some replacements
can help improve precision but at the cost of a lower recall. This is likely due to the
dataset containing more examples of disfluencies in noisy texts, causing the model to
perform better on noisy inputs.

LS1, LS3, and LS4 have a lower deletion ratio. They outperform LS2 in recall
and LS5 in precision. However, they also show similar differences between each other.
Suggesting that limiting the deletion ratio has little effect on the model’s performance.
Only LS2 and LS5 allow sentence-final disfluencies, the effect of which can also be seen
in the average placement of the disfluencies in the sentence (see Figure 3.11). Again the
performance difference is large between these two models and also between the models
that do not allow sentence-final disfluencies, suggesting this heuristic may also have
little effect. The same pattern is found when looking at the class balance heuristic.
LS1 and LS4 balance the number of sentences with and without disfluencies. They
have higher F1 scores than LS2 and LS5 (which don’t balance the classes), suggesting
that class balance can positively affect performance.

Overall, the replacement ratio heuristic seems to affect precision and recall in oppo-
site directions, making it a trade-off that needs to be carefully considered. Beyond this
heuristic, none of the differences in heuristics can be inspected in isolation, making it
hard to truly predict the effect of the various heuristics. Each model has more than one
heuristics variation, causing each difference in performance possibly caused by either
difference.

The CGN model loses in terms of both precision and recall to all LS models. But
significantly outperforms the rule-based baseline in terms of recall. The LARD model
does score a comparable precision score to the LS models. However, its recall only
barely outperforms the rule-based baseline. We evaluated the LARD model on a sep-
arate validation set created following the same disfluency generation method as the
training data. The model scores an F1-score on the fluent and disfluent classes of 0.99
and 0.96, respectively. Indicating the problem does not lie in the training setup.

The potential of combining the different datasets is shown by the high recall of the
disfluent class by the combo model. It outperforms all other models in terms of recall
and does so without sacrificing much precision. The model was created with the hope
it would be able to aggregate the patterns in the various datasets and increasing its
ability to generalize.

Table 4.3 shows the results of all the models on the CGN test set. It is clear
that the CGN model outperforms all others by a large margin. As opposed to the
Amberdata transcripts, the CGN transcripts were cleaned by humans and therefore
contain no ASR errors. Any errors in those transcripts are made by the speakers only.
The difference between the two datasets can explain why the models trained on noisier
data, the LS models, perform worse. The LARD model still performs badly in terms
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Table 4.3: Full precision, recall, F1-score results on the CGN test set. The
best performances on the disfluent class are highlighted in bold.

Fluent Disfluent
Model Precision Recall F1-score Precision Recall F1-score

Rule-based 0.91 1.00 0.96 0.97 0.35 0.51
LS1 0.95 0.95 0.95 0.63 0.61 0.62
LS2 0.93 0.98 0.96 0.79 0.51 0.62
LS3 0.94 0.96 0.95 0.67 0.57 0.61
LS4 0.93 0.97 0.95 0.69 0.51 0.59
LS5 0.95 0.94 0.95 0.61 0.63 0.62
CGN 0.96 0.99 0.98 0.93 0.73 0.82
LARD 0.90 0.99 0.94 0.70 0.22 0.34
Combo 0.96 0.98 0.97 0.86 0.69 0.77

of recall. However, its precision now outperforms the LS models. The LARD data also
consists of clean data making it more similar to the CGN data.

The patterns between the different LS models are comparable. The difference in
noise levels within the LS datasets has little influence on the performance of the result-
ing models. The LS4 model does show better precision at the cost of some recall. The
LS5 model is the only model that scores a higher recall than precision. That model
also scores the highest recall when validating on the human-annotated test set. The
increased precision scores on LS3 and LS4 do not follow the prediction that the LS
models perform less due to more noise in the training data. These models contain more
noise than LS1 and LS2. However, the sentence-final disfluency heuristic can also be
an influence, as the main difference between LS4 and LS5 is that LS5 does allow for
sentence-final disfluency.

Due to the rule-based baseline model, we can see the difference between the CGN
and the human-annotated data. The rule-based baseline only removed repeated spans
of 1 or 2 words (excluding ‘je’ and ‘dat’). Since the rule-based baseline has a higher
recall when applying it to the CGN test set, it shows that the CGN data contains more
‘simple’ repetitions. However, since the other models do not perform better on the
CGN data, it shows the annotations do not align very well.

Even more pronounced than when we evaluated on the Amber-test set, we can see
the benefit of combining all data in the performance of the combo model. It outperforms
all models except the CGN model. This shows it does not lose much knowledge specific
to the CGN dataset while also learning the intricacies of the Amberdata texts.

4.2.2 Sequence-to-Sequence

In order to allow comparison between the token classification models and the Seq2Seq
model, we also calculated the BLEU scores for the token classification models. We
measure the BLEU score between the sentences without disfluencies by removing the
disfluent words as labeled by either the human annotators or the model.

Table 4.4 shows the BLEU scores. The results show that the Seq2Seq model had
lower BLEU scores compared to the token classification models. This could be due to
the fact that the Seq2Seq model is capable of making more extensive corrections, includ-
ing grammatical and stylistic changes, which may not be captured by the BLEU metric.
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Table 4.4: The (sacre)BLEU scores for the S2S model and the token classi-
fication models. The first score shows the standard BLEU score where the
text is tokenized by the tokenizer embedded in the sacreBLEU approach. The
‘-cleaned’ score is where we stripped all punctuation and lower-cased the text
before calculating the BLEU score. The scores are calculated with the human-
annotated and CGN data.

Human Annotated CGN
Model BLEU BLEU BLEU BLEU

-cleaned -cleaned

Seq2Seq 66.69 74.43 66.42 72.87
LS1 86.56 85.94 90.08 90.04
LS2 86.48 85.86 89.84 89.65
LS3 87.13 86.46 88.91 89.94
LS4 86.67 86.04 88.63 89.55
LS5 87.17 86.37 90.79 90.19
CGN 84.85 84.08 95.01 94.75
LARD 80.06 80.21 83.15 83.32
Combo 87.17 86.35 93.64 93.38

When punctuation and capitalization were removed from the texts before calculating
the BLEU score, the Seq2Seq model’s score improved significantly, suggesting that the
model may be making valuable corrections that are not reflected in the standard BLEU
score.

However, even with the improved score, the Seq2Seq model still performed worse
than the token classification models. This could be due to several reasons. Token clas-
sification models are designed to identify and classify individual tokens in a sequence.
In the context of disfluency removal, these models can be trained to identify disfluent
tokens and remove or replace them. This makes them inherently well-suited to the task
of disfluency removal, as they can operate at the level of individual words or phrases,
which is often where disfluencies occur. On the other hand, the Seq2Seq model is de-
signed to generate new sequences based on the input sequence. While this allows it to
make more extensive corrections, including grammatical and stylistic changes, it may
also make it less precise in identifying and removing disfluencies. The Seq2Seq model’s
approach of generating new text might lead to overcorrection or unnecessary changes,
which could negatively impact the fluency and coherence of the output.

Unlike the token classification models, the Seq2Seq model’s hyperparameters were
not tuned, which could have limited its performance. For example, adjusting the learn-
ing rate, batch size, or the number of layers in the model could potentially improve
its ability to learn from the training data and generate a more accurate output. Addi-
tionally, the choice of a loss function and optimization algorithm could also impact the
model’s performance. Therefore, conducting a systematic exploration of the hyperpa-
rameter space could potentially lead to significant performance gains for the Seq2Seq
model.
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4.3 Summary

In this chapter, we describe the detailed steps taken in the data preparation, fine-tuning,
and model evaluation phases and the packages used for these procedures. Then, we
delve into the specifics of the fine-tuning process, highlighting the parameters used for
each model.

We also show the results of the token classification models and the sequence-to-
sequence model using the evaluation metrics explained in Chapter 4.1. The LS token
classification models all perform similarly. They catch approximately 50% of all labeled
disfluencies and are able to accurately label them approximately 75% of the time. The
CGN model performs a little less well across the board. The LARD method scores
the lowest in terms of recall but still achieves competitive precision. The best recall is
achieved by the Combo model, which combines LS2, CGN, and LARD. Its precision
scores competitively with the LS models.

The Seq2Seq model cannot be evaluated in the same way. Instead, we use the BLEU
score to estimate the model’s performance. Using the same test data as for the token
classification models, we measure the BLEU score between the generated text and the
target text (stripped of disfluencies). Since the Seq2Seq model is capable of adjusting
more than just the disfluencies, the BLEU score might judge the performance too
harshly. By stripping the punctuation and capitalization, we loosen the requirements
for attaining higher BLEU scores. In both methods, the token classification models
achieve a higher BLEU score than the Seq2Seq model.

However, the metrics given in this chapter only give a partial insight into the true
models’ performance. Especially the performance of the Seq2Seq model cannot be
accurately estimated using the BLEU score. In the next chapter, we will analyze the
performance of the various models in more depth to better understand the models’
strengths and weaknesses.



Chapter 5

Error Analysis

In this chapter, we delve deeper into the performance of various models. We ana-
lyze the patterns evident in their predictions and outputs to identify their strengths
and weaknesses. Additionally, we highlight the behavior of the top-performing token
classification model and the Seq2Seq model by providing specific instances from the
human-annotated test data where they either excelled or failed.

5.1 Token Classification

In the chapter discussing results, we show that the LS models outperform the other
token classification models in terms of precision by correctly identifying disfluencies
about 75% of the time. We also show that approximately 50% of the disfluent words
were identified by the models. Thus, while the models do mistake some fluent words
for disfluent, they mostly miss many disfluencies.

5.1.1 Word frequency in errors

Since the LS2 model outperforms all other models on Amber-test when looking at the
precision of the disfluent class, the analysis of the token classification models is thus
focused on the LS2 model.

Figure 5.1 shows the False Negatives and False Positives of the predictions of the
LS2 model on Amber-test. Many of the most frequently missed disfluencies are common
Dutch words that can be involved in a variety of speech contexts, not necessarily just
disfluencies, making them challenging to classify correctly. However, they are words
that are often removed for sentence-initial positions. Starting sentences with dus (so)
or en (and) is often avoided in written text.

(8) Examples of sentences starting with ja. The examples start with the original
sentence where bolded words are those the human annotators deemed disfluent.
The second line is the sentence without the disfluencies predicted by the model.
the Ø-symbol refers to words that are deleted by the model. The last sentence is
the translation of the original text.

a. Ja,
Ø

dat
Ø

zou
Ø

ik,
Ø

dan
dan

zouden
zouden

we
we

moeten
moeten

nakijken.
nakijken.

‘yes, that I should, then we should check’
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Figure 5.1: The 25 most frequent false negatives (left) and false positives
(right) as predicted by the LS2 model on Amber-test

b. Ja,
Ja,

oké,
oké,

en
en

dat
dat

is
is

ook
ook

een
een

vriendin
vriendin

van
van

je.
je.

‘yes, okay, and that is also a friend of yours’

c. Ja,
Ja,

maar
maar

dat
dat

betekent.
betekent.

‘yes, but that means.’

In all examples shown in (8), one can argue the need for ja is not possible to
determine with certainty. However, in (8a), the annotator deemed it fluent, and in
(8b), disfluent. The model’s prediction is reversed, which shows that a lack of context
makes it hard to label such examples consistently.

Some more typical disfluencies are also missed at times. Words such as eigenlijk
(actually) and natuurlijk (of course) are often used as fillers and should be easier for
the model to catch.

(9) Examples of sentences with natuurlijk.

a. Wat
Wat

natuurlijk
natuurlijk

ook
ook

gebeurt
gebeurt

en
en

wat
wat

ik
ik

zelf
zelf

wel
wel

heel
heel

fijn
fijn

vind
vind

‘what happens as well of course and what I personally really like’
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b. En
En

dan
dan

moet
moet

ik
ik

er
er

natuurlijk
natuurlijk

een
een

lopend
lopend

verhaal
verhaal

van
van

gaan
gaan

maken
maken

‘And then I have to of course make a fluent story of it’

In example (9), we can see that the word is not consistently annotated. In the
first example, natuurlijk is deemed fluent by the annotator, but it is removed in the
second example. The added value of the word can be considered the same in each
sentence, showing the subjectivity of the task. Inconsistencies in keeping or removing
such words can affect the model’s evaluation and training. Maintaining consistent
behavior among the many different transcribers who worked on the clean-read versions
can be challenging. The inconsistencies between the transcribers are likely carried
forward into the training data.

Since this model scored a relatively high precision, it is expected that the number
of false positives to be much lower than the number of false negatives. The most
frequent false positives once again include words that are not distinct disfluencies.
Here, the model appears to struggle with short, common words, possibly because of
their frequency of usage in a wide array of contexts. It’s likely that these words can
often appear in disfluent sentences, but they also commonly appear in fluent sentences,
hence causing the model to generalize and mark them as disfluent more often than it
should.

Certain words appear as both frequent false negatives and false positives, such as ja
(yes), en (and), and dat (that). This indicates that the model has difficulty classifying
these words correctly in various contexts. The words often appear at the start of a
sentence. The annotators did not have contextual information, so they could only
judge whether the words were fluent on the basis of the sentence itself. This could lead
to inconsistent labeling of sentence-initial disfluencies.

Another overlap is the word eigenlijk (actually). In total, the word occurs 78
times in the test data. It is marked correctly only 12 times. It’s most often incorrectly
marked as fluent.

(10) Examples of sentences with eigenlijk.

a. want
want

dan
Ø

Dat
Ø

is
is

eigenlijk
eigenlijk

heel
heel

erg
erg

oneerlijk
oneerlijk

‘because that is actually very unfair’

b. Eigenlijk
Eigenlijk

niet,
niet,

zeg
Ø

maar
Ø

de
de

beursgenoteerde
beursgenoteerde

bedrijven
bedrijven

in
in

Europa.
Europa.

‘Actually no, let’s say the listed companies in Europe.’

In (10), the first example is quite short, and it is hard to be sure whether the word
eigenlijk is needed semantically. The annotator deemed it unnecessary, while the
model opted to keep it. In the second sentence is a little easier to see what pragmatic
meaning the word adds, and both the model and the human annotator agree. A slightly
longer sentence gives more context to which we can estimate whether a word is disfluent
or not. It seems the model is very sensitive to that.

A deep semantic understanding or utilizing more contextual information is needed
for the model to determine when these words are part of a disfluent phrase and when
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they are not. Since the model’s foundation is an LLM, it can access such contextual
information. However, since the input sentences are often quite short, the model might
lack the knowledge on a case-by-case level. Using longer sentences for the model to
label during training and inference could increase the model’s performance.

Another reason for the erred predictions could be the labeling method of the training
data. The Levenshtein distance-based approach can potentially introduce noise into the
labeling process because not all word deletions would correspond to a disfluency. As
explained in Section 3.2.1, the method automatically labels each word in a source text
based on its presence in the target text. As a result, a word labeled as delete might
simply be a part of a paraphrased span in the target sentence. Even though the word
does not appear in the target text, it is not necessarily disfluent in the source.

The LARD data does not have such errors. As such, we can expect the LARD
model to perform better. However, it performed much worse, especially in terms of
recall. This recall is improved when combining the three datasets in the Combo model.
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Figure 5.2: The 25 most frequent false negatives (left) and false positives
(right) as predicted by the Combo model on Amber-test.

Figure 5.2 shows the false negatives and positives generated by the Combo model.
Although the most common errors remain unchanged, the word eigenlijk (actually)
is now correctly marked as disfluent in only three instances, whereas previously, it was
marked incorrectly more often. On the other hand, the model is more likely to identify
words like dat (that), is (is), and dus (so) as disfluent, as indicated by the lower false
negatives and higher false positives compared to Figure 5.1. This could be because
these words are more frequently used as disfluent elements in the LARD and CGN
data, which the model learned to recognize.
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5.1.2 Performance across input length

Training the model on longer inputs and using longer texts as input could improve the
model’s performance as it will increase access to contextual information. We tested this
hypothesis by looking at the performance of the LS2 model across two sentence-length
groups. One group contains all sentences below the mean (16.57 words), and the other
all sentences equal to and above the mean length.
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Figure 5.3: The precision, recall, and F1-score performance of the LS2 model
on the test set split in longer and shorter than the mean sentence lengths.

Figure 5.3 shows that the precision on longer sentences is much higher. Even though
it comes at a cost in the recall, it is clear the model is able to more precisely judge
words as disfluent. The increased length allows for more contextual information to be
present on which the model can base its decision.

The recall might have decreased since longer sentences are more likely to contain
repairs and false starts than span multiple words. Since the model is not trained on
such lengths a lot, it might not be able to find such disfluencies consistently.

5.1.3 Performance across Noise Levels

In Section 3.1.1, we explain how the test data was collected in a stratified manner to
represent the various levels of noise found in ASR transcripts. A very noisy text is
heavily edited by the transcriber in order to clean it up.

Figure 5.4 shows the performance of the LS2 model when separating the various
noise levels. Aside from the AA level, the performance for all metrics decreases as we
increase the amount of noise. Sentences with higher noise levels are expected to have
more ASR errors and, thus, less clear context.

Even though the trend makes it seem like the performance of the model increases
as the input improves, the performance on AA is not better than A. The sentences in
AA are taken from already cleaned by annotators who had the task of doing a clean
verbatim transcript. This means these texts contain no ASR errors but do contain
disfluencies.

It is possible that there is little difference between the texts produced by the two
noise levels or that the model has reached its maximum performance. Another potential
reason is that the training data and test data may not align well. If the model was not
trained on clean data, it might not be able to take advantage of the lack of noise. A
similar misalignment can be observed with the CGN data. Tables 4.2 and 4.3 clearly
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Figure 5.4: The precision, recall, and F1-score performance of the LS2 model
on the Amber-test split into the various Noise Levels. From AA to D, each
level is progressively noisy.

demonstrate that models trained on one dataset do not perform as well when tested on
another dataset. None of the LS models outperform the CGN model when tested on
CGN data, and the CGN model does not outperform the LS models when tested on
Amber-test.

5.1.4 Summary

Overall it is clear that the performance of token classification models is highly influenced
by an alignment between training and inference data regarding the level of noise in the
texts. Furthermore, the most common mistakes made by the models are filler words
that can appear as both fluent and disfluent words. Due to inconsistent handling of
sentence-initial disfluencies and some fillers such as ook, eigenlijk, and gewoon, it
is hard to use the precision, recall, and F1-score metrics as well-defined estimates of
model performance.

5.2 Sequence-to-Sequence

In this section, the Seq2Seq model’s performance is analyzed. We discuss the rep-
resentation of the BLEU scores briefly, after which we discuss specific strengths and
weaknesses of the model. We analyze the hallucinatory tendencies and the influence of
noise and input length on the novel generations made by the model.
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5.2.1 General Performance Overview

In Section 4.2.2, the BLEU scores for the Seq2Seq model are shown. However, BLEU
scores are limited and do not always give a good insight into model performance.
Consider the following example:

(11) Yesterday
Yesterday,

a
a

man
man

walked
walked

to
to

the
the

store
store

and
and

said
said:

I
“I

want
want

some
some

bread.
bread.”

BLEU: 64.87

In this example, the sentences are almost identical except for the differences in
punctuation. The targets were created by removing words from the input text that were
deemed disfluent by human annotators. Since the original text is a raw ASR transcript,
it does not include punctuation except periods, question marks, and exclamation marks.
If we were to remove punctuation and casing from both the target and generated text,
the example would score a perfect 100. Furthermore, the annotators were instructed
not to correct grammar. Therefore, if the Seq2Seq model does correct grammar, the
generated text may deviate further from the target and lower its score.

An automatic score like BLEU can provide a rough estimate, but the best way
to evaluate the model’s performance is through manual evaluation. To start off, we
highlight some of the model’s strengths. We hypothesized that the model could correct
grammar and remove disfluencies, and this has been observed in many of the model’s
generated outputs, as demonstrated by the following examples.

(12) Seq2Seq examples - Fixing grammar and style elements. The first line shows the
original text. The line below that preceded by the ‘→’ is the text generated by
the Seq2Seq model. The final line shows the English translation of the generated
text.

a. “we hebben alles weghalen omdat we natuurlijk iets niet meer werkt.”
→we hebben alles weggehaald omdat er natuurlijk iets niet meer werkt.
“We removed everything because nothing was working of course.”

b. “Dus zegt u, we hebben geen echt o, nee, we hebben wel zelf natuurlijk
besproken hoe we nog zouden aanpakken, Hebben...”
→Dus zegt u: “We hebben wel zelf natuurlijk besproken hoe we nog zouden
aanpakken.” We hebben...
“So you say: ‘we obviously discussed how we would still approach.’ We
have...”

It is important to note that ASR models are not always accurate and can some-
times misinterpret words. This can be caused by various factors such as low volume,
background noise, accents, and code-switching. However, there are instances where
the model can also correct mistakes made by the ASR. The Seq2Seq model has shown
instances where it corrects mistakes made by the ASR.

(13) Seq2Seq examples - Correcting ASR errors.

a. “Levels, dus dat team leren en ouder of de-box denken.”
→Levels, dus dat teams leren en out-of-the-box denken
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“Levels, so that teams learn to think out-of-the-box.”

b. “Maar ja, ik denk sowieso nu met courant na ja, weet je wel iets anders, ”
→Maar ja, ik denk sowieso nu met corona, weet je wel, iets anders.
“But yeah, I think definitely now with corona, you know, something else”

Example (13a) demonstrates that the Dutch words ouder of de-box (parent or
the-box ) were correctly edited to out-of-the-box. This correction aligns with the
context and indicates that the model can consider abstract information. In the next
example, the model changed courant na ja (newspaper after yeah) to corona, re-
ferring to COVID-19. The remainder of the sentence (not included for readability)
confirms that this is the correct interpretation. While this correction showcases the
model’s promising capability, it also implies that the model can anticipate words that
are not present in the input. This raises the possibility of the model hallucinating.

For example (13b), it is clear that the model is not effectively removing disfluencies.
It appears that the model’s performance when it comes to removing disfluencies is
inconsistent. The model does well on most repairs and false starts but struggles with
interjections.

(14) Seq2Seq examples - Inconsistent disfluency removal. Bolded words are disfluen-
cies correctly removed by the model. Underlined words are disfluencies that are
not removed.

a. “ja, ik denk dat ik denk dat we wel wat processen hebben die wat stroperig
verlopen.”
→Ik denk dat we wel wat processen hebben die wat stroperig verlopen.
“I think we do have some processes that are moving a bit sluggishly.”

b. “Maar nou, dat is gewoon niet de sfeer.”
→Maar nou, dat is gewoon niet de sfeer.
“But well, that is just not the mood.”

As we can see, the bold words in example (14a) are part of a repair and are correctly
removed by the model. However, all underlined words are considered interjections and
are not removed.

These interjections usually fall into the category of discourse markers or particles.
Discourse particles can function as indicators of rhetorical relationships within a con-
versation or as markers of the connection between statements. They also serve to
depict the speaker’s attitude towards the dialogue or the person they are conversing
with (Hogeweg and van Gerrevink, 2015). Since such words often bring nuance to a
text, transcribers are unlikely to remove such words. This would result in the model
having few such training examples and will not learn to remove them.

5.2.2 Analysis of Hallucinations

One of the biggest risks with generative models is that they are prone to hallucination.
These models predict the next word in a sentence based on its likelihood using the
context from previous words. In some cases, the generated word is possibly unrelated to
the input the model was provided or even to the text the model is currently generating.
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For this analysis, we focus on intrinsic hallucinations. We refer to all words in the
generated content that is not present in the source text as additions. Note that not
all additions are necessarily hallucinations. Approximately a fourth of the model’s
generations using Amber-val contain additions.

To investigate this risk, we highlight generated words that are not present in the
input. Additionally, we inspect words that are present in the input yet are placed at a
different position in the sentence. We create three categories for these additions:

• Function words: Words needed for grammatical or structural relationships

• Transformations: Words whose lemma is present in the input

• Novelties: Completely novel content words

As opposed to content words, function words do not carry semantic meaning di-
rectly. They form the grammatical and relational structure in a sentence and can
specify the attitude or mood of the speaker (Klammer, 2007). Additions of this kind
are less problematic than others. Transformations are words that appear in the input
in a different form. Think about various verb conjugations and noun modifications like
case, number, and gender. The final category is words that in no way are present in
the input nor can be considered function words. These are the most detrimental for
reliable and factual generations. If such words are generated often, it shows the model
is generating information capable of changing the original meaning.

The reordered words are identified by applying the Levenshtein labeling method to
the generated text using the input text as a reference. Any word that is present in the
input and gets the label replace or delete can be seen as a reordered word. Note that
reordered words also encompass duplications.

Figure 5.5 shows the 25 most common additions and reordered words in the gener-
ation of the Seq2Seq model when applied to the test set. Most frequent additions and
almost all reordered words are function words. As such words do not affect the seman-
tics in a major way, it is likely that the model’s generations stay semantically close to
the input. For reordered words to mainly consist of function words is logical as the
reordering likely points to grammatical corrections. The most frequent content word
found in the reordered words and the second most frequent hallucination is we (we). If
the input text consists of multiple constituents, subsequent constituents seem to often
miss the pronoun. The Seq2Seq model often inserts them, as shown in Example (15a).
This insertion accounts for nearly all instances of we as reordered words.

(15) Seq2Seq examples - Inserting we in secondary constituents

a. “We gaan hiermee door, of we moeten ermee stoppen, of een handige kant
op.”
→We gaan hiermee door, of we moeten ermee stoppen, of we gaan de
handige kant op.
“We either continue with this, or we have to stop, or we go the convenient
way.”

b. “Ja, maar nooit gebruikt ook, ken, maar we hebben (dat) nog nooit gedaaan.”
→Ja, maar nooit gebruikt ook, ken ik. Maar dat hebben we nog nooit
gedaan.
“Yes, but never used either, I know. But we’ve never done that.”
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Figure 5.5: The most frequent words that are hallucinated or reordered. Words
surrounded by / are Function words, and plain words are novelties

Example (15b) shows us a different reason. In Dutch, the placement of a pronoun is
dependent on whether it is part of a main or subordinate clause. This second-verb-order
(V2) phenomenon means you can start the sentence with a subject or an object, but
regardless of which you start with, the finite verb will come next (Zwart, 2017). V2
is the norm in main clauses, while in subordinate clauses, the verb usually goes to the
end. The example shows that the model adds a sentence boundary which changes the
clause into a main clause and moves the subject accordingly.

Since function words can often be accepted as additions, we can temporarily ignore
them when assessing the model’s performance. Figure 5.6 shows the most frequent
additions and reordered words that are not considered function words.

Aside from we, each individual frequently reordered word occurs a limited number
of times, showing there is no structural change concerning specific words. However, the
frequent additions show multiple content words that are frequently added. Starting
with the most frequent word, natuurlijk (of course). One cause is that the short
version of the word tuurlijk is consistently changed into the full word. However, this
only constitutes three instances. One instance is where the word was attached to an
adjacent word in the input text, which the model separates correctly. The remaining
37 instances show a troubling hallucination.

(16) Seq2Seq examples - Adding natuurlijk

a. “Dat is ook bent.”
→Natuurlijk. Dat is ook het punt.
“that is also are” →Of course. That is also the point.
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Figure 5.6: The most frequent content words that are hallucinated or re-
ordered. Words surrounded by ‘|’ are transformations, and plain words are
novelties

b. “Maar allemaal kan.”
→Natuurlijk. maar allemaal kan.
“But everything can” →Of course. But everything can

c. “Dat er inderdaad.”
→Natuurlijk.
“You can do everything well” →Of course. You can do everything well–

In example (16a) the natuurlijk is inserted in a way that is semantically fit-
ting. Even though the word is not in the input, it is believable that a speaker would
have pronounced it. In example (16b), there is no way to judge whether the addition
is acceptable. In the final example, the model replaces everything in the input for
naturlijk. The frequency of these errors shows the model consistently hallucinates
the word. This could be because the training data includes many examples where it is
present only in the edited text, causing the model to learn to always include it.

Another frequently hallucinated word is transcription. The English word is part
of the prefix Clean Transcription: , and the model is inconsistent in the removal of
the prefix. Together with scription, the word always appears at the start of a newly
generated text for a total of 21 times.

Both the addition of natuurlijk and the retaining of transcription (and scription)
appear only in short texts. Since the model is not often trained on short texts, it is
likely that it is not capable of handling such inputs very well.

Other slightly frequent errors are even (briefly) and hebt (you have, singular). The
first is a consistent correction of effe, which is the spoken language rendition of even.
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The second only occurs when the input misses the verb to form a correct sentence.
Many of the other frequent additions follow similar patterns and usually fix grammar
errors in the input.

5.2.3 Length and Additions

As seen before, the input length seems to affect the likelihood of the model’s inclination
to hallucinate. However, when ignoring the two specific additions mentioned above, we
see that additions appear more in longer inputs than in shorter ones.
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Figure 5.7: The normalized count of sentences per length for either with or
without novelties.

While the model is able to access more contextual information in longer inputs, it
hallucinates more as well. This could imply that the model has difficulties with main-
taining contextual understanding over long sequences. Increasing a model’s ability to
extract information from larger context windows can increase its performance (Guo
et al., 2021). However, this is unlikely the cause of the increased hallucination. Figure
5.7 shows that the largest difference between non-hallucinated and hallucinated sen-
tences is between a length of 20 and 60 words, which is well within the context window
of the T5-base model (Raffel et al., 2020). Instead, it is more probable that longer
sequences simply allow for more instances where the model can hallucinate. Longer
input texts tend to have a greater total number of grammatical errors or ASR errors.
This gives the model more chances to correct them and, in doing so, hallucinate.
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5.2.4 Problematic Additions

While the analysis so far has shown that most frequent additions are not structural
errors, we cannot conclude the model does not hallucinate in a problematic manner.
In total, the model hallucinates 361 different words we call novelties. If we exclude the
structural errors mentioned before, we are still left with approximately 250 hallucinated
words. The examples below show some of the problematic additions generated by the
model.

(17) Seq2Seq examples - Strong additions

a. “En procedures en en die de levens van veel mensen negatief beheersen.”
→En procedures die de levensvaardigheden van veel mensen negatief be-
heersen.
“And procedures and which negatively influence the lives of many people.”
→life skills

b. “Ja, nee, ik had van kist gehoord.”
→Ja, nee, ik had van Kessler gehoord.
“Yeah, no, I’ve heard of chest” →Kessler

c. “Om iets wat daar net vorige.”
→Om iets te zeggen wat ik daarnet voor gehoord heb.
“to something that there just last” →To say something that I heard just before

In Examples (17a) and (17b), we can see additions that deviate from the input
significantly. Especially Example (17c) generates a lot of text not present in the original.
What the examples do have in common is that the inputs are rather noisy, and not
a lot of sense can be made from them, especially the last example. In these cases, it
would be better if the model did not alter the input by much.

The performance of the model in terms of its inclination to hallucinate is affected
by the amount of noise in the input. Figure 5.8 shows the proportion of the generated
texts that contained fully novel additions, function word additions, or no additions at
all. We see that in noise levels AAA and AA, the model hallucinates the least. The
noisier the input, the more it hallucinates. However, the number of hallucinated texts
is lower in level C than in B. One hypothesis is that at this level, the texts contain so
much noise that the model cannot adequately generate improved versions, and instead,
it doesn’t alter the inputs at all.

Many of the additions expressed in this section are hard to identify. Since many
automatic metrics do not take the semantic distance between texts into account, and the
ones that do are computationally intensive, it is hard to detect them automatically. The
present approach was to take a simple rule-based approach to identify novel generations
and then manually go through them to find problematic cases. This is not sustainable
in either an academic or production environment.

5.2.5 Disfluency Removal Analysis

Up until now, we have focused on the potential issues with the model’s behavior, which
may give the impression that it is not capable of producing good results. However, out
of the 2000 texts that were corrected by the model in the test set, only 375 of them
contained novelties, and 411 contained function word additions. This means that the
remaining 1214 generations did not contain any additions, and even without assuming
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Figure 5.8: Proportion of generations containing different additions per noise
level in the test data

that most function word additions are not harmful to the generated text, we can assume
that most generations are valid.

As we mentioned earlier in this chapter, the model can sometimes add stylistic
punctuation to the generated text. These changes can significantly enhance the text’s
readability and help guide the reader in understanding the speaker’s intention.

(18) Seq2Seq examples - Changing punctuation.

a. “Als je echt zegt ik wil het niet dan slaan om over.”
→Als je echt zegt: “Ik wil het niet”, dan slaan we hem over.
“If you really say: ‘I don’t want it’, then we will skip it.”

b. “Ook nooit gezegd van: ja, je niet te lang blijven als dat je heb je wel.”
→ook nooit gezegd: “Je moet niet te lang blijven.” Dat heb je wel.
“Also never said: ‘you should stay too long’. Yes you did.”

c. “Ik heb hem twee drie weken geleden inderdaad gesproken en hij ja klopt ik
heb zo’n ik heb dit dissel ook van hem gehoord.”
→Ik heb hem twee, drie weken geleden gesproken en hij– Ja klopt, ik heb dit
ook van hem gehoord.
“I spoke to him two, three weeks ago and he– Yeah true, I heard this from
him too.”

When predicting a phrase as a quote, the model includes colons and quotation
marks. It also inserts sentence boundaries and potentially adds interruption marks
(--) at possible cutoffs. These edits were included in the target texts used to train the
model, which it appears to have incorporated into its learning. However, one should be
wary about seeing punctuation changes as a definite benefit. Punctuation can change
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the meaning of a text as well. As such, like function words, there is a chance that
punctuation additions can be considered problematic.

(19) Seq2Seq examples - Problematic punctuation additions.

a. “Maar ja, ik denk sowieso nu met courant na ja, weet je wel iets anders, ”
→Maar ja, ik denk sowieso nu met corona, weet je wel, iets anders.
“But yeah, I think definitely now with corona, you know, something else”

The model is also capable of extracting the core meaningful phrases within the
larger text and correctly removing the disfluent elements.

(20) Seq2Seq examples - Removing disfluencies.

a. “Maar zo belangrijk is het dus, sorry dat ik je heel even zo belangrijk
is, het dus dat eh dat degene bij wie jij komt vraagt.”
→Maar zo belangrijk is het dus dat degene bij wie jij komt vraagt.
“But that’s how important it is that the person you come to asks.”

b. “Zelfs voor mijn Maar datdat denk ik zelfs voor mijn persoonlijke sit-
uatie.”
→Zelfs voor mijn persoonlijke situatie.
“Even for my personal situation.”

c. “Nou, ik denk dat ze het merendeel eh, dat het merendeel het meren-
deel van de les wel prima vond, natuurlijk ook omdat ze dan het is anders.”
→Nou, ik denk dat ze het merendeel van de les wel prima vond, natuurlijk
ook omdat ze dan... Het is anders.
“Well, I think she was fine for most of the lesson, of course because she then
also... It’s different.”

These instances show how the model can eliminate disfluent phrases while preserv-
ing the primary message of the sentence. The first two examples display the model’s
ability to remove extended disfluencies. Both cases involve the repetition of numerous
words, separated by an interjection that is also composed of multiple words. Detecting
such lengthy interruptions can be challenging since it requires long-term contextual
memory. However, since a significant portion of the phrase repeats, detecting it con-
ceptually becomes easier. The third example demonstrates that even when there are
multiple repetitions, the model removes the surplus and enhances the readability of
other sections in the text.

One highlight is the model’s reluctance to clean input-initial or final disfluencies.
Some interjections that appeared at the start or end of the input were not removed.
The same words were corrected when they appeared more central to the input.

(21) Seq2Seq examples - Removing input-initial/final disfluencies.

a. “Nou ja, ik ik zit toch niet zo heel hard in.”
→Nou ja, ik zit er toch niet zo heel hard in.
“Well, I’m not in it very hard anyway.”

b. “Voordat ik heb ik nog steeds niet, nou ja, die hou ik inmiddels.”
→Voordat ik het heb, heb ik het nog steeds niet. Die hou ik inmiddels.
“Before I have it, I still don’t have it. I’m keeping that one in the meantime.”
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This discrepancy could be caused by the method of cutting the full transcript into
smaller chunks. We cut the texts in the center of any overlapping span. This causes all
training data inputs to have no edits made at the start or end of the text. This could
teach the model that such edits are not allowed.

5.3 Summary

In this chapter, the behavior of token classification models and Seq2Seq models was
analyzed. The performance of the token classification models was assessed using pre-
cision, recall, F1-score, and manual analysis. It was found that the models performed
well overall but had difficulty in accurately identifying specific interjections. The best-
performing model, LS2, also showed that the amount of noise present in the input
affected its performance, scoring better on cleaner inputs.

The Seq2Seq model was evaluated based on its ability to correct grammar and style
elements, correct ASR errors, and remove disfluencies. The model showed promising
results in some areas, such as correcting grammar and style elements and some ASR
errors. However, it struggled with removing certain types of disfluencies, particularly
interjections. The analysis also revealed that the model was prone to generating ad-
ditions, where it generated words that were unrelated to the input. These additions
were more likely to occur in longer sentences and noisier inputs. Overall, while the
models showed strengths in certain areas, there were also limitations and areas for
improvement.



Chapter 6

Discussion

In the preceding chapters, we delved into the challenges and possibilities inherent in the
removal of speech disfluencies in automatic speech recognition (ASR) transcripts. With
the rising demand for accurate and accessible transcripts driven by increased audio and
video media consumption, our exploration sought to address a significant gap in the
field. This chapter interprets, discusses, and analyzes the main findings of our research
in the context of the research questions posed in the introduction chapter (see Chapter
1.2. First, we summarise the performance of the token classification models and the
sequence-to-sequence model in disfluency removal, exploring their respective strengths
and weaknesses. Next, we consider the wider implications of our study for the field
of ASR transcript and for low-resource languages, underlining the contributions of our
work. Finally, we examine the limitations of our study and recommend future directions
for further research.

6.1 Token Classification

The token classification models were trained on datasets with two separate labeling
setups. The Levenshtein-based models (LS1-5), which were labeled with the Leven-
shtein labeling setup using various thresholds for insertions, replacements, and dele-
tions, proved the most effective. They correctly identify disfluencies about 75% of the
time and can catch approximately 50% of all disfluent words. Despite their effective-
ness, the models failed to detect all disfluencies and sometimes mislabel fluent words
as disfluent. However, they still performed significantly better than the model trained
with the LARD data created using the approach proposed by Passali et al. (Passali
et al., 2022), which had good precision scores but struggled to detect many disfluen-
cies. Finally, the model trained with CGN data struck a middle ground between the
two approaches.

The differences within the LS models are attributed to varying thresholds and the
control measures for noise in the datasets. For instance, in the LS1, LS3, and LS4 mod-
els, the disfluencies at the end of a sentence, which could have been due to noise, were
not permitted. The thresholds were manipulated to increase the allowed replacement
ratio, which increased the model’s recall at the cost of some precision. This was ap-
parent when comparing models LS2 and LS5. However, the influence of these heuristic
parameters on the models’ performance is unclear due to the large variety of values
used across the datasets.

In the analysis, the models detected a range of disfluencies, some more accurately
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than others. More common disfluencies, such as filler words like eigenlijk (actually)
and natuurlijk (of course), were often correctly identified. Nonetheless, there were
inconsistencies in the annotation, leading to some words being incorrectly labeled.

The models struggled with certain disfluencies due to a range of factors. For in-
stance, they struggled with common words like ja (yes), en (and), dat (that), and dan

(then) which often appear at the start of sentences. The labeling of these sentence-initial
disfluencies was inconsistent due to the lack of contextual information. Additionally,
some words were incorrectly marked as fluent or disfluent due to their high frequency
of usage in various contexts, which caused the model to overgeneralize.

Another challenge came from the labeling method of the training data. The Leven-
shtein distance-based approach could introduce noise into the labeling process as not all
word deletions correspond to a disfluency. This confusion could lead to false positives
and false negatives in the model’s predictions.

6.2 Sequence-to-Sequence (Seq2Seq)

The Seq2Seq model scored a BLEU score of 66.69 on the human-annotated test set.
Cleaning the generated text and target text of capitalization and punctuation increases
this score to 74.43. While this step is not common in other research, we deemed it
valuable to highlight the lack of representation of the BLEU score for this task. The
cleaning process shows how sensitive the score is to minute differences. Since the
Seq2Seq model can affect word order and stylistic markers, it can change the text
without affecting its meaning. Paraphrased sentences would be judged as worse even
though they would potentially be better if we only view the goal of disfluency removal.

While the Seq2Seq model effectively corrects grammatical errors and rectifies errors
introduced by the ASR model, it struggles with removing specific types of disfluencies,
particularly interjections. This could be caused by lacking training data where such
interjections are not consistently removed in the clean-read transcript. The edited ver-
sions in the data are a collection of edits by a large team of professional transcribers.
While the transcribers follow protocols for their work, they are viewed more like guide-
lines and offer some freedom. Thus, it comes down to each transcriber to judge the
need for the interjections. This could lead to inconsistent removal causing the model
to be unable to learn the pattern.

One key issue with Seq2Seq models is their susceptibility to additions - the gen-
eration of words or phrases that do not appear in the input. These additions have
been categorized into function words, transformations, and novelties. Function words
and transformations do not generally impact the semantics of the output significantly,
but novelties introduce completely new content words that can alter the meaning of
the text. The model showed a high level of additions but a much lower generation of
novelties. This suggests the semantics of the generated text remain close to the original.

The frequency of additions in the Seq2Seq model tends to increase with the length of
the input. Rather than suggesting that the model struggles with maintaining contextual
understanding over longer sequences, it likely reflects the higher probability of the model
hallucinating, given the increased opportunity with more words.

In addition to sequence length, the level of noise in the input text significantly influ-
ences the model’s tendency to hallucinate, with noisier input leading to more additions.
This effect disappears at high noise levels, where the hallucination reduces relative to
a lower level of noise. Possibly, the model cannot generate improved versions of the



6.2. SEQUENCE-TO-SEQUENCE (SEQ2SEQ) 69

text since the inputs are somewhat nonsensical, causing the model to leave the inputs
unaltered.

Despite these challenges, the Seq2Seq model exhibits noteworthy strengths. It shows
proficiency in correcting grammar and improving stylistic elements, which enhance
readability and clarity. This model’s capability to extract core phrases from larger
texts and eliminate disfluent elements further underscores its utility in real-world ap-
plications.

6.2.1 Implications of the findings

This research offers a novel approach to using automatically labeled and unlabeled data
for the removal of disfluencies in ASR transcripts. The token classification approach
and the Seq2Seq models investigated could be adopted and further improved by other
researchers and technology developers to increase the readability and comprehension
of ASR outputs. The approaches are especially useful in low-resource languages where
there is little to no labeled data. However, one would still require raw and clean-read
transcripts in order to fulfill the automatic labeling using the Levenshtein approach.

Both approaches to the task of removing disfluency were capable of generating text
with improved readability. The investigation into automatic data labeling techniques
provides a way to bypass the expensive manual annotation process. The unsupervised
methods studied can be used to create datasets for training token classification models.
It demonstrates the viability of automatically labeled data for effective NLP model
training. However, we also show not all automatic labeling techniques are equally
viable. The Levenshtein labeling approach profited from the similarity between the
training data and the inference data. However, the required data (text pairs of raw and
cleaned transcripts) is rare and hard to acquire. Even though the LARD method created
by Pasalli et al. (Passali et al., 2022), performed subpar on the human-annotated test
set, the method has the benefit of easily creating data from widely available cleanly
written language.

It is also important to consider that disfluencies in speech can carry significant
meaning and nuance. Their removal during the transcript process can potentially alter
the tone and intent of the original speech. This can result in a cleaned-up text that is
harsher or less nuanced than the original spoken words.

The bias in this context stems from the transcript process when annotators remove
these disfluencies. The perception and interpretation of these disfluencies can vary
greatly among individual transcribers. Some might not catch the nuance intended
by the speaker or may not prioritize maintaining it, while others might. Having a
large number of transcribers could potentially average out these individual differences.
However, the transcription guidelines that the transcribers are required to follow can
contain their own bias, causing potential overlap in individual transcribers.

This work highlights the need for appropriate evaluation metrics for Seq2Seq models.
The identified discrepancy between the BLEU score and the real-world applicability of
the models implies the need for further research on suitable evaluation methodologies
for Seq2Seq tasks. The insights generated regarding the tendency of Seq2Seq models to
generate additions could guide further research to develop robust metrics to evaluate
hallucination. Specifically for disfluency removal, but for other generative tasks as
well, hallucinations are the main risk preventing the models from being securely used
in practice.
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6.3 Future Work

Automatic labeling techniques The LARD method can be improved a lot which
would very likely improve its applicability and performance. One such improvement
can be found in the use of LLMs. Large Language models have been used in lexical
simplification to add a synonym into texts to replace a more complex word (Qiang
et al., 2020; Arefyev et al., 2022; Seneviratne et al., 2022). A similar approach could
be used to create repairs and no longer rely on lexical databases that might lack the
needed coverage of low-resource languages. Since this method does not require both
raw and clean-read transcripts, only clean language data, it is easy to create datasets
in low-resource languages. This makes it very promising, and future research should
focus on its expansion.

All disfluencies generated in the LARD approach can also be changed to fit linguistic
patterns of disfluency more closely. Not all words in a sentence are equally likely to be
repaired or repeated. Neither do interjections appear at random points in a sentence.
Constraining the candidates for the application of disfluency to certain part-of-speech
(POS) tags can increase the authenticity of the resulting disfluent text.

Furthermore, Passali et al. (2022) aimed to balance the number of samples for
each type of disfluency. In doing so, they limit each text to contain only a single
disfluent element. Many of the transcripts found in our data often contained a blend
of disfluencies in a single sentence. One sentence can contain a repetition, followed by
a repair which might all be part of a false start. The layered nature of disfluencies is
not fully captured in the LARD method. Expanding the generation could improve the
authenticity and applicability of datasets created with the method.

The other approach to automatically creating training data using the Levenshtein
labeling method could also be improved. First, to extract the labels, we applied the
labeling method to the entire transcript at once. We then split the text into sentences.
The resulting labels did not always make sense, as the surrounding text was no longer
present. Meaning that sentences could contain labels that no longer fit the text. To
solve this issue, we applied heuristics to throw out instances where the text and labels
were likely no longer aligned. Instead, we could have used the semantically aligned
text-pair extraction used in the Seq2Seq dataset creation. Once the aligned texts were
extracted, we could apply the Levenshtein labeling method. This would allow for less
data being discarded and possibly less noisy labels.

Secondly, the Levenshtein labeling method is based on the edit distance of the same
name. In the distance calculation, each edit (replacement, insertion, and deletion) is
viewed as equal. However, for the task of disfluency removal, we might want to place
emphasis on the deletion of words rather than replacing or inserting them. Altering
the algorithm to favor deletions over other edits could nudge it to better label disfluent
elements.

Monolingual Parallel Data The approach to cutting transcripts into smaller chunks
resulted in texts that never had an altered word at the beginning or end. As observed
in the error analysis section (Section 5), the model is unlikely to change the start or end
of the input. Future applications should address this by either randomizing the cutting
point within the overlapping sets or always cutting at the end of the set to allow for
changes in input-initial words in the clean-read transcript.
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Contextual Information Models seem to struggle with sentence-initial disfluencies
due to a lack of contextual information. The training and testing data was mainly made
up of short texts, sometimes only containing a few words. Such texts are very hard
to process, even for a human, as was visible in the annotation study. The annotators
did not agree often. They reported that the lack of contextual understanding made
it difficult for them to accurately decide if a word was disfluent. It can be expected
that the same reason is causing the model to have difficulty with the detection as well.
Increasing the length of the texts for training and testing data is likely to improve the
accuracy of a model’s predictions. This can be done either by following the approach
used in the Seq2Seq dataset creation or by joining multiple sentences from the token
classification dataset.

Improved Base Models The model underlying the Seq2Seq model can be improved
upon. The T5-base used to fine-tune the Seq2Seq model is only pre-trained on English
data. Subsequent research should explore the effect of using the multilingual version
on both performance and minimum required data for fine-tuning. While a large fine-
tuning dataset was used to compensate for the lack of Dutch knowledge present in the
T5-base, this causes computational overhead as it increases training time.

Furthermore, the experiments using GPT4 show that newer LLM models have a
high capacity for zero-shot and few-shot learning of a novel task. Future research
could explore the fine-tuning of similar open-source models, such as openLLama-7b
and Falcon Geng and Liu (2023); Almazrouei et al..

Even Larger LLMs Recently many models have become available that make previ-
ous LLMs such as BERT, RoBERTa, and T5 less worthy of their ‘Large’ moniker. With
the introduction of these multi-billion parameter models (as opposed to the millions
present in the older LLMs), several benefits can be found. The models boast much
larger context sizes and high zero-shot performance. In such zero-shot settings, the
content of a prompt significantly influences the performance of the models Wang et al.
(2023). Future research could explore the potential of a zero-shot approach or even a
few-shot approach to disfluency removal by experimenting with various prompts. While
computationally extremely heavy, some of the models can be fine-tuned, potentially in-
creasing the performance even further.

Lack of Gold-standard Evaluation The experiments in this thesis hinge signifi-
cantly on the proprietary in-house data provided by Amberscript, which in turn reduces
the potential for reproduction and validation of the results in other settings or with
different datasets. This reliance creates a significant limitation, restricting the compa-
rability of our findings to other approaches.

As a temporary solution, we implemented the CGN test data to allow for an openly
accessible evaluation set. However, this data was not labeled specifically for speech
disfluency, and the resulting labels are but an approximation. Furthermore, the large
difference in model performance between the two datasets shows the dissimilarity be-
tween the disfluency labels. To enhance the comparability of research in this field,
future studies could focus on the creation of standardized datasets. These datasets
could serve as a gold standard for evaluating different methods of disfluency removal.
These sets would not only enable consistency across various research efforts but also
encourage a more thorough evaluation of different approaches. It is preferable for these
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datasets to have distinct labels for each type of disfluency, akin to the Switchboard
corpus (Godfrey et al., 1992).

It’s noteworthy that our work and the performance of our model are closely tied to
the quality of the input data. A better ASR, one that makes fewer recognition errors
and is capable of achieving a better verbatim transcript, will provide cleaner input
data, simplifying the downstream task of disfluency removal. Any dataset created with
the goal of being a central point for comparisons could quickly become redundant as
its transcripts are not representative of the present performance of ASR systems.

Furthermore, it’s important to acknowledge that not all ASR systems produce ver-
batim data. Some are trained on audio paired with clean transcripts, which might lead
them to eliminate disfluencies during the transcript process. This variation introduces
another layer of complexity in evaluation downstream models as the input transcripts
are too variable.

Evaluation Metrics We mentioned that the BLEU score does not give a fully ac-
curate measure of the model performance. Future research could employ alternative
metrics to reinforce the validity of the quantitative evaluation. Recall-oriented metrics
such as ROUGE (Lin, 2004) are more often used in summarization tasks as they are
sensitive to deviations from the input. Therefore they possibly better represent the
faithfulness of the generation to the input. Furthermore, future research would benefit
from moving away from overlap metrics and rather using neural-based learned metrics.
Freitag et al. (2022) Show that such metrics better correlate with human judgment
across multiple tasks.

6.4 Summary

This chapter discusses the findings of the token classification and Seq2Seq models. The
token classification models demonstrated a significant ability to identify disfluencies.
Despite their effectiveness, they were not flawless, sometimes failing to detect all dis-
fluencies and occasionally mislabeling fluent words as disfluent. The Seq2Seq model
was effective in correcting grammatical errors and rectifying errors introduced by the
ASR model. It had difficulty recognizing interjections and exhibited a high level of
additions. However, we hypothesize the additions do not affect the semantic value of
the generated text.

The findings of this research offer a novel approach to using automatically labeled
and unlabeled data for the removal of disfluencies in ASR transcripts. These approaches
are especially beneficial in low-resource languages where there is little to no labeled data.
However, the research also highlights the potential risk of altering the tone and intent
of the original speech during the transcript process due to the removal of disfluencies.

The chapter suggests several areas for future work. These include improving au-
tomatic labeling techniques and improving base models. The chapter also underscores
the need for the creation of standardized datasets to enhance the comparability of
research in this field. It also acknowledges the limitations of relying on proprietary in-
house data, which reduces the potential for reproduction and validation of the results
in other settings or with different datasets.

In conclusion, this chapter provides valuable insights into the challenges and possi-
bilities inherent in the removal of speech disfluencies in ASR transcripts and sets the
stage for future research in this area.
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Conclusion

This thesis has presented a deep dive into the exploration of data labeling techniques
and their applicability in disfluency removal within automatic speech recognition (ASR)
pipelines. It delved into the strengths and limitations of token classification and
sequence-to-sequence (Seq2Seq) models, marking a noteworthy contribution to disflu-
ency removal in downstream ASR applications.

Addressing the first research question, “Can automatic labeling techniques be re-
liably used to create datasets to train effective transformer-based token classification
models?”, the results yield a promising conclusion. The study confirmed the applicabil-
ity of automatic labeling techniques for training transformer-based token classification
models. The models trained with the automatically labeled data were capable of accu-
rately identifying disfluencies. Particularly using the Levenshtein-based models, they
are able to recognize disfluencies accurately around 75% of the time, with a recall of
approximately 50%. However, the method proposed by Passali et al. (2022), although
showcasing reasonable precision, proved less effective in recall. Despite the complexities
of the labeling process and the challenges in detecting certain disfluencies, the robust-
ness of the automatic labeling techniques solidifies their potential for future work in
this area.

The second part of the first research question focused on the effectiveness of ar-
tificially generated disfluencies and automatically labeled data using the Levenshtein
approach as training datasets for token classification models. The lower performance
found in LARD-based token classification models aligns with the initial hypothesis and
is likely due to the realistic representation of conversational language in the Levenshtein
labeled data.

The second research question asked, “Can sequence-to-sequence models be reliably
trained using automatically aligned fluent-disfluent data to create effective disfluency
correction models?”. The Seq2Seq model demonstrated its potential, despite some chal-
lenges. Although it did not outperform the token classification models when assessed
via the BLEU score, it illustrated key strengths in correcting grammatical errors, en-
hancing stylistic elements, and enhancing readability and clarity. It also showed promise
in removing single and multi-word repetitions and repairs. However, it struggled to re-
move interjections. Furthermore, the Seq2Seq model’s tendency towards hallucinations,
especially with increasing input length and noise, requires further exploration. Thus,
while the hypothesis that the Seq2Seq model would effectively remove disfluencies was
partially met, its performance in terms of hallucination and interjections diverged from
expectations.
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In conclusion, this thesis emphasizes the viability of both automatic labeling tech-
niques for token classification models and the use of Seq2Seq models in disfluency
removal. Future work can focus on refining the labeling methods, providing more con-
textual information for training, and researching the hallucination issue in Seq2Seq
models. The findings of this study, while illuminating the potential of these methods,
also emphasize the complexity of disfluency removal tasks, inviting further research and
development in this promising field.



Appendix A

Rule-based Baseline Fillers

The list below shows all filled pauses removed by the rule-based baseline. This list
contains all words that are often used by transcribers to denote filled pauses in verbatim
transcriptions. This list might be excessive. The Rule-based model is normally only
applied to raw transcriptions. The ASR transcribing the audio usually does not have
this many variations to denote filled pauses.

• EH

• Eh

• eh

• uh

• Ee

• Eh,

• Eh...

• Ehh

• Ehm

• Ej

• ehm

• Euhm

• Hm

• Hmhm

• Hmm

• Mhmh

• Mm

• Mm-hmm

• Uh

• Uhm

• Um

• Uuh

• ah

• eeeh

• eeh

• eg

• eh

• eh-eh

• ehj

• ehm

• euh

• euhm

• hm

• hm-hm

• hm-mm

• hmhm

• hmm

• hmm-hm

• mhm

• mhmh

• mm

• mmm

• mh

• oeh

• oh

• u

• uch

• uh-

• uh-uh

• uhh

• um

• ùh

• ûh
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Appendix B

Validation and Test set - Noise
Levels

Table B.1: We calculated the Levenshtein labels following the process in Sec-
tion 3.2.1. We set thresholds for the labels: insertion, deletion, and replace-
ments to create the various noise levels. The level ‘AA’ is created by only using
sentences that were cleaned into ‘verbatim’ by transcribers. These cleaned-up
texts are corrected for all ASR errors but not for disfluencies. Levels A to D
follow the heuristics using the Levenshtein labels.

Noise Level Insertions Replacements Count

AA - - 200
A 0.00-0.01 0.00-0.01 600
B 0.01-0.10 0.01-0.10 400
C 0.10-0.30 0.10-0.30 400
D 0.30-1.00 - 400
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Appendix C

Annotation Guidelines

C.1 Annotation Guidelines - EN

[Note that the guideline’s original language is Dutch. The examples are kept in Dutch
as their translation will not carry over the patterns found in Dutch disfluency, making
the guidelines rather nonsensical ]

The aim of this task is to improve the transcription of our Dutch Automatic Speech
Recognition (ASR) system by removing words from the text that do not add meaning.
Removing these ”disfluencies” is a time-consuming task for transcribers, and automat-
ing this process should benefit freelancers in the future. To evaluate any changes made
to the system, we need examples that an expert has cleaned up well. This is where this
task comes in.

The Excel (or Sheets) file contains two columns with identical sentences in each
column. There is no audio available, so all judgments must be based on the text alone.
Also, only a single sentence is available, so you cannot use contextual information to
make a judgment.

Example of the Excel/Sheets file:

Original Sentence Sentence to be edited

Een heel andere vertrekpunt die nou ja
denk ik.

Een heel andere vertrekpunt die nou ja
denk ik.

Your goal is to remove words from the sentence in the second column to make
it as readable as possible. The resulting sentence does not necessarily have to be
grammatically correct. Some sentences may already be incorrect or incomprehensible
in the original. If no improvements are possible, it is allowed to leave the sentence as
it is without any changes.

Example of a cleaned-up sentence:

Original Sentence Sentence to be edited

Een heel andere vertrekpunt die nou ja
denk ik.

Een heel andere vertrekpunt denk ik.
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The following page contains examples of errors that you may encounter and how
to address them. Try to follow them as closely as possible. The examples are not
exhaustive, so use your own judgement. But first, here are some general do’s and
don’ts:

Do:

• Delete words that seem unnecessary (even if the result is ungrammatical)

• Keep sentences as they are in the original if they appear correct

• Keep sentences as they are in the original if they are incomprehensible

• Make as few changes as possible (small changes are preferred over large ones)

Don’t:

• Replace or insert words

• Rearrange words in the sentence

• Add or remove punctuation marks

• Change the spelling of the words, i.e., lowercase to uppercase or vice versa, or
correct spelling

All errors you encounter can be caused either by the speaker or by the ASR system.
Below, we categorize different errors based on these causes. Be aware that in practice,
they can overlap, making it difficult to identify and/or correct them.

Human errors

The entire task revolves around these human errors. The following sections provide
examples of four types of disfluencies.

Filler words

When we speak, we tend to include unnecessary words in our sentences, such as ’uh’ or
’um.’ These words serve as pauses to organize our thoughts or can add subtle nuances
to our expressions. However, in written language, these words can disrupt the flow of
the text and are often better left out.

Examples

The words ‘zeg maar’ (like) in example A are filler words and can be removed.
Note that the comma after ‘maar,’(but) is considered the same disfluency. Beware
that example B contains multiple words that can be considered disfluent. They can
all be removed to make the resulting sentence concise and understandable. Be careful!
Sometimes a word can indicate nuance and be important for the sentence. The word
‘gewoon’(just) in this sentence could also be important.

Example C shows a sentence that does not grammatically end correctly. This is
acceptable. You could also remove all the words from that sentence and end with just
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Original sentence Improved sentence

A “Ik ging naar de winkel zeg maar,
om appels te kopen”

“Ik ging naar de winkel om appels te
kopen”

B. “Dus ik zei zo van ga gewoon je
kamer opruimen”

“Ik zei ga gewoon je kamer opruimen”

C. “Als je nou eens eventjes zeg maar
opschieten””

“Als je nou eens eventjes opschieten”

D. “Ik dacht hmm dat kan best” “Ik dacht dat kan best”
E. “Ik ga dan ookeven naar de winkel” “Ik ga dan ook even naar de winkel”

‘Opschieten’ (hurry up), but that deviates too much from the original. Again, note the
nuance in the word ‘eventjes’ (just).

In example D, we see a slightly different word. ‘Hmm’ is often used to verbalize our
thoughts; if the verbalization is unnecessary, we can see it as disfluent and remove it.
Be careful again when the word adds nuance to the sentence.

For all examples, feel free to use your instincts to make these kinds of decisions.

In example E, ‘ook’ (also) is a possible filler word, but we cannot remove it. It is
difficult to assess whether ‘ook’ is a filler word in this sentence. Only remove it if you
are very sure. For example, if the sentence also included the word ‘gerust’ to become:
‘Ik ga dan ook gerust even naar de winkel’. In this case, it is more apparent that ‘ook’
is a filler word.

Repetitions

Another way to give ourselves time to think or formulate our message is by repeating
words. This is very common in speech.

Examples

Original sentence Improved sentence

A “Ik ik ik, wil graag een appel” “Ik wil graag een appel”
B. “Dat denk ik ook en en misschien wel

meer”
“Dat denk ik ook en misschien wel
meer”

Each word can be repeated one or more times. Make sure to remove all repeated
words except for one.

Repairs

Sometimes, we use the wrong sentence or word and realize the mistake. We can correct
it by saying what we meant. Both the initial mistake and the additions before the
repair are considered disfluent. We always consider the last element as the repair and
the first element as the disfluency.

Examples
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Original sentence Improved sentence

A “Ik ging naar de winkel ik bedoel su-
permarkt om appels te kopen”

“Ik ging naar de supermarkt om appels
te kopen”

B. “Welke type mensen professionals
hebben we nodig?”

“Welke type professionals hebben we
nodig?”

C. “Als je opgroeide in een klein plekje
zeg maar dorpje”

“Als je opgroeide in een dorpje”

D. “dat kunnen we gebruiken voor en-
ergiebesparing besparende maatrege-
len”

“dat kunnen we gebruiken voor be-
sparende maatregelen”

The most important thing in the above examples is that repairs can be preceded by
a filler word or a vocalization of recognizing the mistake. In Example A, the speaker
adds ‘ik bedoel’ (I mean) to recognize that they made a mistake and initiate the repair.
In Example B, this filler word is not pronounced. Example C shows another possible
filler word.

Example D shows that it is common for only the last part of compound words to
be modified. We stick to the rule of repairs: “the last element is always the repair, and
the first element is the disfluency.”

Restart

A restart is essentially similar to a repair, but it can sometimes be harder to recog-
nize. These disfluencies occur when a speaker restarts their sentence because they have
changed their mind or want to restructure their message.

Examples

Original sentence Improved sentence

A “ Ik wilde gister we gingen naar de
dierentuin”

“we gingen naar de dierentuin”

B. “Als je opgroeide in als je woont in
de buurt van een stad”

“als je woont in de buurt van een stad”

Note that each of the above-mentioned human errors can occur simultaneously. For
example, a part of a sentence can be repaired, and in that repair, there may be fillers
and repetitions. This makes the task rather complex and sometimes messy. Try to do
as much as possible to improve the text, of course, by only removing words.

ASR-Specific Errors

Unfortunately, our ASR system cannot recognize every word correctly. In some cases,
the system may transcribe a different word instead of the correct one. This means that
most sentences in the data contain one or more ASR errors. If these errors fall within
the patterns of human disfluencies, then they should be removed. However, do not
replace incorrect words with correct ones, even if you know what they should be.

Examples In example A, it is likely said: “Ja, maar wat goed van je!” (Yes, but how
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Original sentence Improved sentence

A “Ja, maar goed wat je!” “Ja, maar goed wat je!”
B. “Te liggen, ja, wat mij opvalt is dat

zij op het vlak naast elkaar hé focus-
groepen behandeling nodig.”

“Te liggen, wat mij opvalt is dat zij op
het vlak naast elkaar hé focusgroepen
behandeling nodig.”

C. “zeker voor die jongens, dr zijn er ook
een aantal design , heel snel doorge-
stroomd”

“zeker voor die jongens, dr zijn er ook
een aantal heel snel doorgestroomd”

D. “Hij verbood op een gegeven moment
de verkoop van losse melk zo uit uit
elkaar.”

“Hij verbood op een gegeven moment
de verkoop van losse melk zo uit
elkaar.”

good of you! ). To solve this, we would need to replace the word ‘wat’ (what) with
‘van’(of ), but that is not allowed.

Example B shows a slightly more complex sentence. The beginning is not clear
what it means or refers to. It also doesn’t seem to add much to the rest of the sentence.
However, ‘te liggen’ (to lay) cannot be removed. The part that says ‘hé focusgroepen’
(Hey focusgroups! ) could also be an ASR error. But since it’s not clear how this
sentence is intended, we have to leave it in. However, the word ‘ja’(yes) seems to be a
filler word and can be removed.

Example C shows that, with some phonetic analysis, it is sometimes possible to
deduce what may have been said. Instead of the predicted word ‘design’ (design), the
intended words might have been: ‘die zijn’ (those are). This fits well in the sentence.
However, in that case, it could also be a disfluency, namely a reformulation of ‘dr zijn’
(there are). Be careful with such deletions, be very sure that it is a disfluency. When
in doubt, leave the sentence as it is.

In example D, the sentence ends in a way that does not fit with the rest. Despite
being nonsensical, we cannot remove it! None of the human disfluencies provide a
reason to remove the ending. However, in the nonsensical part, a disfluency can be
recognized (a repetition), don’t forget to check for this.

In conclusion

A final note on the data. We have compiled the data to reflect various real-life automatic
transcriptions. This means that there are also rather nonsensical sentences. They may
be abruptly cut off or appear to be part of another sentence that is not visible in the
text. This was done on purpose, and it is up to your own judgment to see if there is
something sensible to extract from it.

Some speakers make a lot of speech errors and repeatedly correct themselves. Check-
ing the text a second time after removing a disfluency can help find more disfluencies.
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C.2 Annotation Guidelines - NL

Het doel van deze taak is de transcriptie van ons Nederlandse automatische spraakherken-
ningssysteem (ASR) te verbeteren door woorden uit de tekst te verwijderen die geen
betekenis toevoegen. Het verwijderen van deze “disfluenties” is een tijdrovende taak
voor transcribisten, en het automatiseren van dit proces zou freelancers in de toekomst
ten goede moeten komen. Om eventuele wijzigingen in het systeem te kunnen beoorde-
len, hebben we voorbeelden nodig die een expert goed heeft opgeschoond. Hier komt
deze taak om de hoek kijken.

Het Excel (of Sheets) bestand bevat twee kolommen met identieke zinnen in elke
kolom. Er is geen audio beschikbaar, dus alle oordelen moeten alleen gebaseerd zijn
op de tekst. Ook is alleen een enkele zin beschikbaar, dus je kunt geen contextuele
informatie gebruiken om een oordeel te vellen.

Voorbeeld van het Excel/Sheets bestand:

Oorspronkelijke zin Zin om te verbeteren

Een heel andere vertrekpunt die nou ja
denk ik.

Een heel andere vertrekpunt die nou ja
denk ik.

Jouw doel is om woorden uit de zin van de tweede kolom te verwijderen om de zin zo
leesbaar mogelijk te maken. De resulterende zin hoeft niet noodzakelijk grammaticaal
correct te zijn. Sommige zinnen kunnen in het origineel al onjuist of onbegrijpelijk zijn.
Als er geen verbeteringen mogelijk zijn is het toegestaan de zin te laten zoals die is,
zonder wijzigingen.

Voorbeeld van een opgeschoonde zin:

Oorspronkelijke zin Zin om te verbeteren

Een heel andere vertrekpunt die nou ja
denk ik.

Een heel andere vertrekpunt denk ik.

De volgende pagina bevat voorbeelden van fouten die u kunt tegenkomen en hoe
u die kunt aanpakken. Probeer deze zo goed mogelijk te volgen. De voorbeelden zijn
niet allesomvattend, dus gebruikt uw eigen inzicht. Maar eerst zijn er enkele algemene
do’s en don’ts:

Do:

• Woorden schrappen die overbodig lijken (zelfs als het resultaat ongrammaticaal
is)

• Zinnen als origineel behouden als ze correct lijken

• Zinnen als origineel behouden als ze onbegrijpelijk zijn

• Wijzig zo weinig mogelijk (kleine wijzigingen hebben de voorkeur boven grote)

Don’t:
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• Woorden vervangen of invoegen

• Woorden in de zin herschikken

• Leestekens toevoegen of verwijderen

• De schrijfwijze van de woorden veranderen, d.w.z. kleine letters in hoofdletters
en omgekeerd, of spelling verbeteren

Alle fouten die u tegenkomt kunnen ofwel door de spreker worden veroorzaakt, ofwel
door het ASR-systeem. Hieronder categoriseren we verschillende fouten aan de hand
van deze oorzaken. Wees u ervan bewust dat ze in de praktijk door elkaar kunnen
lopen, en dat het daarom moeilijk kan zijn ze te identificeren en/of te verbeteren.

Menselijke fouten

De hele taak draait om deze menselijke fouten. De volgende secties geven voorbeelden
van vier type disfluenties

Vulwoorden

Als we spreken, hebben we de neiging onnodige woorden in onze zinnen op te nemen,
zoals ’eh’ of ’ehm’. Deze woorden dienen als pauzes om onze gedachten te ordenen of
kunnen subtiele nuances aanbrengen in onze uitdrukkingen. In geschreven taal kunnen
deze woorden echter de doorstroming van de tekst verstoren en kunnen ze vaak beter
worden weggelaten.

Voorbeelden

Oorspronkelijke zin Verbeterde zin

A “Ik ging naar de winkel zeg maar,
om appels te kopen”

“Ik ging naar de winkel om appels te
kopen”

B. “Dus ik zei zo van ga gewoon je
kamer opruimen”

“Ik zei ga gewoon je kamer opruimen”

C. “Als je nou eens eventjes zeg maar
opschieten””

“Als je nou eens eventjes opschieten”

D. “Ik dacht hmm dat kan best” “Ik dacht dat kan best”
E. “Ik ga dan ookeven naar de winkel” “Ik ga dan ook even naar de winkel”

De woorden ‘zeg maar’ in voorbeeld A zijn vulwoorden en kunnen worden ver-
wijderd. Let op dat de komma achter ‘maar,’ wordt gezien als dezelfde disfluentie.
Merk op dat voorbeeld B meerdere woorden bevat die als disfluent kunnen worden
beschouwd. Ze kunnen allemaal worden verwijderd om de resulterende zin beknopt
en begrijpelijk te maken. Pas wel op! Soms kan een woord juist nuance aangeven en
mogelijk belangrijk voor de zin. Het woord ‘gewoon’ in deze zin zou ook belangrijk
kunnen zijn.

Voorbeeld C toont een zin die niet grammaticaal correct eindigt. Dit wordt geac-
cepteerd. Je zou ook alle woorden uit die zin kunnen schrappen en alleen eindigen met:
‘Opschieten’, maar dat wijkt te veel af van het origineel. Zie ook weer de nuance in het
woord ‘eventjes’.
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In voorbeeld D zien we een iets ander woord. ‘Hmm’ kan vaak gebruikt worden
om onze gedachten te verbaliseren; als de verbalisatie overbodig is, kunnen we het als
disfluent zien en verwijderen. Pas weer op voor wanneer het woord nuance toevoegt aan
de zin. Voor alle voorbeelden geldt: Gebruik gerust wat instinct om dit soort besluiten
te maken.

In voorbeeld E is ‘ook’ een mogelijk vulwoord maar kunnen we niet verwijderen.
Met ‘ook’ is het lastig is om in te schatten of dit een vulwoord is. Verwijder het alleen
als je echt heel zeker bent. Door bijvoorbeeld ‘gerust’ aan de zin toe te voegen: ‘Ik
ga dan ook gerust even naar de winkel’. In dit geval is het duidelijker dat ‘ook’ een
vulwoord is.

Herhalingen

Een andere manier om onszelf tijd te geven om na te denken of onze boodschap te
formuleren is door woorden te herhalen. Dit is heel gebruikelijk in spraak.

Voorbeelden

Oorspronkelijke zin Verbeterde zin

A “Ik ik ik, wil graag een appel” “Ik wil graag een appel”
B. “Dat denk ik ook en en misschien wel

meer”
“Dat denk ik ook en misschien wel
meer”

Elk woord kan één of meerdere keren herhaald worden. Zorg ervoor dat je alle
herhaalde woorden verwijdert, behalve één.

Reparatie

Soms gebruiken we een verkeerde zin of een verkeerd woord en beseffen we de fout.
We kunnen het corrigeren door te zeggen wat we bedoeld hadden. Zowel de aanvanke-
lijke fout als de toevoegingen vóór de reparatie worden als disfluent beschouwd. We
beschouwen het laatste element altijd als de reparatie, en het eerste element als de
disfluentie.

Voorbeelden

Oorspronkelijke zin Verbeterde zin

A “Ik ging naar de winkel ik bedoel su-
permarkt om appels te kopen”

“Ik ging naar de supermarkt om appels
te kopen”

B. “Welke type mensen professionals
hebben we nodig?”

“Welke type professionals hebben we
nodig?”

C. “Als je opgroeide in een klein plekje
zeg maar dorpje”

“Als je opgroeide in een dorpje”

D. “dat kunnen we gebruiken voor en-
ergiebesparing besparende maatrege-
len”

“dat kunnen we gebruiken voor be-
sparende maatregelen”
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Het belangrijkste in bovenstaande voorbeelden is dat de reparaties kunnen worden
voorafgegaan door een vulwoord of een vocalisatie van het herkennen van de fout. In
Voorbeeld A voegt de spreker ‘ik bedoel’ toe om te herkennen dat ze een fout hebben
gemaakt en de reparatie in te leiden. In Voorbeeld B is dit vulwoord niet uitgesproken.
Voorbeeld C toont een ander mogelijk vulwoord.

Voorbeeld D laat zien dat het voorkomt dan in samengestelde woorden alleen het
laatste deel wordt aangepast. We houden vast aan de vuistregel omtrent reparaties:
‘het laatste element is altijd de reparatie, en het eerste element de disfluentie’

Herstart

Een herstart lijkt in wezen op een reparatie, maar is soms moeilijker te herkennen.
Deze disfluencies treden op wanneer een spreker opnieuw begint met zijn zin omdat zij
van gedachten is veranderd of de boodschap wil herstructureren.

Voorbeelden

Oorspronkelijke zin Verbeterde zin

A “ Ik wilde gister we gingen naar de
dierentuin”

“we gingen naar de dierentuin”

B. “Als je opgroeide in als je woont in
de buurt van een stad”

“als je woont in de buurt van een stad”

Merk op dat elk van de bovengenoemde menselijke fouten tegelijkertijd kan voorkomen.
Zo kan een deel van een zin gerepareerd worden, en in die reparatie zitten vervolgens vul-
woorden en herhalingen. Dit maakt de taak nogal complex en soms rommelig. Probeer
zoveel mogelijk te doen om de tekst te verbeteren, uiteraard door alleen woorden te
verwijderen.

ASR-Specifieke fouten

Helaas kan ons ASR-systeem niet elk woord correct herkennen. In sommige gevallen
kan het systeem een ander woord transcriberen in plaats van het juiste woord. Dit
betekent dat de meeste zinnen in de data één of meer ASR-fouten bevatten. Als deze
fouten binnen de patronen van menselijke disfluenties vallen, dan moeten ze verwijdert
worden. Vervang foutieve woorden echter niet door correcte, ook al weet u wat ze
zouden moeten zijn.

Voorbeelden

In voorbeeld A wordt waarschijnlijk gezegd: “Ja, maar wat goed van je!”. Om dit
op te lossen zouden we het woord ”wat” moeten vervangen door ‘van’, en dat mag niet.

Voorbeeld B toont een iets complexere zin. Het begin is niet duidelijk wat het moet
betekenen of waarnaar het verwijst. Het lijkt ook niet veel toe te voegen aan de rest
van de zin. Toch mag je ”te liggen” niet verwijderen. Het gedeelte waar staat ‘hé
focusgroepen’ zou ook een ASR-fout kunnen zijn. Maar omdat het niet duidelijk is hoe
deze zin bedoeld is, moeten we het er in laten. Het woord ‘ja’ lijkt echter een vul woord
en mag verwijderd worden.
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Oorspronkelijke zin Verbeterde zin

A “Ja, maar goed wat je!” “Ja, maar goed wat je!”
B. “Te liggen, ja, wat mij opvalt is dat

zij op het vlak naast elkaar hé focus-
groepen behandeling nodig.”

“Te liggen, wat mij opvalt is dat zij op
het vlak naast elkaar hé focusgroepen
behandeling nodig.”

C. “zeker voor die jongens, dr zijn er ook
een aantal design , heel snel doorge-
stroomd”

“zeker voor die jongens, dr zijn er ook
een aantal heel snel doorgestroomd”

D. “Hij verbood op een gegeven moment
de verkoop van losse melk zo uit uit
elkaar.”

“Hij verbood op een gegeven moment
de verkoop van losse melk zo uit
elkaar.”

Voorbeeld C laat zien dat, met wat fonetisch analyseren, het soms best te herleiden
valt wat er mogelijk gezegd is. In plaats van het voorspelde woord ‘design’ kan heel
goed ‘die zijn’ uitgesproken zijn. Dit past goed in de zin. Echter, in dat geval kan ook
nog eens een disfluentie zijn, namelijk een herformulering van ‘dr zijn’. Pas wel op met
dit soort verwijderingen, wees heel zeker dat het disfluentie is. Bij twijfel, de zin laten
zoals het is.

In voorbeeld D eindigt de zin op een manier dat niet past bij de rest. Ondanks dat
het onzinnig is, kunnen we het niet verwijderen! Geen van de menselijke disfluenties
geeft reden om dit te verwijderen. Echter in het onzinnige deel, is wel een disfluentie
te herkennen (een herhaling), vergeet dit niet te controleren.

Tot slot

Een laatste opmerking over de data. We hebben de data zo samengesteld dat ze ver-
schillende automatische transcripties uit de praktijk weerspiegelen. Dat betekent dat
er ook zinnen zijn die nogal onzinnig zijn. Ze kunnen plotseling worden afgekapt of
deel lijken uit te maken van een andere zin die niet zichtbaar is in de tekst. Dit is met
opzet gedaan en het is aan uw eigen oordeel om te zien of er iets zinnigs uit te halen
valt.

Sommige sprekers maken veel spreek fouten en herstellen keer op keer. De tekst een
tweede keer controleren na een disfluencie te hebben verwijderd, kan helpen om meer
disfluenties te vinden.
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Hyperparameter tuning results

Table D.1: The full results of the hyperparameter tuning of LS2 tested on
Amber-val.

Learning Batch Warm-up Fluent Disfluent
Rate Size steps Precision Recall F1-score Precision Recall F1-score

3e-6 8 500 0.93 0.97 0.95 0.76 0.53 0.62
3e-6 8 1000 0.92 0.97 0.95 0.74 0.49 0.59
3e-6 16 500 0.93 0.97 0.95 0.74 0.53 0.62
3e-6 16 1000 0.93 0.97 0.95 0.75 0.54 0.63
3e-6 32 500 0.93 0.97 0.95 0.73 0.54 0.62
3e-6 32 1000 0.93 0.97 0.95 0.74 0.53 0.62
3e-6 64 500 0.93 0.97 0.95 0.72 0.55 0.62
3e-6 64 1000 0.93 0.97 0.95 0.72 0.55 0.62

3e-5 8 500 0.93 0.99 0.96 0.88 0.53 0.66
3e-5 8 1000 0.92 0.98 0.95 0.82 0.47 0.60
3e-5 16 500 0.92 0.99 0.95 0.84 0.49 0.62
3e-5 16 1000 0.92 0.99 0.95 0.85 0.48 0.62
3e-5 32 500 0.93 0.98 0.95 0.79 0.53 0.64
3e-5 32 1000 0.93 0.98 0.95 0.79 0.52 0.63
3e-5 64 500 0.93 0.97 0.95 0.75 0.54 0.63
3e-5 64 1000 0.93 0.98 0.95 0.77 0.52 0.62

Table D.2: The full results of the hyperparameter tuning of CGN tested on
the CGN validation data. Note that no warm-up step tuning was done, as we
saw little to no effect on the LS2 tuning and to save computation

Learning Batch Fluent Disfluent
Rate Size Precision Recall F1-score Precision Recall F1-score

3e-6 8 0.96 0.99 0.98 0.94 0.77 0.85
3e-6 16 0.96 0.99 0.98 0.94 0.76 0.84
3e-6 32 0.96 0.99 0.98 0.93 0.75 0.83
3e-6 64 0.96 0.99 0.97 0.94 0.73 0.82
3e-5 8 0.97 0.99 0.98 0.95 0.79 0.86
3e-5 16 0.97 0.99 0.98 0.93 0.80 0.86
3e-5 32 0.97 0.99 0.98 0.91 0.82 0.86
3e-5 64 0.97 0.99 0.98 0.93 0.80 0.86
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