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Abstract

This thesis investigated the effectiveness of Machine Translation Quality Estimation
(MTQE) models, explicitly focusing on Dutch-English translation pairs, using synthetic
datasets tailored to challenge these models with various error types. This study employs
synthetic dataset generation techniques using large language models, GPT-3.5-turbo
and GPT-4-turbo, that introduce controlled common machine translation errors such
as inaccuracies in named entities, numbers, and negation.

The synthetic datasets were utilized to assess the performance of several multilin-
gual MTQE models: CometKiwi, TransQuest, LASER, and LaBSE. Each model was
evaluated based on its ability to detect and quantify introduced errors. Results indicate
varied sensitivity to different error types across models, highlighting specific strengths
and weaknesses in the context of synthetic distortions. For instance, some models
showed higher precision in detecting named entity errors, while others were better at
identifying number discrepancies.
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Chapter 1

Introduction

Machine Translation (MT) is an essential component of computational linguistics aimed
at converting text from one language to another using computer models. The historical
development of MT spans from rule-based systems to the current state-of-the-art neural
machine translation (NMT) systems (Sutskever et al., 2014). These advancements have
significantly enhanced the fluency and contextual accuracy of translations, making MT
integral to global communication, content localization, and information accessibility
across language barriers (Koehn, 2020).

As the reliance on Machine Translation (MT) grows, so does the necessity for robust
Machine Translation Quality Estimation (MTQE). MTQE is a subfield that focuses on
predicting the quality of machine-translated text without reference translations, offer-
ing a crucial feedback mechanism for improving MT systems and their applications
in real-world scenarios (Specia and Shah, 2018) (See table 1.1 for an example). His-
torically, the evaluation of translated texts depended on reference translations, which
required significant human effort and expertise to produce (Hutchins and Somers, 1992).
These reference translations, often created by bilingual experts, were used as a standard
against machine-translated text comparisons. While providing a measurable standard
for quality, this approach was costly, time-consuming, and limited in its ability to
measure alongside the fast advancements in MT technologies.

Type Translation QE Score

Source “Dit jaar zal asbest meer dan 3 000 mensen
in het Verenigd Koninkrijk doden”

Machine Translation “This year, asbestos will kill more than 3000
people in the United Kingdom.”

0.90

Distorted Machine Translation “This year, asbestos will kill more than 3000
people in New Zealand.”

0.75

Table 1.1: Example of MTQE from Dutch Source Sentences to English Target Sen-
tences. (The QE scores are determined by CometKiwi)

Traditional evaluation methods like BLEU scores (Papineni et al., 2002), while use-
ful, often fall short in capturing the nuanced grammatical and contextual appropriate-
ness of translated texts (Callison-Burch et al., 2006). The limitations of these methods
become particularly evident as they struggle to reflect the true semantic and syntactic
quality of translations in the absence of identical lexical choices between the reference
and the translated text (Doddington, 2002). Consequently, there was a need for more
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2 CHAPTER 1. INTRODUCTION

advanced and nuanced quality assessment methods that could operate independently
of human-made reference texts.

MTQE addresses these limitations by employing models that evaluate translation
quality based on linguistic features and error patterns rather than direct comparison to a
reference text (Specia and Shah, 2018). This shift reduces the dependency on exhaustive
reference translations. It also aligns more closely with the dynamic and varied use of
language in real-world scenarios. Therefore, it enhances machine translation’s practical
utility in global communication.

Recent developments in AI and machine learning, particularly the introduction
of transformer models (Vaswani et al., 2017) and large language models (LLMs) like
GPT-3.5 and GPT-4, have opened new doors for enhancing MTQE (Brown et al.,
2020). These models have demonstrated exceptional capabilities in generating human-
like text and are used in this project to create synthetic datasets with specific error
patterns. Such datasets can serve as challenge sets to evaluate the efficiency of various
MTQE models like CometKiwi (Rei et al., 2022), TransQuest (Ranasinghe et al., 2020),
LASER (Artetxe and Schwenk, 2019), and LaBSE (Feng et al., 2020) against controlled
error categories.

The challenge lies not only in accurately assessing translation quality but also in
understanding the specific limitations and strengths of different MTQE models when
confronted with systematically introduced errors. This understanding could lead to sig-
nificant improvements in MTQE systems, ensuring they are more reliable and effective
across diverse linguistic contexts.

1.1 Related Works

The rapid growth of digital communications and reliance on MT highlights the urgent
need for linguistically accurate translations (Koehn, 2010). With the rise of demand for
real-time translation across different industries, the key challenge is to guarantee that
these translations are devoid of accuracy errors that could compromise the integrity of
information. This research is motivated by the need to enhance MT techniques to detect
and address accuracy-related errors, thereby ensuring that MT systems consistently
produce precise translations.

Quality Estimation (QE) is key in tackling these issues and offers a mechanism to
evaluate translations dynamically without the need for reference texts. This method is
beneficial when quick decision-making is critical and traditional translation evaluation
methods need to be faster or more manageable Specia and Shah (2018). However, de-
spite significant advancements in natural language processing (NLP) technologies that
have enhanced the capabilities of QE systems, the models still struggle with accurately
identifying and quantifying errors (Sharou and Specia, 2022).

The Workshop on Machine Translation (WMT) has contributed significantly in the
advencement of the MTQE field. WMT is an annual academic event that emphasizes
the evaluation of machine translation systems through comparative testing and bench-
marking. WMT was established due to the growing need within the computational
linguistics community to systematically compare the performance of machine transla-
tions across different language pairs and translation approaches. Ever since, they have
contributed significantly to the field by providing datasets and benchmarks.
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1.1.1 Evolution of MTQE in WMT

During the period from 2016 to 2018, there was a significant change at WMT as the
organization started to adopt and integrate neural network-based methods for MTQE
(Bojar et al., 2016; Specia et al., 2018). This shift was primarily influenced by the adop-
tion of deep learning technologies, which introduced new capabilities and methodologies
to the field of machine translation and its evaluation.

Deep Learning Integration

The integration of deep learning in MTQE tasks highlighted by WMT during these
years was a key movement from traditional feature-based quality estimation models.
Traditional models heavily relied on manually crafted features, such as lexical, syntactic,
and semantic information extracted from both the source text and its translation feature
sets (Koehn, 2010). However, these models often struggled with capturing deeper
contextual meanings and were limited by the fixed nature of their feature sets.

In contrast, neural approaches, particularly those employing deep neural networks,
have the ability to learn these features implicitly from large amounts of data. This
capability allows them to better understand and interpret the complexities and nuances
of language, which are crucial for assessing translation quality accurately. Models such
as CNNs (Kalchbrenner and Blunsom, 2013) and RNNs (Cho et al., 2014) , and later
transformers (Vaswani et al., 2017) began to be explored and adopted for their superior
performance in capturing sequential data and their ability to maintain context over
longer texts (Specia et al., 2018)).

Shared Tasks and Benchmarks

A significant contribution of WMT during this period was the establishment and ad-
vancement of shared tasks specifically focused on MTQE. These tasks provided re-
searchers with a platform to test and benchmark their models using standardized
datasets annotated with quality scores. For instance, the introduction of sentence-level
and word-level quality estimation tasks allowed a more nuanced analysis of transla-
tion output, allowing researchers to pinpoint specific areas of strength and weakness in
translation models (Fonseca et al., 2019).

These benchmarks were essential not only for advancing the state of the art but
also for understanding how different models performed under similar conditions. The
datasets used in these tasks often included a variety of language pairs and translation
domains, providing a comprehensive testing ground for new MTQE methodologies.

1.1.2 Innovations and Outcomes

The advancements in MTQE during this period led to several key innovations. For
example, the use of attention mechanisms within neural models provided a way to
focus on specific parts of the input when predicting quality, which was particularly
useful for identifying mistranslations or subtle errors that could impact the overall
translation quality (Tiedemann and Scherrer, 2018). Additionally, the use of transfer
learning and multi-task learning methods has started to become more common. This
involves adapting models trained on similar tasks, like machine translation or text
summarization, to improve the quality estimation process and make their performance
and applicability more effective.
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1.1.3 Recent Findings

The WMT 2022 Quality Estimation shared task revealed some critical challenges that
MTQE models continue to face (Fomicheva et al., 2022). These include the accurate
handling of named entities and the prediction of semantic errors. These issues are
particularly apparent in low-resource languages, where less training data is available.
Additionally, the task highlighted a critical need to improve the precision of MTQE
models in assessing translation quality, not only at the overall text level but also at the
word and sentence levels. This advancement is crucial for identifying subtle linguistic
differences that can significantly impact translation quality, highlighting the ongoing
need for advanced model training and evaluation methodologies.

1.2 Motivation

This research is mainly motivated to generate synthetic datasets that simulate a variety
of accuracy errors. This approach allows for a controlled yet comprehensive evaluation
of QE models and provides deep insights into their effectiveness across different accuracy
errors.

In exploring the effectiveness of QE, this study will utilize a Dutch-English language
pair as the MT output. High-resource languages often benefit from extensive data and
research, providing robust translation models that are well-understood (Zoph et al.,
2016). In contrast, Dutch English, being relatively less explored, might reveal new
challenges and insights. This deviation could lead to broader applications and a deeper
understanding of QE methodologies, especially in how they handle low-resource or
less-common language scenarios (Guzmán et al., 2019).

While WMT has significantly contributed to advancements in MTQE, it has pri-
marily focused on either high-resource language pairs such as English-Chinese or very
low-resource language pairs such as English-Gujarati. My study proposes a novel ex-
periment using challenge sets that include systematic errors to test MTQE models
specifically for the Dutch-English pair, which is not currently included in the WMT
datasets. This approach not only addresses a gap in the research but also enhances
our understanding of MTQE across different linguistic contexts. By studying these
developments and applying similar neural network approaches to the Dutch-English
language pair, my thesis aims to explore whether the insights gained from previous
language pairs can be effectively translated to less commonly studied language pairs.

1.3 Aims and Research Question

This research aims to deepen the understanding of how MTQE performs and its
strengths and weaknesses. This project is particularly focused on the capability of
MTQE models to handle translations that have been intentionally distorted to simu-
late common translation errors.

The overall research question guiding this study is:

How effectively can current Machine Translation Quality Estimation mod-
els identify and quantify different types of translation errors introduced by
advanced large language models in a Dutch-English dataset?
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This central question breaks down into several sub-questions to address the various
facets of the research:

1. Can we utilize generative models, such as GPT-3.5 and GPT-4, to create challenge
test sets by deliberately altering sentences to include specific error patterns?

2. Which QE model—CometKiwi, TransQuest, LASER, or LaBSE—performs best
when confronted with these synthetically altered test sets?

3. Are there specific error patterns that consistently challenge the QE models, po-
tentially highlighting areas for future improvement?

In the context of the second subquestion of my research, the term ’best’ refers to the
effectiveness and efficiency of an MTQE model in accurately identifying and quantifying
the translation errors embedded within the test sets. This assessment is multifaceted
and includes several performance dimensions, such as accuracy, consistency, granularity,
and robustness. This evaluation helps identify the most reliable and helpful model in
real-world applications where diverse and complex translation errors occur frequently.

1.4 Thesis Outline

The following chapter 2 provides the background for MTQE and introduces important
topics related to MTQE. Chapter ?? is dedicated to related work in the field of MTQE
and the similarities and differences between this project and earlier research. Chapter 3
describes the methods employed in this research, detailing the process of creating syn-
thetic datasets and outlining the QE models applied during the experiments. Chapter
4 presents the core of the experiments. This includes a description of the dataset, the
results obtained from the experiments, and an extensive error analysis. Lastly, chapter
5 discusses the implications of the findings, shares limitations to the study, reflects on
the research question, and mentions future possibilities in the MTQE field.
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Chapter 2

Theoretical Framework

In this chapter, several essential topics will be explored to deepen the understand-
ing of my thesis. The discussion begins with the significant advancements in NMT,
highlighting its development and impact. This is followed by an examination of the
common critical errors encountered in MT. Various evaluation methods of MT are then
introduced, emphasizing how these approaches assess translation accuracy and fluency.
Lastly, the concept of challenge sets is explained, highlighting their utility in enhancing
MTQE processes.

2.1 Neural Machine Translation

Although NMT models were researched between the ’80s and ’90s (Rumelhart et al.,
1986; LeCun et al., 1989; Lecun et al., 1998), computational complexity and data
scarcity have made it impossible to implement neural methods for MT during that pe-
riod (Koehn, 2020). However, around 2013 and 2014, a return in interest led researchers
to experiment with end-to-end NMT models. These models included convolutional neu-
ral networks (CNN) (Kalchbrenner and Blunsom, 2013) and recurrent neural networks
(RNN) (Cho et al., 2014; Sutskever et al., 2014).

In more detail, these models implemented what is known as encoder-decoder archi-
tectures. The encoder processes the input sentence from a source language, transform-
ing it into a dense vector representation. The decoder then uses this representation
step by step to generate the output sentence in the target language. However, tradi-
tional RNNs and CNNs faced challenges with longer sentences because they relied on
encoding the entire input sequence into a single fixed-length vector, which could lead
to information loss over long distances (Bahdanau et al., 2014).

Bahdanau et al. (2014) addressed this limitation by proposing an encoder-decoder
model enhanced by an attention mechanism. This mechanism allows the model to focus
on different parts of the input sequence while translating, effectively aligning segments
of the input text with their corresponding parts in the output text. This ’joint’ learning
aligns and translates input and output, which ensures that each word in the translation
closely corresponds to the appropriate words in the input, enhancing both accuracy and
fluency in MT.

The current State-of-the-art models for MT are transformers, which also utilize an
attention mechanism. This model, introduced by Vaswani et al. (2017), represents a
different approach, where it favors self-attention, positional encoding, and feed-forward
layers instead of recurrent layers that are used in the traditional NMT models. Since
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their development, transformers have become a foundation in many areas within NLP
due to their effectiveness and efficiency with long sequences.

The advancements in NMT have substantially improved the quality of machine
translation by enabling more accurate and contextually appropriate translations com-
pared to earlier methods (Vaswani et al., 2017). This leap in quality was due to the
models’ ability to better grasp the complexities of language, including idiomatic ex-
pressions and nuanced grammatical structures.

2.2 Critical Translation Errors

Despite these advancements, the quality of automatic translation still falls short in
many instances (Specia and Shah, 2018). State-of-the-art MT still lacks quality in
many aspects. The translations still include errors that can differ in severity from
minor to critical. These errors often carry risks. According to the taxonomy developed
by Sharou and Specia (2022), a critical error in machine translation occurs when the
meaning of the translated text is significantly different from the original text. This can
potentially result in misunderstandings and harmful consequences related to health,
safety, legal, reputation, religion, or finance for stakeholders. Therefore, mitigating
these risks by identifying and evaluating these errors is important.

Identifying and categorizing translation errors in machine translation presents a sig-
nificant challenge due to the subjective nature of language and its contextual nuances.
Achieving consensus on what constitutes an error and its severity can be particularly
difficult among linguists and translation experts, especially when texts include vari-
ability in languages, dialects, and cultural contexts because these can influence the
perception of what is considered an error. Lommel et al. (2014) highlights these chal-
lenges and stresses the importance of developing robust frameworks for systematic error
analysis and categorization.

Therefore, an essential resource is utilized to categorize the errors to align with
an important metric, called the Multidimensional Quality Metrics (MQM) (Lommel
et al., 2014). MQM was created as a response to the need for a more comprehensive
and nuanced approach to evaluating translation quality beyond traditional metrics. It
encompasses a broader range of quality dimensions such as fluency, accuracy, style,
terminology, and more. MQM provides a structured framework for assessing and im-
proving translation.

This thesis project mainly focuses on critical errors in accuracy as these contain the
direst risks for misunderstandings, and identifying these errors is of utmost importance
in MT. Sharou and Specia (2022) were one of the first to focus solely on critical errors
and created a taxonomy listing common critical errors found in MT. This taxonomy
will be used as a baseline for creating a challenge test set for the QE models applied
during my project. The following subsections will present some of these common er-
ror categories that will be included in my challenge set with references to the MQM
framework.

2.2.1 Accuracy

Accuracy mistranslations refer to the phenomenon where the target content does not
accurately represent the source content. This can include errors in the misinterpretation
of the meaning of a word, not translating a word/phrase from the source target, or
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simply adding gibberish to the target sentences (Sharou and Specia, 2022).

Zeman (2008) showed that accuracy errors, specifically mistranslations, accounted
for approximately 30-40% of all errors identified in MT outputs across various language
pairs. This high percentage underscores the critical nature of accuracy in MT and the
need for a refined QE model that is able to detect and mitigate these errors.

Below, I will introduce errors within this category that I have employed in my
dataset. Including these error patterns in the dataset will help us understand whether
QE models can detect these common MT errors.

Numbers

In this subcategory, the MT mistranslates a number, date, or time. For example,
the source target refers to article 5(2) but gets mistranslated to 7(3). This error can
cause misunderstandings that could lead to an unpleasant or major consequence such
as missing an important appointment, making financial errors, and more. Depending
on the end-user and stakeholders, this error can vary in criticality.Specia et al. (2019),
reported on a shared task including several teams using different MTQE models to
identify errors, and their results indicated that numerical errors occurred in about 15%
of sentences.

Named Entities

Errors within this subcategory introduce distortions of the named entities (people,
locations, and organizations) in the target sentence. For example, the source sentence
referring to Amsterdam gets mistranslated as Lisbon in the target sentence. Critical
errors introduce complete changes in the target sentence, making the named entity
unrecognizable. This error can have severe consequences for stakeholders when, for
instance, writing contracts. The same shared task reported by Specia et al. (2019)
also measured around 20% of named entity errors in the translated outputs, indicating
a need for a great sensitivity to identify and mark NER (named entitiy recorgnition)
errors by QE models.

Hallucinations

Hallucinations have been a widely researched phenomenon within MT (Ji et al., 2022;
Guerreiro et al., 2023). This subcategory refers to the random mistranslation of a
word within the source sentence into a completely different word that has no particular
relation with the source. See example:

• Target:“Conditions which may be attached to rights of use for numbers”

• Hallucination: “Conditions which may be attached to rights of use for bananas”

Usually, hallucinations have no similarity to the original meaning and are often out
of context in relation to the sentence. Guerreiro et al. (2023) relate the occurrence of
natural hallucinations to the lack of robustness in MT models, translation quality, and
inherent biases or flaws in the training data. For instance, translating out of English
tends to result in more hallucinations due to lower source contributions and potential
toxic patterns in low-resource language pairs.
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Müller et al. (2020) explicitly focused on the quantity of hallucinations appearances
in MT and found out that approximately 5-10% of sentences in low-resource language
pairs exhibited some form of hallucination, significantly impacting translation reliabil-
ity.

Negation/Sentiment

Errors involving negation or sentiment changes can critically alter the meaning of a
sentence. For instance, changing “The product is not safe for children” to “The prod-
uct is safe for children” introduces a dangerous misinterpretation. Such errors can
have significant implications, particularly in contexts involving safety, legal matters, or
medical information.

(Sennrich, 2017) analyzed MT outputs for negation handling and found that around
25% of sentences involving negation had errors, either by omitting or incorrectly trans-
lating the negation, leading to potentially dangerous misinterpretations.

Omission

Omission errors occur when essential information from the source text is missing in
the target text. This can lead to incomplete translations that fail to convey the full
meaning or critical details intended by the original content. For example:

• Target: “The software update includes security patches, performance improve-
ments, and new features.”

• Omission:“ The software update includes security patches and new features.”

In the MQM framework, omission is considered a critical error because it impacts the
completeness and accuracy of the translation, potentially leading to misunderstandings
or misinformation.

Lommel and Burchardt (2014) experimented with a detailed error analysis across
multiple MT systems and found that omission errors were particularly existent in com-
plex sentences, occurring in approximately 12-18% of cases, depending on the language
pair and MT model used.

Addition

Addition errors happen when extra information that was not present in the source text
is included in the target text. This can lead to misleading or confusing translations.
One specific type of addition error involves the introduction of non-existing words or
gibberish into the target sentence. These errors can significantly impact the readability
and comprehensibility of the translation, making it difficult for the reader to understand
the intended message. According to the MQM framework, addition is a significant error
as it introduces content that can distort the original message and affect the reliability
of the translation. For example:

• Target: “Please read the user manual before operating the device.”

• Addition: “Please read the user manual before operating the flibber device.”
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In this example, the addition of the non-existing word ”flibber” makes the sentence
confusing and potentially difficult to understand. Such errors can undermine the clarity
and professionalism of the translated text, leading to user frustration or misinterpre-
tation of important information. This highlights the critical nature of addition errors,
particularly when they involve non-existent or nonsensical terms.

Studies such as those by Bentivogli et al. (2016) and Lommel and Burchardt (2014)of-
ten include addition errors as part of a broader error analysis. These studies show that
addition errors, while less common than omission errors, still represent a significant
challenge, particularly in neural machine translation systems that tend to generate
fluent but occasionally overly verbose outputs.

2.3 Evaluation of Machine Translation

Evaluating the quality of MT is crucial for understanding and improving MT systems.
This section explores traditional evaluation methods and their differences.

2.3.1 Traditional Evaluations

Traditional methods for evaluating MT primarily involve comparing the translated text
to reference translations created by human experts. These methods have evolved over
time and include both manual and automatic evaluation techniques.

Manual Post-Editing

This method involves human translators reviewing and correcting machine-generated
translations. The changes made during this process provide insights into the types
and frequencies of errors made by the MT system. Although manual post-editing offers
high accuracy, it is time-consuming and expensive, making it impractical for large-scale
evaluations.

BLEU Score

The Bilingual Evaluation Understudy (BLEU) score, introduced by Papineni et al.
(2002), remains one of the most influential and widely used automatic evaluation met-
rics in machine translation. BLEU assesses the accuracy of machine-generated transla-
tions by comparing the overlap of n-grams—consecutive sequences of words—between
the translated text and one or more human-generated reference translations. The metric
calculates precision scores for n-grams of different lengths (usually up to 4-grams) and
combines them using a geometric mean, then applies a brevity penalty to discourage
overly short translations.

While BLEU is praised for its computational efficiency and its relatively good corre-
lation with human judgment at the corpus level, it exhibits several notable limitations.
Firstly, BLEU does not inherently assess the grammatical structure or correctness of
the translation; instead, it focuses primarily on the lexical matching of n-grams. This
can lead to high scores for translations that are lexically similar to the reference but
grammatically incorrect (Callison-Burch et al., 2006). Additionally, BLEU often fails
to evaluate the contextual appropriateness of translations, as it does not account for
the conveyed meaning, which can be particularly problematic in translations involving
idiomatic expressions or culturally specific content (Callison-Burch et al., 2006).
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The effectiveness of BLEU also varies significantly across languages. It is notably
less reliable for languages with rich morphology or flexible word order, such as Turkish,
Hungarian, or Finnish (Turhan and Oflazer, 2008). In these languages, literal n-gram
matches are less indicative of actual translation quality because such languages often
involve inflectional changes and can reorder words without altering the meaning.

Despite these limitations, BLEU continues to be a benchmark in the field due to its
ease of use and the ability to quickly compare different translation systems or track sys-
tem improvements over time (Papineni et al., 2002). However, researchers and develop-
ers are encouraged to use BLEU in conjunction with other metrics that can compensate
for its shortcomings, such as METEOR (Lavie and Denkowski, 2009), which considers
synonymy and grammatical alignment, or newer neural-based evaluation metrics that
can better capture semantic and syntactic translation qualities.

METEOR and TER

Building upon the work of BLEU, other automatic metrics like METEOR (Metric for
Evaluation of Translation with Explicit ORdering) Lavie and Denkowski (2009) and
Translation Edit Rate (TER) Snover et al. (2006) have been developed to address
some of the limitations identified in BLEU. Unlike BLEU, which primarily relies on
exact matches of n-grams, METEOR enhances evaluation by considering synonyms
and stemming, allowing for a more flexible matching of words. Additionally, METEOR
incorporates structural matching to reward translations that align well with the syntax
of the reference translations, using alignments based on exact, stem, synonym, and
paraphrase matches to produce a score (Denkowski and Lavie, 2012).

TER focuses on the edit distance, which is the minimum number of edits required
to change a translation into one of the reference translations. This includes insertions,
deletions, substitutions, and shifts of words in the translated text. TER is often used
as a complementary metric to BLEU in professional translation workflows because it
directly quantifies the effort required to post-edit machine-translated output into an
acceptable final product. This makes TER particularly valuable in scenarios where
post-editing efficiency is a critical performance indicator (Snover et al., 2006).

Despite the advancements these metrics represent, they still share a common lim-
itation with BLEU: reliance on reference translations. While METEOR’s use of syn-
onyms and morphological variations allows it to capture meaning to a greater extent,
and TER’s edit-based approach offers a direct measure of translation edit effort, both
metrics fundamentally depend on the quality and availability of reference translations
(Denkowski and Lavie, 2012). This dependence can introduce biases, especially in cases
where the reference translations do not fully reflect the target language’s idiomatic us-
age or cultural nuances.

Furthermore, both METEOR and TER may still struggle to fully capture the nu-
ances of language that go beyond the lexical or syntactic similarities, such as pragmatic
appropriateness and stylistic conformity (Denkowski and Lavie, 2012). These aspects
are often crucial in translations of literary texts or in localized marketing materials
where the emotional or cultural resonance of the language is important. To address
these nuanced requirements, newer evaluation frameworks and models that integrate
advanced linguistic and semantic analyses are increasingly considered.
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2.3.2 Quality Estimation

QE is an emerging field in machine translation that shifts away from traditional depen-
dency on reference translations for evaluating translation quality. Unlike metrics such
as BLEU, METEOR, and TER, which require high-quality human-translated texts for
comparison, QE techniques aim to predict the quality of translated texts directly, with-
out any reference Specia and Shah (2018). This approach is particularly valuable when
reference translations are unavailable, such as in real-time translation scenarios or for
languages with limited resources.

QE utilizes machine learning models that are trained on a dataset of source texts,
their translations, and quality annotations (not necessarily reference translations) Spe-
cia and Shah (2018). These models learn to predict quality scores on word-, sentence-,
and document-level based on features extracted from the source and translated texts,
including lexical, syntactic, and semantic features. Advanced QE models also incor-
porate features from pre-trained neural networks that understand deeper linguistic
contexts.

While QE is a promising approach, it faces several challenges. The accuracy of
QE is highly dependent on the quality and representativeness of the training data.
In cases where training data is biased or insufficient, QE models may not perform
well. Additionally, developing robust QE models that can handle the variability and
complexity of human languages across different contexts remains a significant challenge
(Specia et al., 2018).

2.4 MTQE Models

The following section will provide a description of the four MTQE models utilized for
the evaluation of the two challenge sets. The descriptions include a general overview,
their architecture, training and a section defining comparisons and differences between
the models.

2.4.1 CometKiwi

CometKiwi (Rei et al., 2022) combines the predictive capabilities of the COMET frame-
work (Rei et al., 2020) with the architectural advancements of OpenKiwi (Kepler et al.,
2019) to improve performance in MTQE. The model is designed to perform well in mul-
tilingual settings by utilizing comprehensive pretraining on diverse linguistic data to be
able to generalize on unseen language pairs. Its main goal is to deliver efficient and re-
liable QE for translation tasks without the need for reference translations. This makes
the model a great candidate for this project as I have a language pair that is often
non-existent in training data and am applying a reference-free approach even though
the original translations could be used as a ‘reference.’ I opted for a reference-free
approach to identify whether the CometKiwi and the other models in this chapter are
able to score the distorted translations independent of the original ones.

Architecture

CometKiwi employs a transformer-based encoder architecture that utilizes the pre-
trained XLM-Roberta model (See figure 2.1). This enables the encoding of source and
target text into high-dimensional vector spaces. The model architecture is improved
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by a scalar mix mechanism. This mechanism combines outputs from different levels
of the transformer network. Since different layers of a transformer capture different
types of information (some might understand the basic meaning of the words, while
others might grasp the more complex relationships between parts of the sentence), this
mixing allows CometKiwi to focus on the most relevant features for QE. By weighing
the contribution of each layer, the model can better assess which parts of the translation
need attention, leading to more accurate evaluations of translation quality.

Figure 2.1: General Architecture of CometKiwi for Sentence Level (Left), Word Level
(Right) (taken from (Rei et al., 2022))

Sentence-Level Quality Estimation

To estimate the quality of entire sentences, CometKiwi uses the embedding of the
first token, usually the [CLS] token, from a combined output of different transformer
layers. This single representation captures the essence of the entire sentence and is then
processed through a feed-forward network. The output from this network provides a
score that predicts the overall quality of the translated sentence.

2.4.2 TransQuest

TransQuest (Ranasinghe et al., 2020) is a framework designed for sentence-level MTQE,
utilizing cross-lingual transformers to enhance its capabilities. By using a simpler ar-
chitecture, it overcomes the usual computational and scalability issues seen in older
neural-based quality estimation systems. This adaptability makes it particularly suit-
able for environments with limited resources and for languages that lack extensive
annotated datasets.

Model Architecture

TransQuest has two main architectures: MonoTransQuest and SiameseTransQuest. For
this project, I will focus on MonoTransQuest due to its simplicity and effectiveness in
handling various languages. MTransQuest uses a single transformer model, the XLM-
Roberta model, to encode both the source and target sentences separated by a [SEP]
token (see Figure 2.2 for architecture). Its methodology revolves around various pooling
strategies, which include:
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Figure 2.2: MTransQuest Architecture, taken from (Ranasinghe et al., 2020)

• CLS Strategy: This method uses the output from the [CLS] token that summa-
rizes the entire input sequence.

• Mean Strategy: This strategy involves computing the mean (average) of all the
output vectors generated by the transformer model for each token in the input
sequence. This potentially smooths over outliers and emphasizes commonalities.

• Max Strategy: this strategy captures the most dominant or salient features in the
input sequence. By focusing on the maximum values, it highlights the features
that are most strongly expressed in the text, which are often crucial for under-
standing nuances such as specific errors or particularly well-translated segments.

The selected strategy’s output is then fed into a softmax layer that predicts the
quality score of the translation.

2.4.3 LASER

LASER (Language-Agnostic Sentence Representations) (Artetxe and Schwenk, 2019)
is a framework designed to generate language-agnostic sentence embeddings. It can
process text in over 140 languages using a single multilingual model. This approach
allows LASER to efficiently handle cross-lingual tasks, such as textual similarity and
retrieval, by transforming sentences into a high-dimensional space where similar sen-
tences are positioned close to each other based on their meaning, regardless of the
language.
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Figure 2.3: LASER Architecture, Taken From (Artetxe and Schwenk, 2019)

Model Architecture and Training

The training of LASER employs a sequence-to-sequence model using a multilingual
corpus to create language-agnostic sentence embeddings. It involves a bidirectional
LSTM encoder that generates dense vector representations of input sentences in various
languages and a unidirectional LSTM decoder trained to reconstruct sentences in the
target language, often using back-translation to enhance semantic accuracy (see Figure
2.3). As each word is processed and predicted, the softmax layer determines the most
likely next word based on the encoder’s context and the decoder’s preceding words. This
process aims to minimize the difference between original and reconstructed sentences,
combining cross-entropy and cosine similarity losses to refine the embeddings.

Once trained, these embeddings are useful for cross-lingual tasks such as textual
similarity and information retrieval, allowing comparisons across languages without di-
rect translation. In the context of MTQE, LASER’s embeddings enable the assessment
of how well the semantic content of the original text is preserved in the translation,
offering a robust tool for evaluating translation quality.

2.4.4 LabSE

LaBSE (Language-agnostic BERT Sentence Embedding) (Feng et al., 2020) is a similar
model developed to generate multilingual and language-agnostic sentence embeddings.
It integrates advanced methods from the field of machine learning and linguistics to
address the challenges of cross-lingual semantic retrieval, making it effective for ap-
plications like translation ranking and sentence similarity assessments across different
languages.

Architecture

The LaBSE model utilizes a dual encoder framework, each based on a 12-layer trans-
former architecture, similar to BERT (see figure 2.4). These encoders process the source
and target text separately, generating embeddings for each. The model is notable for
its utilization of a large, pretrained multilingual language model, which significantly en-
hances its performance by leveraging the learned representations from massive amounts
of text data. After sentence embedding generation, the model uses an additive mar-
gin softmax to refine the separation between similar and non-matching sentence pairs.
Intuitively, the goal is to ensure that the model assigns a higher score to the correct
translation pair than to any other incorrect pairs within the same batch. By using a
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Figure 2.4: LaBSE Architecture, Taken From (Feng et al., 2020)

softmax function, the model not only has to favor the correct answer but also learn to
distinguish it significantly from a set of plausible but incorrect answers.

2.5 Challenge Sets

Challenge sets are essential tools for evaluating and benchmarking the performance
of MT systems and QE models (Lehmann, 1996; Sennrich et al., 2017; Belinkov and
Glass, 2019),. These sets are designed to test specific aspects of translation quality
and to reveal weaknesses in QE systems by presenting translations with varying levels
and types of difficulty. In this section, I will discuss the concept of challenge sets, their
importance, how they are used in the context of QE evaluation, and their construction.

2.5.1 Concept of Challenge Sets

Challenge sets are carefully created datasets containing examples designed to push
the boundaries of MT systems (Belinkov and Glass, 2019). Unlike regular test sets,
which typically consist of a broad range of general examples, challenge sets focus on
specific phenomena or error types that are known to be difficult for MT systems to
handle. These can include idiomatic expressions, complex syntactic structures, rare
vocabulary, and various linguistic errors.

The importance of challenge sets lies in their ability to provide a more nuanced
and detailed understanding of an MT system’s capability and limitations (Kocmi and
Federmann, 2023). By focusing on specific challenges, researchers and developers can
gain insights into how well their systems handle difficult cases and identify areas that
require further improvement.

Challenge sets are particularly valuable in the context of QE, where the goal is to
predict the quality of translations without reference translations. By using challenge
sets, researchers can evaluate how well QE models identify and handle difficult cases
and whether they can accurately predict the severity of different types of errors.

Kocmi and Federmann (2023) demonstrate the effectiveness of using LLMs for QE,
showing that these models can achieve state-of-the-art performance even on challeng-
ing examples. They highlight the importance of well-designed prompts and diverse
examples in training and evaluating QE models.
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2.5.2 Construction of Challenge Sets

According to (Belinkov and Glass, 2019), the generation of challenge sets is a meticulous
process that identifies specific linguistic phenomena that challenge machine translation
systems, such as syntactic ambiguities or idiomatic expressions. Examples illustrating
these phenomena are then either modified from existing resources or created by lan-
guage experts to test the systems under controlled conditions. Each example is carefully
annotated with expected translations and undergoes validation to ensure it accurately
represents the intended linguistic challenge. Lastly, to ensure the challenge sets are
broadly applicable, they are diverse and representative of various language pairs and
contexts.



Chapter 3

Methodology

This chapter provides insights into the approaches applied during this project. Firstly,
this section will describe the data used during the project. Secondly, I will discuss the
creation of a synthetic dataset by prompting two GPT models. Thirdly, this chapter
will summarize and compare the four QE models that have been applied during the ex-
periment: CometKiwi (Rei et al., 2022), TransQuest (Ranasinghe et al., 2020), LASER
(Artetxe and Schwenk, 2019), and LaBSE (Feng et al., 2020). Lastly, this section
will introduce the evaluation of the project, including the Kullback-Leibler Divergence
(Kullback and Leibler, 1951), a measure to evaluate the distributions of scores from
the models.

3.1 Dataset Description

3.1.1 Introduction to the Dataset

The dataset utilized in this thesis was sourced during an internship at TAUS and com-
prises approximately 20,000 Dutch-to-English translation pairs from diverse domains
such as computer software, financial services, professional and business services, and an
undefined sector that includes miscellaneous domains that have not been categorized
yet. These translation pairs provide varied linguistic ranges to provide a wide range
for examining MTQE methodologies. Table 3.1 shows the domain distribution within
the dataset.

Error category Computer Software Professional Business Services Undefined Sector Financials

Addition (Gibberish) 512 579 2849 130
Deletion 480 498 2423 117
Entity 681 733 6410 298
MT Hallucination 514 570 2836 126
Negation 510 577 2798 128
Number 557 961 5271 309
Sentiment 492 529 2702 122

Table 3.1: Error Category Distribution Across the Domains in the Base Dataset

The primary focus of this dataset is to act as a basis test dataset that can be altered
for the exploration of quality estimation methodologies in machine translation systems.
The original translations will be viewed as a baseline to be compared with the distorted
sentences in the QE models.

19
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3.1.2 Inherent Errors in the Dataset

After an initial inspection of the dataset, I detected inherent errors in the original
dataset that included natural MT errors such as:

1. Target sentences not containing enough information given in the source sentence:

• source: “Vraag nr. 36 van de heer Robles Piquer (H-169/87) Betreft: Verslag
over Europese coördinatie bij het onderzoek van de oceanen”

• target: “Question No 36, by Mr Robles Piquer (H-169/87)”

2. Target sentences containing more information than given in the source sentence:

• source: “Brief van de Commissie aan de lidstaten van 4 maart 1991”

• target: “Commission letter to Member States SG(91) D/4577 of 4 March
1991”

3. Source sentences containing special characters that make the source sentence
unclear:

• source: “De stijging van de Belgische bevolking zou dan nog enkel berusten
op de netto \u2011instroom van migranten.”

• target: “Further increases in the population of Belgium beyond that date
are expected to consist only of net immigration.”

However, these errors were not filtered or cleaned, as the translations appeared ade-
quate for QE tasks. The existence of these intrinsic errors is not inherently detrimental
to the QE process. In principle, having translations that are not entirely error-free
reflects more realistic conditions under which QE models operate. Moreover, original
errors in the target sentences are also present in the modified target sentences, where an
additional artificial error is introduced. Therefore, the identification of the introduced
artificial error should not be a problem for QE models.

3.1.3 Development of the Curated Subset

However, for the purpose of this research, where the focus is to determine how well QE
models can identify the specific errors I prompted within the target sentences, it can
provide insights to isolate these errors from pre-existing ones. Therefore, an additional
controlled subset of the dataset was developed. This subset was carefully created to
exclude original errors in the target sentences, ensuring it only contained high-quality
translations. This curated dataset aims to clarify whether lower quality scores are
indeed due to artificially introduced errors rather than pre-existing ones.

This carefully created subset consists of 660 sentences, providing a cleaner and
more reliable basis for testing the QE models under controlled conditions (see 3.2, 3.3).
This dataset does not contain the “Financials” domain and, in contrast to the original
dataset, has most sentences in the “Professional and Business Services” domain. The
average words per sentence per error category do not differ significantly from the original
dataset.
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Error category Sentences Words Avg. Words/Sentence

Addition (Gibberish) 101 1,459 14.45
Deletion 77 1,153 14.97
Entity 97 1,514 15.61
MT Hallucination 108 1,450 13.43
Negation 92 1,333 14,49
Number 93 1,376 14.80
Sentiment 92 1,446 15.72

Table 3.2: Error Category Division in the Curated Dataset

Error category Computer Software Professional Business Services Undefined Sector

Addition (Gibberish) 5 84 12
Deletion 4 65 8
Entity 0 7 90
MT Hallucination 7 85 16
Negation 7 77 8
Number 8 43 42
Sentiment 4 77 11

Table 3.3: Error Category Division of the Curated Dataset for each domain

3.1.4 Curated Dataset Selection

The selection and curation of the dataset were meticulous processes aimed at creat-
ing a highly controlled environment for testing QE models. The criteria for selecting
translations into the curated subset included several key factors:

1. Absence of Pre-existing Errors: Only translations that did not contain obvious
grammatical mistakes, misalignments, or mistranslations were included. This
selection ensures that any detected discrepancies in the QE process are due to
the newly introduced synthetic errors rather than inherent issues in the original
text.

2. Linguistic Simplicity and Clarity: Sentences chosen for the curated dataset were
required to have clear, straightforward linguistic structures. This was to minimize
the risk of the QE models misinterpreting linguistic complexity as an error.

3. Representative Linguistic Content: The sentences needed to be representative of
typical real-world translations but devoid of overly complex or domain-specific
jargon unless it was directly relevant to the error being introduced. This ensures
the dataset’s applicability across different QE scenarios.

4. Balanced Error Representation: The dataset was designed to include a balanced
representation of each error type to evenly test the QE models’ ability to identify
and score different kinds of errors.

While in the selection process for creating this subset, special attention was given to
choosing sentences of medium length. This decision was made to avoid overly complex,
very short, or abbreviated linguistic forms that might pose comprehension challenges
for the QE models. For example, sentences like the following were not included in the
curated subset:
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• “Requirements to be met by analytical procedure for dioxins and dioxin-like
PCBs”

• “ write to data address %X failed:%s”

These decision ensure that the QE models are tested under conditions that are more
useful for accurate quality estimation without being confused by unusual linguistic
structures. The results from this dataset will provide insights into how QE models
respond to specific, isolated errors, contributing to a more nuanced understanding of
their capabilities and limitations. However, these sentences remained in the original
dataset and were included during the experiments.

3.1.5 Dataset Expansion

To ease the process of prompting specific alterations in the sentences, I first extracted
sentences containing Named Entities and sentences containing numbers. Because the
prompting will be done by choosing random sentences for each error category, it is more
efficient to filter out sentences with named entities and numbers and prompt these
separately. The Natural Language Toolkit (nltk) was employed for Named Entity
Recognition (NER), identifying proper nouns, organizations, and other entities that
require precise translation. Regular expressions (regex) were utilized to detect and
extract numerical information from the text. After, regex was also utilized to alter the
numbers, so this error category was not altered with the use of GPT. This extraction
led to a duplication of sentences. Therefore, a duplicate sentence can contain one error
in Named Entities and the other one in hallucinations. This led to an expansion to a
total of 34,712 segments.

The rest of the errors- negation/sentiment, hallucinations, and additions- were cre-
ated only by GPT. The error categories in the original dataset are broadly distributed,
with ‘Entity’ and ‘Number’ errors being the most common, as many of the filtered sen-
tences contained entities and numbers. The rest of the errors are more or less evenly
divided.

3.2 Synthetic Dataset Creation

This section outlines the methodology used to create a synthetic test dataset using
GPT-3.5-turbo and GPT-4-turbo. The original dataset, obtained from TAUS, con-
tains machine-translated sentence pairs from Dutch (source) to English (target). For
this project, these translations are necessary to systematically introduce specific types
of translation errors into the target sentences. These error categories include named
entities, numbers, negations/sentiment, deletion, addition, and hallucinations. The im-
plementation of these errors in the dataset aims to challenge the robustness of MTQE
models across varied error types.

Throughout the project, I carried out experiments using both GPT-3.5-turbo and
GPT-4-turbo to determine which model would be more efficient in generating the in-
tended artificial errors within the dataset. My analysis revealed that GPT-4-turbo con-
sistently and accurately outperformed GPT-3.5-turbo in terms of following the struc-
tured prompts and generating believable, error-specific alterations. As a result, the final
synthetic dataset predominantly contains outputs from GPT-4-turbo, ensuring a higher
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level of accuracy in simulating errors. The error analysis in chapter 4.4 will provide
more information on the difference in outputs by GPT-3.5-turbo and GPT-4-turbo.

3.2.1 Selection of Base Dataset

The base dataset consists of sentence segments from MT output provided by my in-
ternship at TAUS. These sentences are not free from errors, exhibiting typical machine
translation inaccuracies to varying degrees. However, this inaccuracy should not hin-
der the project’s objectives; instead, it adds a layer of complexity. When comparing
the source sentences to the original target sentences and the synthetically distorted
sentences, the QE models should, in principle, be able to identify the original errors
as they appear in both the original target and distorted sentences. As entirely correct
translations are rare in natural conditions, it would be interesting to determine the
detection of these implemented errors regardless of possible surrounding errors by the
QE models.

However, by doing so, it might be hard to create a totally controlled environment
where it is easy to identify whether the QE models’ score is based on the original
errors, the implemented errors, or a combination of both. To ensure a more reliable
experimental environment, I created a curated subset of the base dataset that filtered
out low-quality translations. With ‘low quality,’ I refer to sentences containing natural
errors in the original translations, such as grammar errors, existing mistranslations, and
wrong sentence alignment between source and target sentences. This subset serves as
a cleaner baseline, where the introduced errors are the only variables. By isolating the
distortions, the QE models can focus solely on the impact of the newly introduced errors
rather than the previous noise in the original dataset. This setup is particularly valuable
for evaluating the QE models’ sensitivity and precision in detecting and quantifying
specific error types introduced during the experiment, which is the main objective of
this project.

This methodology attempts to apply both natural translations with realistic linguis-
tic errors and a cleaned sample to recognize and evaluate errors in a more controlled
form. This two-way approach can evaluate the performance of QE models in both
typical and ideal scenarios. To avoid confusion, from here on, I will name the original
dataset the ‘base dataset’ and the subset the ‘curated dataset’.

3.2.2 GPT-3.5-turbo and GPT-4-turbo

In this project, the synthetic dataset modification utilized two advanced language mod-
els, GPT-3.5-turbo and GPT-4-turbo, developed by OpenAI. These models are highly
advanced in natural language processing technology, leverage deep learning techniques,
and are based on the transformer architecture (Vaswani et al., 2017), which allows for
highly effective generation of human-like text.

Features of GPT-3.5-turbo and GPT-4-turbo

GPT-3.5-turbo and GPT-4-turbo are characterized by their large number of parame-
ters, with GPT-4-turbo being more advanced with even greater parameter count and
improved training algorithms. These models have been trained on diverse internet text,
making them highly versatile for a range of applications including but not limited to
translation, summarization, question-answering, and, in this case, synthetic dataset
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creation (Brown et al., 2020). The ’turbo’ versions of these models are optimized for
faster inference, making them particularly suitable for applications requiring rapid text
generation.

3.2.3 Error Introduction Strategy

For the purpose of this project, GPT-3.5-turbo and GPT-4-turbo are employed to in-
troduce specific types of accuracy errors into existing translated sentences. To simulate
common MT errors, a series of structured prompts are used to direct the language mod-
els in modifying the target sentences of the base dataset. These prompts are designed
to induce specific error types, such as:

• Negation Errors: The model is prompted to alter the meaning of sentences by
strategically adding or removing negations. This could be in the form of ‘no’ or
‘n’t’ but also implementing prefixes and suffixes into the words to change their
meaning. This manipulation aims to test the QE model’s ability to detect subtle
semantic shifts. The prompt used is:

– (‘negation’, ‘In the following sentence, reverse the meaning by using nega-
tion. either introduce or remove a negation while keeping the exact original
words and structure of the sentence intact and consider using suffixes or
prefixes like un-, im-, in-, -less, ir-, and dis- where appropriate.’),

All prompts are viewable in the Appendix A.

3.2.4 Post-generation Review

During generation, a small sample set was created to verify whether the GPT models
acted according to the prompts, and after several attempts at prompt engineering,
the models proved to be altering the sentences correctly. After each generation, the
samples were manually reviewed for each error category to verify whether the sentence
modification was done accordingly. After modifying the base dataset, a small sample
was again manually reviewed for errors. This process is described in full detail in the
error analysis in section 4.4.

3.3 Comparison of QE Models

This section explores the unique capabilities and expected performance of the four QE
models used in this research: CometKiwi (Rei et al., 2022), TransQuest (Ranasinghe
et al., 2020), LASER (Artetxe and Schwenk, 2019), and LaBSE (Feng et al., 2020).
Each model possesses distinct attributes that potentially affect their performance in
detecting and evaluating translation errors.

CometKiwi is designed to leverage deep contextual embeddings, which allow it to
perform intricate analyses of linguistic subtleties. This model is expected to excel
in identifying complex error types such as nuanced semantic shifts and contextual
inaccuracies. Its depth in processing and analysis makes it suitable for comprehensive
evaluation tasks where detailed linguistic feedback is crucial.

TransQuest focuses on a streamlined, efficient approach to quality estimation. It
is expected to provide robust performance in rapid assessment scenarios, making it
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ideal for real-time applications. Although it might not delve as deeply into linguistic
complexities as CometKiwi, this model can be particularly effective in settings where
computational resources are limited or when quick estimations are needed.

LASER stands out with its language-agnostic feature set, designed to create uni-
versal embeddings that capture semantic similarities across languages. This model is
anticipated to be particularly effective in scenarios involving less common language pairs
or translations where direct comparisons might be challenging. Its ability to generalize
across languages could be critical for projects requiring broad linguistic coverage.

LaBSE also focuses on embedding generation but incorporates an additive margin
softmax loss, which enhances its ability to distinguish between different levels of trans-
lation quality. This feature is expected to make LaBSE exceptionally good at grading
subtle quality variations, providing a more granular insight into the quality levels of
translations.

Overall, my expectation is that while all models will perform effectively, their indi-
vidual specialties might lead them to excel in different aspects of the quality estimation
tasks. The upcoming experimental results (4) will provide deeper insights into how
these theoretical advantages translate into practical performance.

3.3.1 Multilingual Capabilities of the Models

While all four QE models are designed to handle multilingual inputs, there are distinct
nuances in how they are suited for multilingual contexts. Each model uses different
strategies to achieve language-agnostic capabilities.

CometKiwi and TransQuest both incorporate transformer-based architectures that
have been trained on extensive multilingual corpora. CometKiwi, as part of the
COMET framework, uses cross-lingual sentence embeddings to understand and evalu-
ate texts across different languages, ensuring consistent performance. Similarly, Tran-
sQuest utilizes a Siamese network structure with RoBERTa models, focusing on seman-
tic alignment between the source and target texts, which allows it to handle numerous
language pairs efficiently.

However, LASER and LaBSE might be particularly better suited for certain mul-
tilingual applications due to their specific focus on creating truly language-agnostic
embeddings. LASER employs a specific training method on a diverse set of languages,
using a BiLSTM architecture with max-pooling to generate embeddings that capture
deep semantic meanings regardless of the language. LaBSE extends this language-
agnostic approach by incorporating an additive margin softmax loss in its training,
which not only helps in generating robust embeddings but also sharpens its ability to
distinguish between subtle differences in translation quality across languages.

3.4 Evaluation Techniques

This section outlines the methods used to evaluate the performance of MTQE models
and the effectiveness of the synthetic test dataset. This evaluation includes manually
checking the GPT prompt outputs, statistical measures, and lastly the Kullback-Leibler
divergence.
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3.4.1 Manual Error Checking

Throughout the creation and analysis of the synthetic dataset, manual error checking
played a pivotal role. Initially, after generating synthetic errors using GPT-3.5-turbo
and GPT-4-turbo, a sample of modified sentence underwent a thorough review to ensure
that the errors accurately reflected the intended types, such as negations, additions,
and deletions. This step verifies that the prompts are effectively guiding the language
model to simulate realistic translation errors. Following the application of QE models
to these translations, another round of manual reviews is conducted on a sample of the
scored translations. This process is designed to identify any discrepancies or anomalies
in the model assessments, ensuring that the QE models are accurately identifying and
scoring the introduced errors.

3.4.2 Graphical Visualization of Results

To illustrate the outcomes of the QE models’ assessments, graphical visualizations
are utilized. These visualizations, which will be featured in the results section of the
study (4), include predicted quality score distribution graphs by all the QE models.
The quality score distribution graphs will highlight how each model scores the quality
of translations, with a focus on revealing differences in sensitivity to various error
types. These visual aids are essential for quickly understanding patterns in the models’
performance and effectively communicating these findings.

3.4.3 Statistical Analysis

In addition to visual tools, quantitative analysis is conducted using standard statis-
tical measures. This includes calculating the median scores to determine the central
tendency of the quality scores provided by each model, as well as computing the stan-
dard deviation to assess the variability in these scores. Such variability indicates the
consistency of the model evaluations.

3.4.4 KL-Divergence

To assess and compare the performance of MTQE models on both the original and syn-
thetically distorted sentences, the Kullback-Leibler (KL) divergence is utilized (Kull-
back and Leibler, 1951). This statistical measure is employed to quantify how one
probability distribution diverges from a second, expected probability distribution. In
this context, KL divergence will help in understanding how the error predictions by QE
models differ from the original distribution of errors introduced into the dataset and
their difference from the curated distribution without errors.

Background

KL divergence, also known as relative entropy, is a measure from the field of information
theory that quantifies the difference between two probability distributions (Kullback
and Leibler, 1951). For discrete probability distributions P and Q defined on the same
probability space X the KL divergence from Q to P is given by:

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
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Where P (x) is the distribution of original translations, and Q(x) is the predicted
distribution of distorted translations by the QE model.

Application in QE Model Evaluation

In this research, the KL divergence is applied in two key scenarios:

1. Comparison between distorted and original sentences: By evaluating how the
QE model’s predictions for undistorted/natural sentences diverge from those for
explicitly distorted sentences, insights into the model’s sensitivity and robustness
to different types of errors can be gained.

2. Cross-Dataset Comparisons: KL divergence provides a method to compare differ-
ent datasets in terms of how their probability distributions of predicted errors or
predicted ’good translations’ deviate from the base to curated datasets (and vice
versa). This analysis not only helps validate the robustness and completeness of
each dataset but also understands how the size of a dataset might influence its
ability to test QE models that are sensitive to different translation errors.
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Chapter 4

Experiments

This chapter details the results of the experiments on the QE models tested on machine-
translated Dutch to English sentences, and the error analysis, that gives further findings
of the results. The experiments are designed to assess the capability of QE models to
identify and quantify translation quality in both original and intentionally distorted sen-
tences. Various QE models are evaluated, including CometKiwi (Rei et al., 2022), Tran-
sQuest (Ranasinghe et al., 2020), LASER (Artetxe and Schwenk, 2019), and LaBSE
(Feng et al., 2020), to understand their performance across different types of errors and
translation domains.

4.1 Results

This section presents the results of the QE experiments conducted on both the original
and curated datasets. These experiments were designed to assess the performance of
four QE models: CometKiwi (Rei et al., 2022), TransQuest (Ranasinghe et al., 2020),
LASER (Artetxe and Schwenk, 2019), and LaBSE (Feng et al., 2020). The performance
of these models was evaluated based on their ability to distinguish between original
translations and those that had been intentionally distorted.

The primary goal of the QE models in this study is to effectively differentiate
between original translations and distorted translations. Distorted translations include
artificially introduced errors, which are expected to be scored lower by the QE models
than the original sentences.

I am expecting the curated dataset to provide a clearer distinction between original
and distorted translations compared to the original dataset. This is because the curated
dataset has been meticulously created to remove any pre-existing errors in the origi-
nal translations, thereby providing a more controlled environment for evaluating the
QE models. By isolating the artificially introduced errors, the curated dataset should
enhance our understanding of each model’s sensitivity to specific error types and its
overall effectiveness in quality estimation tasks.

4.1.1 Results of Base Dataset

Figure 4.1 shows the overall distribution of QE scores for both original and distorted
sentences across all four models. A clear separation between the score distributions
would indicate the models’ effectiveness in detecting translation errors.

29
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Figure 4.1: Distribution of Original and Distorted Sentence Scores by all QE Models
on the Base Dataset

CometKiwi shows a noticeable separation between original and distorted transla-
tions, indicating high sensitivity to translation errors. TransQuest demonstrates a mod-
erate distinction while LaBSE shows a little les distinction and finally LASER shows
the least distinct seperation, indicating challenges in distinguishing between original
and distorted translations.

The second Table (Table 4.1) displays the KL divergence for original to distorted
translations and vice versa for each QE model using the base dataset. All the models
exhibit a relatively symmetrical behavior, indicating a similar level of divergence in
both directions. CometKiwi shows a slightly higher level of divergence, suggesting
that it may be more sensitive to differences between distorted and original sentences
compared to the other models. This implies that the remaining models might treat
original and distorted translations more similarly than CometKiwi. It’s important to
note that the ”original” translations in the base dataset are not entirely error-free and
may contain errors, which is why the subset was carefully selected.



4.1. RESULTS 31

QE model
Divergence

original to distorted distorted to original

CometKiwi 0.564 0.570
TransQuest 0.233 0.233
LaBSE 0.406 0.409
LASER 0.250 0.211

Table 4.1: KL Divergence - Base Dataset

CometKiwi

This Figure shows the distribution of CometKiwi scores for each error category (4.2).
CometKiwi shows varied sensitivity across different error categories with the highest
sensitivity to hallucination and lowest sensitivity to numbers. It also shows a great
distinction between original and distorted sentences for gibberish, sentiment, and nega-
tion.

The statistical measures for CometKiwi as shown in Table 4.2 highlight its per-
formance across different error categories. The median and standard deviation values
provide insight into the central tendency and variability of the scores, respectively. A
higher standard deviation in the distorted sentences suggests greater variability in scor-
ing, which may be attributed to the model’s response to the range of errors introduced in
the synthetic dataset. It is noTable that the mean and median of the distorted sentences
are considerable lower than the original sentences, which indicates that CometKiwi has
identified the additional artificial errors to some extent even though the minimum and
maximum scores do not differ extensively.

Figure 4.2: Distribution of CometKiwi Scores per Error Category
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Statistic Original Distorted

Mean 0.7991 0.6955
Median 0.8293 0.7075
Std Dev 0.0849 0.1145
Min 0.2933 0.2307
Max 0.8988 0.8952

Table 4.2: CometKiwi QE Model Scores - Base Dataset

TransQuest

Similar to the previous Figure, Figure 4.3 presents the TransQuest score distributions
per error category. TransQuest performs consistently across most error categories with
most sensitivity towards hallucinations, and gibberish and less sensitivity towards dele-
tion, named entities, and numbers.

Figure 4.3: Distribution of TransQuest Scores per Error Category

In Table 4.3, the TransQuest scores show moderate variability as indicated by the
standard deviation. The median scores between original and distorted translations
differ less significantly compared to CometKiwi, suggesting that TransQuest may have
a more uniform scoring range, which affects its sensitivity to certain error types. Also
noTable is that the maximum score is higher for the distorted sentence than the original
one, which indicates that adding an additional error created a higher score in one or
more of the sentences.

Statistic Original Distorted

Mean 0.7216 0.6690
Median 0.7412 0.6897
Std Dev 0.0744 0.0919
Min 0.1949 0.1319
Max 0.8649 0.8672

Table 4.3: TransQuest QE Model Scores - Base Dataset
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LASER

Contrasting to the previous models, LASER appears more consistently insensitive to
all error types (see Figure 4.4). Hallucinations and named entities have a slightly more
distinct difference between original and distorted translations.

Figure 4.4: Distribution of LASER Scores per Error Category

Statistic Original Distorted

Mean 0.8712 0.8307
Median 0.8795 0.8387
Std Dev 0.0618 0.0668
Min 0.2917 0.2898
Max 0.9944 0.9929

Table 4.4: LASER QE Model Scores - Base Dataset

The LASER model, as shown in Table 4.4, demonstrates a lower standard deviation
compared to CometKiwi and TransQuest, indicating a more consistent scoring behavior
across the range of translations. Furthermore, the differences in mean and median
scores are closer between the distorted and original translations. This could suggest
that LASER is less sensitive to the variability of errors within the distorted translations.

LaBSE

LaBSE seems to perform well on named entities, numbers, and hallucinations (see
Figure 4.5). All previous models showed a relatively high insensitivity towards errors
containing numbers, so LaBSE seems to perform best on numbers among the four QE
models.

Table 4.5 illustrates that LaBSE has a higher standard deviation for distorted trans-
lations, which indicates greater score dispersion. This could reflect LaBSE’s sensitivity
to the nuanced differences in translation quality introduced by the errors. The me-
dian scores also show a notable drop from original to distorted translations, which is
indicative of the model’s effective differentiation between the two sets.
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Figure 4.5: Distribution of LaBSE Scores per Error Category

Statistic Original Distorted

Mean 0.8516 0.7735
Median 0.8697 0.7912
Std Dev 0.0848 0.1055
Min 0.2627 0.0627
Max 0.9957 0.9946

Table 4.5: LaBSE QE Model Scores - Base Dataset

4.1.2 Results Curated Dataset

Figure 4.6 shows again the overall distribution of QE scores for both original and
distorted sentences. The curated dataset results show similar trends to the base dataset,
with CometKiwi having the highest sensitivity to errors followed by TransQuest and
LaBSE with LASER having the lowest sensitivity to errors.

Moving on to Table 4.6, it presents a similar divergence but for the curated dataset.
The KL divergence values are generally higher in the curated dataset, especially evident
in CometKiwi from distorted to original translations (2.011). The higher KL divergence
in the curated dataset suggests that when the data is well-created, the QE models,
especially CometKiwi, are capable of effectively distinguishing quality. This indicates
that the model responds well to high-quality, well-defined data.

QE model
Divergence

original to distorted distorted to original

CometKiwi 1.013 2.011
TransQuest 0.347 0.427
LaBSE 0.487 0.581
LASER 0.279 0.257

Table 4.6: KL Divergence - Curated Dataset

While the higher divergence in the curated dataset is promising, it also emphasizes
the significance of data quality in training and evaluating QE models. Models may
perform differently when trained or tested on datasets of varying quality, impacting
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their reliability.

Figure 4.6: Distribution of Original and Distorted Scores by all the QE Models

CometKiwi

Similar to the base dataset, CometKiwi seems to be able to differentiate between orig-
inal and distorted translations for all the error categories except numbers (see Figure
4.7).

Statistic Original Distorted

Mean 0.8260 0.6956
Median 0.8412 0.7018
Std Dev 0.0506 0.1043
Min 0.5432 0.4231
Max 0.8988 0.8802

Table 4.7: CometKiwi QE Model Scores - Curated Dataset

In the curated dataset, CometKiwi’s performance metrics (Table 4.7) continue to
show a high median and a noTable increase in the standard deviation for distorted
sentences. This indicates that CometKiwi responds sensitively to the range of intro-
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Figure 4.7: Distribution of CometKiwi Scores per Error Category

duced errors, which aligns with the observed higher KL divergence, suggesting a strong
discriminative ability.

TransQuest

TransQuest shows high sensitivity for hallucinations, and gibberish and lowest sensi-
tivity for numbers (see Figure 4.8).

Figure 4.8: Distribution of TransQuest Scores per Error Category

Statistic Original Distorted

Mean 0.7430 0.6833
Median 0.7555 0.7006
Std Dev 0.0579 0.0811
Min 0.4012 0.3781
Max 0.8545 0.8222

Table 4.8: TransQuest QE Model Scores - Curated Dataset

TransQuest’s results in the curated dataset (Table 4.8) demonstrate a consistent
detection capability across error types, with a moderate increase in standard deviation
for distorted sentences, indicating its response to the synthetic errors is sTable but less
pronounced than CometKiwi.
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LASER

Similar to the base dataset, Figure 4.9 illustrates that LASER has the highest sensitivity
for named entities, while the rest of the errors show relatively low sensitivity.

Figure 4.9: Distribution of LASER Scores per Error Category

Statistic Original Distorted

Mean 0.8842 0.8444
Median 0.8915 0.8479
Std Dev 0.0538 0.0573
Min 0.6999 0.6131
Max 0.9869 0.9547

Table 4.9: LASER QE Model Scores - Curated Dataset

LASER maintains consistent performance with minimal variation in the scores’
standard deviation, as shown in Table 4.9. This model’s scores suggest a relatively
sTable but less sensitive detection of errors compared to the other models, as also
reflected by the lower KL divergence values.

LaBSE

Figure 4.10: Distribution of LaBSE Scores per Error Category

Lastly, Figure 4.10 shows the distribution of scores for each error types and LaBSE
seems to perform best on numbers again compared to the other QE models even on



38 CHAPTER 4. EXPERIMENTS

Statistic Original Distorted

Mean 0.8710 0.7912
Median 0.8846 0.8071
Std Dev 0.0655 0.0901
Min 0.4927 0.3512
Max 0.9771 0.9498

Table 4.10: LaBSE QE Model Scores - Curated Dataset

the curated dataset. Furthermore, LaBSE shows a higher distinction of errors for
hallucinations and named entities. The rest of the errors are relatively similar in their
low sensitivity levels.

LaBSE’s results (Table 4.10) show a noticeable difference in the median and an
increase in standard deviation for distorted translations, highlighting its capability
to effectively differentiate between the varying quality of translations, especially in a
cleaner dataset setting. The higher divergence and variability suggest that LaBSE is
responsive to the nuanced differences introduced in the curated dataset.

4.1.3 Domains

The Figures below demonstrate the overall QE score distributions of original and dis-
torted sentences per domain. These scores are accumulated per domain to evaluate the
models’ performance accross different contexts. For both datasets the ‘undefined sec-
tor’ and ‘Professional and Business Services’ domains show highest distinctions between
original and distorted translations.

Figure 4.11: Distributions of Original and Distorted QE Scores per Domain for the
Original Dataset

Figure 4.12: Distributions of Original and Distorted QE Scores per Domain for the
Curated Dataset

4.2 KL-Divergence between Datasets

Table 4.11 compares the divergence between the curated and base datasets based on
distorted sentence evaluations. All models exhibit very low divergence values, with
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QE model
Divergence

Curated to Base Base to Curated

CometKiwi 0.020 0.032
TransQuest 0.021 0.038
LaBSE 0.019 0.050
LASER 0.026 0.118

Table 4.11: KL Divergence - Comparison of Curated and Base Dataset on Distorted
Sentences

slightly higher values when comparing the original base to curated datasets. The low
divergence suggests that the models are relatively consistent in evaluating distorted
sentences across dataset sizes, although there is slightly more variation when moving
from the base to the curated dataset. LaBSE shows the lowest divergence from curated
to base, suggesting high consistency in scoring the curated dataset. LASER exhibits the
highest divergence in both directions, particularly from base to curated. This suggests
that LASER is highly sensitive to the inherent errors in the base dataset, resulting in
significant changes in its score distribution when those errors are present.

QE model
Divergence

Curated to Base Base to Curated

CometKiwi 0.072 0.436
TransQuest 0.060 0.093
LaBSE 0.034 0.067
LASER 0.027 0.137

Table 4.12: KL Divergence - Comparison of the Curated and Base Dataset on Original
Sentences

Lastly, in Table 4.12, the divergence in evaluations of original sentences between
the two dataset sizes is measured. Divergence values are generally low, similar to the
distorted sentence evaluations, but with slightly higher divergence when transitioning
from base to curated dataset. There is generally consistency across dataset sizes for
original sentences, but there are indications that moving to a curated dataset increases
divergence, possibly due to the accuracy improvements of original sentences in the
curated dataset.

4.3 Impact of Curated Dataset

The statistical data, including KL divergence, mean, and median statistics, provides
valuable insights into the performance consistency of QE models across different datasets.

The results indicate that all four MTQE models are affected by the inherent errors in
the base dataset to varying degrees. LASER appears to be the most sensitive, followed
by LaBSE, TransQuest, and CometKiwi.

Moreover, it shows slightly higher divergence for original translations. This suggests
that the models are potentially more sensitive to the cleaner, more accurately translated
sentences in the curated dataset, reflecting their capability to appreciate higher quality
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translations. The results suggest that CometKiwi is the most sensitive to inherent errors
in the base dataset, showing the highest divergence in the base to curated direction.
TransQuest, LaBSE, and LASER are less sensitive, with LaBSE being the most stable
across both datasets.

The curated dataset, which filters out inherent errors and only includes artificial
distortions, results in a more consistent score distribution across the models. This
suggests that curating a smaller subset of high-quality sentences without inherent errors
provides a clearer challenge set for evaluating MTQE models.

Additionaly, the difference in mean and median scores between original and dis-
torted sentences increase for the curated dataset, especially with CometKiwi. This
increase suggests that models are more sensitive and score either the distorted sen-
tences lower or the original sentences higher when working with high-quality data.

4.4 Error Analysis

In this section, I will analyze various errors produced by GPT-3.5-turbo and GPT-4-
turbo during our prompting experiments. These analyses help in understanding the
nature of unwanted outputs and how they might influence the QE models.

4.4.1 Analysis during Prompting of GPT-3.5-turbo

Named Entities

A common issue when altering named entities was that GPT-3.5-turbo often replaced
more than just the entities, substituting many words with synonyms. For example:

• MT: “The commission provides support and arranges contacts between firms
working in similar areas of research.”

• Distorted: “The alliance offers assistance and facilitates connections between com-
panies operating in related fields of study.”

Although the semantics remain the same, these changes between original transla-
tions and distorted sentences can influence QE scores, impacting our controlled envi-
ronment.

Similarly, GPT-3.5-turbo sometimes changed words within the same phrase as the
named entities, particularly in possessive noun phrases:

• MT: “Firstly, the motion does not condemn clearly enough the vagueness of the
priorities and commitments indicated in the Commission’s programme.”, ’

• Distorted: “Firstly, the motion does not condemn clearly enough the vagueness
of the priorities and commitments indicated in the Council’s agenda.”,

Another frequent issue was uncreative replacements for newly named entities, often
resulting in nonsensical abbreviations like ‘CBFA’ becoming ‘XYZ’ and ‘Frankfurt’
becoming ‘ABC.’ Additionally, numbers were sometimes randomly removed, such as
‘amended)1’ becoming ‘amended’.
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Sentiment/Negation

When altering sentiment, GPT-3.5-turbo occasionally produced outputs with the same
sentiment as the original sentence but with different causation:

• MT:“Poorly managed coastal resorts can also cause serious air and sea pollu-
tion.”

• Distorted: “Well managed coastal resorts can also prevent serious air and sea
pollution.”

To address this, an additional prompt line was added: ‘Change the sentiment so
the meaning of the sentence changes.’

In cases where sentences had no clear sentiment to change, negations were included
instead. However, if neither sentiment change nor negation was possible, I prompted
GPT to leave the sentence unchanged and then such sentences were filtered out.

GPT-3.5-turbo also tended to finish incomplete sentences, adding phrases like:

• MT: “Surviving veterans of World War I”

• Distorted: “Surviving veterans of World War I are becoming increasingly rare.”

MT Hallucinations and Gibberish

These two error categories seemed to operate fairly well. Their only lack is that the
chosen words were repetitive. For hallucinations, words like ‘refrigerator’, ‘giraffe’, and
‘sandwich’ were frequently used. For non-existing gibberish ‘flibber’ was commonly
used.

Deletion

For deletion errors, GPT-3.5-turbo often removed function words like ‘the’ and ‘a’,
instead of content words, despite multiple prompt adjustments. Also, often times it
failed to remove any words from sentences.

Grammar

When comparing the full dataset with naturally occurring errors to the more distorted
sentences, GPT-3.5-turbo often corrected grammar issues in the original target sen-
tences along with the prompted changes. This included fixing punctuation errors or
concatenated words like ‘she’s’ to ‘she is’ or correcting spacing errors like ‘regarding’
to ‘regarding.’

4.4.2 Analysis during Prompting of GPT-4-turbo

Named Entities

GPT-4-turbo performed better with named entities, although it occasionally replaced
all words with synonyms, albeit less frequently than GPT-3.5-turbo. Repetitive simple
abbreviations were used, but geographical locations were handled better:

• MT: “The original CUI, MNU, or MNS file is not modified.”

• Distorted: “The original ABC, XYZ, or DEF file is not modified.”
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Sentiment/Negation

GPT-4-turbo improved on sentiment changes and avoided finishing incomplete sen-
tences with creative phrases. However, it occasionally created non-existing negations:

• MT: “Surviving veterans of World War I”

• Distorted: “Non-surviving veterans of World War I”

Or with short sentences:

• MT: “short rest periods [...]”

• Distorted: “short unrest periods [...]

MT Hallucinations and Gibberish

These categories continued to perform well, with repetitive word use being the main
issue. Moreover, especially in this version, I changed the output to directly implement
sentences into a JSON file. Therefore, most of the distorted sentences concerning
hallucinations contained:

• MT: “joint group of experts on the scientific aspects of marine pollution”

• Distorted: “joint group of experts on the scientific aspects of marine **ballet**”

For gibberish, some of the non-existing words would concatenate with existing
words, which can cause confusion when categorizing this error.

• MT: “[...], and it will be adopted in the near future.”

• Distorted: “[...], and it will be flibberadopted in the near future.”

This additional error leads to not only an addition of gibberish but also a deletion of
an existing word in the original translation. Therefore, the error is not fully isolated in
these cases. The score representations become more blurry because it may be unclear
whether a score represents the gibberish or the deletion/concatenation of a word.

Deletion

With deletion, GPT-4-turbo continued to remove function words as well as critical
words. As I prompted it to delete important words in the sentence, it sometimes
removed negations, creating a negation error instead of deletion error. Of course, one
can argue that a negation error could also essentially be a deletion error as it removes
negations from the sentence to reverse the sentiment.

This version still struggled with actually removing words, and similar to hallucina-
tions, often included these examples:

• MT: “”Error writing stream to output. Output stream may be corrupted or
truncated.”

• Distorted: “”Error writing stream to output. Output stream may be corrupted
or **truncated**.”
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General

GPT-4-turbo struggled with implementing sentences into a JSON structured file as
desired. Instead of directly implementing the distorted sentence, it often included
verbose descriptions of the changes:

1. “The modified sentence after deleting a critical word would be: (c1) be fitted
with axles with:”

2. “relationships between society, economy, biodiversity and habitats; Removing
the word and changes the sentence to: relationships between society, economy,
biodiversity habitats; This alteration changes the meaning by”

3. “The sentence It shall report, in particular, on: does not contain a sentiment
to reverse, as it is a neutral statement indicating a requirement or obligation to
report specific information. Therefore, the sentence”

While the modifications were correct, their structure proved unhelpful and was
therefore filtered out of the final output.

4.4.3 Analyzing Low Scores in Curated Dataset

Despite the careful creation of a smaller dataset that does not include pre-existing
errors, the results indicate lower scores exist in the original translations in the curated
dataset. To analyze this, I examined the lowest-scoring original translations in the
curated dataset. The lowest scores given to the original translations are in the 0.4
range. This includes seven sentences that include all QE models. However, it is noTable
that six out of seven sentences scored this low on TransQuest. These sentences include:

• Source: “Wanneer de varkens ouder zijn dan drie tot vier maanden, moet bij een
deel van de varkens ook de temperatuur worden gemeten.”

• Target: “In case of pigs older than three to four months, this examination
must include the taking of temperature of a proportion of pigs.”

• Distorted target: “In case of pigs older than four to five months, this exami-
nation must include the taking of temperature of a proportion of pigs.”

Or:

• Source: “BEPALINGEN IN VERBANDMET ELEKTRONISCHE GEGEVENSVER-
WERKING;”

• Target: “PROVISIONS GOVERNING ELECTRONIC DATA PROCESSING‘;”

• Distorted Target: “PROVISIONS NOT GOVERNING ELECTRONIC DATA
PROCESSING;”

Most of these sentences are actually accurate in translation and would normally
not acquire a low score such as 0.4. The fact that TransQuest gives low scores to these
original translations, despite their accuracy, might suggest that the model may have
specific sensitivity or bias towards certain linguistic features or constructions in the
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text. This could be due to the training data used or the model’s inherent architectural
biases.

Furthermore, for these two example sentences, the distorted target acquired a higher
QE score than the original translations. This might indicate that TransQuest is less
adept at recognizing subtler nuances in translation quality. It could also imply that the
model weights certain errors or changes less severely than the absence of those features.

4.4.4 Quantifying the Errors

The fact that TransQuest gives low scores to these original translations, despite their
accuracy, suggests that the model might have specific sensitivity or bias towards certain
linguistic features or constructions in the text. This could be due to the training
data used for TransQuest or the model’s inherent architectural biases. Moreover, the
discrepancy in scoring between original and distorted sentences by TransQuest, where
distorted sentences sometimes receive higher scores, might indicate that the model is
less adept at recognizing subtler nuances in translation quality. It could also imply
that the model weights certain errors or changes less severely than the absence of those
features.

In order to objectively measure the impact of artificially implemented errors and
their frequency, I conducted a quantitative analysis using a random sample of 100
sentences. This sample was specifically chosen to compare the original target sentences
with the distorted versions produced by the GPT models. The analysis aimed to
identify and quantify the types of errors introduced during the prompting process. See
Table 4.13 for a distribution of errors in the sample.

Error Category Occurances in Sample Error Frequency

Named Entity 24 20,8%
Numbers 21 0%
Addition 14 35.7%
Deletion 12 25%
Negation 14 14.3%
Sentiment 16 12.5%

MT Hallucination 18 0%

Table 4.13: Distribution of Error Categories in the Sample

Analysis of Additions

The most common error observed in this sample was the deletion of words, which
occurred in conjunction with the addition of gibberish in five out of 14 instances. This
particular combination was the most frequent, highlighting a tendency of the models
to remove essential words while adding nonsensical ones, potentially complicating the
interpretation of the output. This deletion adds an unintentional error and might make
the isolation of gibberish errors less controlled.

Analysis of Named Entities

In the context of named entities, the results were mixed. In two instances, the sentences
remained unchanged despite the prompts, indicating a failure in the model’s response
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to the instruction. However, in three cases, the named entities were replaced with
synonyms. These replacements did not significantly alter the meaning of the sentences
from the source, they still represented a deviation from the target translation, however
still remained similar to the source sentence, which could affect quality estimation.

Deletion Errors

Regarding the deletion prompts, the models frequently removed function words instead
of content words, which occurred three times in this sample. Such deletions are not
considered critical enough for this project and might influence the intended decrease of
QE scores when comparing them to the original translations.

Sentiment and Negation Errors

Errors related to sentiment and negation were also noted. In two cases, the sentiment
of the sentence remained unchanged because of multiple attempts to reverse it, as
the models inadvertently reversed the sentiment twice within the prompting sequence.
Additionally, two instances of non-existent negations were identified, introducing inac-
curacies in the conveyed information.

General Observations

A general structure error was observed once, where the output included prompt notes,
altering the structure of the sentence to include meta-information like “the original
sentence was altered to [...].” This type of error, while only observed once in this
sample, underscores potential issues in how models handle structured prompts.

Limitations

It is crucial to acknowledge that this sample of 100 sentences, while informative, rep-
resents only a fraction of the base dataset. Therefore, the observed frequencies and
patterns may not fully capture the prevalence or distribution of errors across the base
set of distorted sentences. This analysis serves as an indicative snapshot, useful for
identifying trends and common issues but not definitive in scope.

4.4.5 Relating Errors to Literature Background

The error patterns observed in the prompting experiments with GPT models show
considerable alignment with those discussed in the literature, particularly the impact
of named entity errors, sentiment/negation inaccuracies, and hallucinations. These
findings validate the relevance of the selected error categories for our challenge test
sets.

However, there are discrepancies in the frequency and severity of some errors com-
pared to those reported in the background literature. For instance, the higher occur-
rence of named entity and sentiment errors in our dataset suggests that these error
types may be more challenging for the GPT models than previously reported in gen-
eral MT contexts. However, It must be noted again that the sample size for my error
analysis is small and might be inconclusive when regarding the entire dataset.
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4.5 Summary of Main Results

• QE Model Performance:

– CometKiwi showed the highest sensitivity to errors, especially to hallucina-
tions, clearly distinguishing between original and distorted translations.

– TransQuest demonstrated moderate sensitivity, with notable performance
towards hallucinations but less effectiveness with deletion, named entities,
and numbers.

– LaBSE performed consistently well, particularly in handling named entity
and number errors.

– LASER had the least sensitivity, showing minimal distinction between orig-
inal and distorted translations across error categories.

• Error Analysis Insights:

– Errors involving inappropriate replacements, particularly with named enti-
ties and synonyms, were common and sometimes led to nuanced semantic
shifts possibly affecting the controlled environment for predicting the scores.

– Sentiment and negation errors underscored the complexity of translating sen-
timent accurately, with occasional model failures in altering or maintaining
the correct sentiment.

– Repetitive and contextually inappropriate choices were noted in hallucina-
tions and gibberish errors, pointing to ongoing challenges prompt engineer-
ing.
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Discussion and Conclusion

5.1 Main Findings

This study aimed to answer the main question: “How effectively can current Machine
Translation Quality Estimation models identify and quantify different types of transla-
tion errors introduced by advanced large language models in a Dutch-English dataset?”
To address this, the study explored several sub-questions, each focusing on various as-
pects of the research.

5.1.1 Utilization of Generative Models for Creating Test Sets

One sub-question investigated whether generative models like GPT-3.5 and GPT-4
could be utilized to create challenge test sets by intentionally modifying sentences to
include specific error patterns.

The study found that generative models such as GPT-3.5-turbo and GPT-4-turbo
were indeed capable of generating synthetic datasets with specific error patterns. Using
structured prompts, these models successfully introduced various types of translation
errors, including named entities, numbers, negations, deletions, additions, and hallu-
cinations. GPT-4-turbo outperformed its previous version by following the prompts
slightly better and its output was therefore applied during the project. However, the
study also highlighted certain limitations, such as the variability and potential inconsis-
tency of the generative models’ outputs. Furthermore, a human should be in the loop
to identify whether these models accurately executed the prompts. My study showed
flaws in the production of some of these prompts, but perhaps this can be improved by
prompt engineering. Despite these challenges, the synthetic datasets provided a strong
foundation for testing the sensitivity and performance of MTQE models.

5.1.2 Performance of MTQE Models

Another sub-question examined which MTQEmodel—CometKiwi, TransQuest, LASER,
or LaBSE—performed superior when faced with these synthetic test sets.

Among the four models evaluated, it was found that CometKiwi exhibited the
highest sensitivity to the introduced translation errors, particularly in identifying hal-
lucinations and named entity distortions. TransQuest and LaBSE also performed well
but were less sensitive to number errors. LASER, on the other hand, showed the least
distinction between good and bad translations, indicating that it is least effective in
detecting specific types of errors. The performance of these models varied significantly
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across different error types, underscoring the importance of selecting MTQE models
based on the specific error patterns relevant to the application context.

Table 5.1 summarizes the best to least performing QE models based on the er-
ror categories for both the base and curated dataset. CometKiwi outperformed the
other models in all categories except numbers. In some cases where models performed
similarly, the models are presented with a backslash.

Error Category Best to Least

Named Entity CometKiwi - LaBSE - LASER/TransQuest
Numbers LaBSE - LASER - CometKiwi - TransQuest
Addition CometKiwi - TransQuest - LASER/LaBSE
Deletion CometKiwi - TransQuest/LASER/LaBSE
Negation CometKiwi - TransQuest/LASER/LaBSE
Sentiment CometKiwi - TransQuest/LASER/LaBSE

MT Hallucination CometKiwi - TransQuest/LaBSE - LASER

Table 5.1: Summary of Best Performing QE Model per Error Category

5.1.3 Challenges Posed by Specific Error Patterns

The study, while identifying several error patterns that posed consistent challenges for
the QE models, also highlighted the potential for improvement. Except for CometKiwi,
most models struggled with almost all error categories. Mainly errors involving num-
bers, omissions, and negations/sentiments were particularly problematic, with models
showing lower sensitivity to these types of distortions. However, the variability in
performance across different error types and domains also presents opportunities for
enhancing QE models in the future.

5.2 Discussion and Limitations

5.2.1 Model Sensitivity to Translation Errors

As mentioned, the study found that different MTQE models respond differently to var-
ious translation errors. The varying sensitivity of can mainly be attributed to their
underlying structures. CometKiwi, for instance, exhibited increased sensitivity to er-
rors such as hallucinations and distortions in named entities because of its design, which
takes into account a wide range of linguistic aspects, including tone and fluency. This
approach enables it to identify subtle flaws in text quality that models like LaBSE and
LASER, which primarily evaluate semantic similarity through sentence embeddings,
might miss. These differences in model architecture directly impact their capability
to distinguish between high-quality translations and mistakes, underscoring the impor-
tance of selecting a QE model that aligns with the anticipated error types in the specific
use case.

5.2.2 Impact of Data Quality

Furthermore, the comparison between the base dataset and the manually curated sub-
set highlighted the importance of dataset quality. Higher KL divergence values in the
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curated dataset suggest that well-created data may improve the ability of QE models
to distinguish between correct and incorrect translations. This finding underscores the
need for careful dataset creation and validation in developing robust QE systems. The
relatively low divergence values in comparing distorted and original sentences across
dataset sizes indicate that QE models are relatively consistent in evaluating bad trans-
lations, although slight variations exist when transitioning from large to small datasets.
This consistency suggests that while data quality is crucial, QE models can still provide
reliable assessments even in less controlled environments.

5.2.3 Domain-Specific Performance Variability

The study also analyzed domain-specific performance and found that models performed
best in the ‘Professional and Business Services’ and ‘Undefined Sector’ domains, while
the ‘Financials’ domain posed challenges, likely due to technical jargon and numerical
information that is typically included in this domain. This variability highlights the
need for either tailored approaches in QE or an improvement in training data, including
several domains based on target users.

5.2.4 Study Limitations

Generalizability

It is important to note several limitations of this study. Firstly, the research focused
solely on Dutch-English translation pairs, limiting the generalizability of the findings.
The results may not be directly applicable to other language pairs, particularly those
with different linguistic structures and translation challenges. Previous research has
explored additional language pairs to assess the broader applicability of these findings,
and this research attempted to add a new language pair to this particular field of study.

Furthermore, one might ask whether these insensitivities are significant enough for
MT or if they occur commonly in real situations. However, research has shown that
the errors examined in my report are frequent MT occurrences (Bentivogli et al., 2016;
Lommel et al., 2014; Sennrich et al., 2017; Müller et al., 2020; Specia et al., 2019) and
may have alarming consequences when left unidentified. Therefore, it is important that
the QE models are effectively and accurately identifying and quantifying these errors.

Reproducibility

Reproducibility is another significant challenge in this study. The use of generative
models like GPT-3.5-turbo and GPT-4-turbo introduces variability in the synthetic
data creation process. As these models may produce different outputs with each run,
ensuring the exact reproducibility of the datasets can be challenging. This inherent
variability can affect the consistency of the results and poses a limitation in replicating
the study.

Circularity Concerns

The issue of circularity is also a concern. A potential circularity exists in using language
models to generate errors that are subsequently evaluated by QE models trained on
similar data. This could lead to biased evaluations if the models are overly familiar
with the types of distortions introduced. CometKiwi and TransQuest are known to be
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trained on previous WMT annotated texts in multiple languages. Recent WMT tasks
included critical error challenge tests, which pose similar error categories evident in this
study. However, one main difference is that these models have no direct Dutch training
data from WMT, as WMT has never experimented with this language. Therefore, it is
unlikely the models will have seen Dutch source sentences. However, it could be likely
that the distorted English target sentences could have been familiar to the QE models.
Investigating alternative approaches to synthetic data creation that do not rely on the
same models used for evaluation can help reduce potential biases and circularity in the
research.

Dataset Complexity

Finally, the complexity of the dataset, including incomplete sentences, domain-specific
jargon, and sentences consisting solely of numbers, may have impacted the performance
of QE models. These grammatical complexities can confuse the proper performance
of QE models and may need careful consideration in dataset preparation and model
evaluation.

5.3 Conclusion and Future Work

5.3.1 Study Summary and Key Findings

This study aimed to assess the effectiveness of current Machine Translation Quality
Estimation (MTQE) models in identifying and quantifying different types of translation
errors within a Dutch-English dataset. To achieve this, advanced generative models,
including GPT-3.5-turbo and GPT-4-turbo, were used to create synthetic datasets with
deliberate error patterns. This approach provided a controlled environment to evaluate
the robustness of MTQE models such as CometKiwi, TransQuest, LASER, and LaBSE.

The findings reveal significant variations in the performance of these models. CometKiwi
appeared to be the most sensitive to various translation errors, especially hallucinations
and named entity distortions, while TransQuest and LaBSE also showed commendable
performance, though with less sensitivity. LASER demonstrated the least effectiveness
in detecting the specific types of errors introduced in this study, suggesting that its
intrinsic training limitations restrict its applicability to these error patterns. Surpris-
ingly, LaBSE appeared to be the most sensitive to number error distortions, while the
rest of the models remained relatively insensitive towards this error type. These results
underscore the necessity of selecting appropriate QE models based on the specific types
of errors most relevant to the context in which they will be applied.

5.3.2 Limitations of the Study

Despite these valuable insights, the study faced several limitations, including the focus
on a single language pair (Dutch-English), reproducibility issues inherent in the use of
generative models, and the complexity of the dataset. Addressing these limitations in
future research will be crucial for advancing the field of MTQE. Exploring additional
language pairs, developing more consistent synthetic data generation methods, and
tailoring QE models to handle domain-specific challenges will enhance the reliability
and applicability of these systems.
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5.3.3 Future Research Directions

To improve the effectiveness and dependability of MTQE models, future work can
explore various routes based on the findings and insights from this research. Following
studies should contain a wider range of translation errors, encompassing those not only
associated with accuracy but semantics, pragmatics, and stylistic variations. Assessing
how QE models handle these complex error types can offer a more comprehensive
evaluation of their stability and effectiveness in various linguistic circumstances.

Moreover, the results section indicated that while introducing distortions, the syn-
thetic dataset created using GPT models also corrected grammar errors present in the
original translations. This unintentional correction poses an interesting route for future
research, namely, assessing whether these grammatical improvements alone could lead
to higher QE scores. Investigating this aspect would offer insights into the impact of
syntactic correctness on the overall performance of QE models.

The results section also revealed an intriguing deviation: some high-quality origi-
nal translations received surprisingly low QE scores, while certain distorted sentences
achieved higher scores than their original counterparts. This discrepancy highlights a
critical need for a detailed analysis of the factors influencing QE model evaluations.
Future studies should delve into why these inconsistencies occur, exploring potential
biases or limitations within the QE models that may misjudge translation quality. A
thorough understanding of these phenomena could lead to significant improvements in
the accuracy and reliability of QE assessments.

Furthermore, considering the variability in QE model performance across different
domains, as identified in this study, upcoming research should concentrate on training
and fine-tuning QE models using domain-specific data. This can increase the models’
sensitivity to specialized terminology and context-dependent errors, making them more
effective in professional and technical translation settings. Adapting QE models to
specific domains will heighten their accuracy and reliability in real-world applications.

Additionally, the unpredictability and inconsistency observed in the outputs of gen-
erative models such as GPT-3.5-turbo and GPT-4-turbo underscore the necessity for
more advanced methods of synthetic data creation. Future work should focus on refin-
ing prompt engineering strategies to ensure that produced translations are consistent
and error-free. Developing robust prompt templates and exploring alternative gener-
ative approaches can amplify the reliability and reproducibility of synthetic datasets,
establishing a stronger foundation for QE model evaluation.
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Appendix A

Appendix Title

Domain Sentences Words Avg. Words/Sentence

Computer Software 3,746 47,833 12.77
Financials 1,230 18,680 15.19

Professional and Business Services 4,447 67,169 15.10
Undefined Sector 25,289 383,806 15.18

Table A.1: Domain Division of the Full Dataset

All the final prompts used for GPT-3.5-turbo and GPT-4-turbo:

• ‘NamedEntities’, ‘In the following sentence change some named entities (people,
organizations, locations) so they are unrecognizable but still existing named en-
tities. Leave the rest of the sentence as is.’

• ‘’gibberish’, ‘In the following sentence add a nonsense word that has no meaning
somewhere in the sentence. Leave the rest of the sentence as is. Ensure that the
chosen replacement is random and not limited to a narrow set of words.’

• ‘sentiment’, ‘In the following sentence, reverse the sentiment to convey the op-
posite meaning while keeping as much of the original sentence intact as possible.
If sentiment reversal does not make sense or is not possible, do not just add
negation, but leave the sentence unchanged.’

• ‘hallucinations’, ‘In the following sentence, replace one important word with ran-
dom, grammatically correct but semantically incorrect words that change the
meaning of the sentence. Ensure that the chosen replacement is random and not
limited to a narrow set of words. Do not add any additional words to the sentence
and leave the rest of the sentence as is. ’

• ‘deletion’, ’In the following sentence, delete a single critical word that changes
the meaning of the sentence while ensuring the sentence remains grammatically
correct. The rest of the sentence should be left unchanged. ’

• ‘negation’, ’In the following sentence, reverse the meaning by using negation.
either introduce or remove a negation while keeping the exact original words and
structure of the sentence intact and consider using suffixes or prefixes like un-,
im-, in-, il-, ir-, and dis- where appropriate. ’
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