
Research Master Thesis

LLMs as annotators for machine
translation quality estimation

Sidi Wang

a thesis submitted in partial fulfilment of the
requirements for the degree of

MA Linguistics
(Human Language Technology)

Vrije Universiteit Amsterdam

Computational Lexicology and Terminology Lab
Department of Language and Communication

Faculty of Humanities

Supervised by: Sophie Arnoult
2nd reader: Piek Vossen

Submitted: June 30, 2024

Abstract

Multidimensional quality metric (MQM) is a flexible annotation framework for trans-
lation evaluation. The rich information from MQM annotations has been utilized for
training machine translation (MT) quality estimation (QE) models, aiming at obtaining
high correlations with human judgment data. However, the annotation process often
requires using expert human annotators, and thus is time-consuming and expensive.

As large language models (LLMs) with the multi-head attention mechanism demon-
strate excellent performance on various benchmark NLP tasks, researchers start to
explore LLMs’ capabilities in performing MTQE annotation.

In this project, we explore LLMs’ behaviors when prompted to generate MQM an-
notations for the Chinese-to-English language pair and enhance the annotation quality
using prompt engineering. We use prompt patterns in prompt design to improve its
structural component and conduct four prompting experiments to develop a prompting
technique PPbMQM (prompt-pattern-based-MQM) for the MQM annotation task.

We use the annotations generated by PPbMQM to train a score prediction QE
model. This model achieves a higher Pearson correlation than the baseline model that
was trained on human annotations. Results of the prompting experiments and QE
model experiments demonstrate LLMs’ capabilities for the MQM annotation task.

i

Declaration of Authorship

I, Sidi Wang, declare that this thesis, titled LLMs as annotators for machine translation
quality estimation and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a degree degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Date: June 30th 2024

Signed:

iii

Acknowledgments

I would like to express my gratitude to my supervisor, Sophie Arnoult, for her unwa-
vering support and guidance throughout this journey.

I am also deeply thankful to Amir and David at TAUS for their expert advice in
the QE domain.

A special thanks to my friends, M and K, for their endless encouragement and for
always being there to listen, despite being in three different time zones.

I dedicate this thesis to my parents, who have always provided me with uncondi-
tional love and support, and to myself, as a mark of a new beginning in my life.

v

List of Figures

1.1 An example of MQM . 1

2.1 Quality score calculation from MQM official website 7
2.2 General architecture of COMETKIWI 8

3.1 The basic prompt designed by applying prompt patterns 13
3.2 A segment with human and GPT-4 Turbo MQM annotations 16
3.3 Flowchart: intrinsic evaluation . 16

4.1 Sub-experiment 3: the updated prompt based on the result of sub-
experiment 2 . 23

4.2 Sub-experiment 3: error number distribution with yellow indicating the
counts of human identified errors and blue the LLM generated errors . . 24

4.3 Sub-experiment 3: confusion matrix of severity 25
4.4 Sub-experiment 3: GPT-4 Turbo error type classification report and

confusion matrix . 25
4.5 Sub-experiment 3: GPT-4o error type classification report and confusion

matrix . 26
4.6 Sub-experiment 3: LLaMA 3 error type classification report and confu-

sion matrix . 26
4.7 Two-shot prompt for sub-experiment 4 improved upon previous prompt-

ing experiments . 31
4.8 Sub-experiment 4: error number distribution of two setups 32
4.9 Error type classification report: Setup 1 32

vii

List of Tables

3.1 Main data fields of the Expert-based human evaluation WMT 2023 gen-
eralMT dataset . 13

3.2 Agreement between annotators in the Expert-based human evaluation
of WMT generalMT 2022 dataset (Chinese-to-English) 15

4.1 Results of sub-experiment 1: Explore LLMs’ knowledge of QE and MQM 20
4.2 Sub-experiment 3: results of three LLMs 23
4.3 Hallucination analysis (the numbers in parentheses represent the count

of Major errors) . 26
4.4 Sub-experiment 3: recall, precision and f1 on avg segment error span . . 27
4.5 Result of the additional stability test with 400 segments 28
4.6 Sub-experiment 4: results of two setups 32

5.1 The result of two fingerprints . 35
5.2 The results of the baseline model and PPbMQM QE model 36
5.3 Baseline model: bucket analysis . 36
5.4 PPbMQM QE model: bucket analysis 37

A.1 Experiment setup: Sub-experiment 1 . 45
A.2 Experiment setup: Sub-experiment 2 & 3 45
A.3 Experiment setup: Sub-experiment 4 . 45

ix

Contents

Abstract i

Declaration of Authorship iii

Acknowledgments v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Aim and relevance . 2

1.2 Problem definition . 2

1.2.1 Sub-question 1 . 3

1.2.2 Sub-question 2 . 3

1.3 Contribution . 3

1.4 Outline . 3

2 Background and Related Work 5

2.1 Background: Machine translation evaluation 5

2.1.1 Reference-based evaluation . 5

2.1.2 Quality estimation . 5

2.1.3 Human judgement data . 6

2.1.4 Metric meta-evaluation . 7

2.1.5 Learned metrics . 7

2.2 Background: Prompt engineering . 8

2.2.1 Large language models . 8

2.2.2 Prompt engineering guideline . 8

2.3 Related work: Prompting for MQM style annotations 9

2.3.1 MQM prompting techniques . 9

3 Methodology 11

3.1 Prompting experiment design . 11

3.1.1 Sub-experiment 1: Explore LLMs’ knowledge on QE and MQM 11

3.1.2 Sub-experiment 2: Basic prompt and format adjusting 11

3.1.3 Sub-experiment 3: Basic prompt with 1000 segments 12

3.1.4 Sub-experiment 4: Improving basic prompt prompt 12

3.1.5 Basic prompt design . 12

3.1.6 Reproducibility . 12

xi

3.2 Data . 13

3.2.1 Data description . 13

3.2.2 How well do human annotators agree with each other? 15

3.3 Evaluation . 15

3.3.1 Intrinsic evaluation . 16

3.3.2 Extrinsic evaluation . 17

4 Prompting for MQM annotations 19

4.1 Sub-experiment 1: Explore LLMs’ knowledge of QE and MQM 19

4.1.1 Results analysis . 19

4.2 Sub-experiment 2: Basic prompt and format adjusting 22

4.2.1 Experiment result . 22

4.3 Sub-experiment 3: Basic prompt with 1000 segments 22

4.3.1 Results analysis . 23

4.3.2 Hallucination . 26

4.3.3 Error span recall, precision and f1 27

4.3.4 Quality score correlation . 27

4.3.5 Additional stability test . 28

4.3.6 Sub-conclusion . 28

4.4 Sub-experiment 4 . 29

4.4.1 Prompt design . 29

4.4.2 Prompt development . 29

4.4.3 Result analysis . 30

4.4.4 Sub-conclusion . 33

5 Training QE model with LLM generated annotations 35

5.1 Training data annotation . 35

5.2 Model training . 36

5.2.1 Baseline human annotation model 36

5.2.2 PPbMQM QE model . 36

5.3 Model testing . 36

5.3.1 Result analysis . 36

5.3.2 Sub-conclusion . 37

6 Discussion 39

6.1 Humans are not always the best annotators 39

6.2 Reproducibility . 40

6.2.1 LLMs stability . 40

6.2.2 Experiment setup and open resources 40

6.2.3 Proprietary or open-source LLM? 40

6.3 Limitation and ethical issues . 40

6.4 Future research . 41

6.4.1 Flexible prompt development for other language pairs 41

6.4.2 From score prediction to fine-grained error detection QE 41

6.4.3 Combine output from different LLMs 41

7 Conclusion 43

A Prompting experiment setup 45
A.1 Sub-experiment 1 . 45
A.2 Sub-experiment 2 & 3 . 45
A.3 Sub-experiment 4 . 45

B Baseline model experiment setup 47

C Resources 49

Chapter 1

Introduction

LLMs such as GPT models exhibit human-level performance on various benchmark
NLP tasks (Achiam et al., 2023). These LLMs are trained with a vast amount of
multi-lingual data enabling their multilingual capability. Recently, many studies have
explored using LLMs for cheaper yet reliable annotations for Machine translation (MT)
quality estimation (QE).

Quality estimation

The goal of the quality estimation task in the field of machine translation is to au-
tomatically assess the quality of translation outputs without depending on reference
(human) translations (Specia and Shah, 2018). Usually, the granularity for QE tasks is
at the word-level, sentence-level, or system-level, taking human judgment as the gold
standard. Given the source and its translation (target) from an MT system as input,
word-level QE predicts binary quality labels for the target sentence; sentence-level QE
predicts a single quality score (Rei et al., 2022). The system-level QE task produces
the rankings of translation systems in (Kocmi et al., 2021).

Multidimensional quality metric (MQM)

A segment in a QE task refers to a source sentence and its target translation produced
by an MT system. The ground truth for a segment can be derived from its MQM
annotation. MQM is a flexible framework developed by the EU-funded QTLaunch-
Pad project. It provides a hierarchy of translation errors with a shared vocabulary
(Burchardt, 2013; Lommel et al., 2014).

Figure 1.1: An example of MQM

Figure 1.1 is an example of MQM annotation for a Chinese-to-English segment. It
contains: 1) a source sentence; 2) a target translation; 3) error(s) details including the

1

category, error spans that are usually indicated by the start and end indexes, and error
severity level, which is Major in the example.

Despite the rich information provided by MQM annotations, most automatic met-
rics only use the final quality score that is calculated based on the number of errors and
their severity labels, discarding the error span and error type information (Fernandes
et al., 2023; Blain et al., 2023).

Large Language Models (LLMs) for QE annotations

Kocmi and Federmann (2023b) first proposed a prompting technique GEMBA for QE,
which is a GPT-based metric that demonstrates the state-of-the-art capabilities at the
system-level QE. After that, several prompting techniques like AUTOMQM (Fernandes
et al., 2023) and GEMBA-MQM (Kocmi and Federmann, 2023a) as evaluation metrics
were developed for QE tasks. However, at the segment level, LLMs do not measure up
to the best learned metrics, which are transformer-based models fine-tuned on human
judgment data (Fernandes et al., 2023).

1.1 Aim and relevance

In White et al. (2023), prompts are defined as: “instructions given to an LLM to en-
force rules, automate processes, and ensure specific qualities (and quantities) of gener-
ated output”. Prompt patterns, on the other hand, “are a knowledge method analogous
to software patterns since they provide reusable solutions to common problems faced in
particular contexts”. Applying prompt patterns in prompt experiments can improve the
re-usability by structuring the prompt, providing methodological grounding and even-
tually, improving the outputs of LLM conversation towards desired directions (White
et al., 2023).

Despite showing LLMs’ capabilities in the QE task, the above-mentioned prompt-
ing techniques fail to follow a structural approach or provide explanations for prompt
design. Furthermore, these studies do not conduct a comprehensive analysis of LLMs’
behaviors in different dimensions (such as error type, severity, and hallucination analy-
sis). Last but not least, since it is expensive and slow to run the QE task with a system
like GPT-4 (Rei et al., 2023), it is worthwhile to investigate using LLM annotations
to train smaller-size models that are specifically built for QE tasks. By having such
a customized QE model in production, the cost can be reduced compared to directly
implementing an LLM of GPT-4 size in the QE pipeline.

In our project, we will explore LLMs’ behaviors in generating MQM annotations
for the Chinese-to-English language pair. By applying prompting patterns in prompt
design and conducting four iterative prompting experiments, we aim to improve the
annotation quality at the segment level. One step further, we will investigate what
influences LLM-generated MQM annotations will bring to the downstream QE model.

1.2 Problem definition

The main question of this project is: how good are LLMs as annotators for MTQE?
Specifically, can we use MQM annotations produced by LLMs for downstream segment-
level QE model training?

1.2.1 Sub-question 1

In order to train a QE model that can produce a quality score for each translation
segment, we will need high-quality MQM annotations. Our first sub-question is: how
can we enhance the quality of annotations from LLMs at the segment level?.
We will explore this question by designing several prompting experiments and improve
the prompt iteratively based on the findings from previous prompting experiments.

1.2.2 Sub-question 2

After we have obtained LLM-generated MQM annotations, to know what influences
these annotations will bring to the downstream QE model, we need to answer the
second sub-question: how well does the QE model trained on LLM-generated
annotations perform compared to the baseline model trained on human
annotations?

1.3 Contribution

The main contributions of our project include:

• By applying prompting techniques and an iterative prompt development ap-
proach, we make the prompting experiments more transparent with a stronger
methodological grounding than previous research. We develop a GPT-4o-based
prompting technique PPbMQM (prompt-pattern-based-MQM).

• We adapt previous research on MQM evaluation and design an evaluation pipeline
that can comprehensively evaluate different aspects of the MQM annotation
task. The pipeline includes output parsing, error number/ error type/severity
label/error span analysis, and quality score correlation. We have conducted thor-
ough evaluations on LLM-generated annotations using this pipeline.

• We show that the annotations generated by PPbMQM can be used for down-
stream QE model training and achieve similar or even better performance than
the model trained on human annotations. Running QE tasks on such a down-
stream QE model is cheaper and faster than directly prompting LLMs such as
GPT-4 to assess the translation quality.

1.4 Outline

In Chapter 2, we introduce the background of machine translation evaluation and
prompt engineering and highlight current studies on prompting for QE annotations.

In Chapter 3, we first present our methodology by introducing the experiment design
and the basic prompt design based on prompt patterns. Then we describe the data we
used for prompt development and QE model training. At last, we describe the intrinsic
evaluation method for prompting experiments, and the QE model training experiment
as the extrinsic evaluation method.

In Chapter 4, we describe four prompting sub-experiments for the development of
PPbMQM. We analyze the results of each prompting experiment, based on which we
improve the prompt for the following prompting experiment.

In Chapter 5, we describe the data annotation, training, and testing for the baseline
QE model and the PPbMQM QE model. We analyze the experiment result and conduct
a bucket analysis on segments of different qualities on both models.

In Chapter 6 we first discuss the issue revolving around the quality of human annota-
tions. Then we discuss reproducibility from different aspects of prompting experiments:
the stability of LLMs, experimental setup documentation, and the debate over propri-
etary vs. open-source LLMs. Then we discuss the limitations and the ethical issues.
Finally, we provide directions for future research.

Chapter 2

Background and Related Work

In this chapter, we first introduce reference-based evaluation metrics and learned met-
rics for quality estimation that do not depend on reference translations. Next, we
provide a guideline for prompt engineering with prompt patterns we can use for our
annotation task. Lastly, we present recent research on MQM prompting techniques and
the current research limitations.

2.1 Background: Machine translation evaluation

2.1.1 Reference-based evaluation

To automate the evaluation task, the traditional approach usually compares the lexical
similarity between the MT translation output with a reference translation which is
deemed correct. The comparison can be word-based, like BLEU (Papineni et al., 2002),
or character-based like chrF (Popović, 2015). These lexical-based metrics, however,
usually highly depend on word matching and fail to capture the overall meaning and
the fluency of translation output.

Embedding-based metrics, on the other hand, measure the similarity between the
vector representations of the MT translation output and its reference by utilizing em-
beddings like BERTscore (Zhang et al., 2019). Compared to lexical-based metrics,
embedding-based metrics often show a higher level of correlation with human judg-
ment due to their capabilities to capture deeper semantics in a latent space (Lee et al.,
2023).

However, all the above-mentioned metrics require high-quality reference translations
which are rarely available. Similar to other language generation tasks, in MT evalua-
tion, usually there is not just one correct translation, but a set of correct translations
for a given source sentence (Fernandes et al., 2023). Consequently, reference-based
metrics are not always feasible, robust, and reliable.

2.1.2 Quality estimation

Different from the above evaluation metrics that need reference translations, quality
estimation systems are built to assess the quality of translation outputs without access
to reference translations. Taking human judgment as gold standards, QE tasks can be
at word-level, sentence-level or system-level. Xenouleas et al. (2019) propose a BERT-
based model SUM-QE for quality estimation that obtains high correlations with human
ratings in a set of linguistic criteria for generated text. Sellam et al. (2020) propose a

5

BERT-based learned metric that can model human judgment for text generation tasks.
Rei et al. (2022) develop QE systems built upon COMETKIWI and pre-trained on
human judgment data that achieve the best results for all three tasks in the WMT
2022 QE Shared Task. Rei et al. (2023) further develop the COMETKIWI-22 model
and rank the first in all multilingual tasks in the WMT 2023 QE Shared Task. The
architecture of COMETKIWI will be introduced in Section 2.1.5.

2.1.3 Human judgement data

Direct assessment (DA)

DA, in which annotators are asked to rate translation quality for each segment, is a
common way to collect human judgment data for QE systems. In the WMT 2023
QE task, the DA data provided for each source-translation pair is annotated using a
scale of 0-100 with 100 indicating a perfect translation and 0 representing a completely
incorrect translation (Blain et al., 2023).

However, issues arise when directly asking assessors to provide a single score to
represent translation quality and can lead to noisy judgments. For instance, when
assessing two translation candidates for the same source sentence, how should they
quantify the score differences if one is more natural but less accurate than the other
(Freitag et al., 2021).

MQM

The quality score deriving from the MQM annotations is another common source of
human judgment data for sentence-level QE tasks. In the 2023 WMT QE shared task,
MQM annotations were used for word-level fine-grained error detection QE systems
training, where the error span information was converted to a sequence of Bad/Good
labels for all tokens, making use of MQM’s rich information (Blain et al., 2023). Com-
pared to DA, MQM provides more detailed information on the identification of errors
that is the ground for any scoring and ranking (Freitag et al., 2021).

The current version of MQM typology 1 has eight core error categories: Accuracy,
Terminology, Linguistic conventions, Style, Locale conventions, Audience appropriate-
ness, Design and Markup, and Custom, and each top category is further divided into
several subcategories. In terms of error severity level, there are Neutral, Minor, Ma-
jor, and Critical. Based on the needs for different QE tasks, users can customize the
error categories and severity levels. This adaptability makes MQM suitable for diverse
downstream MT applications.

When converting MQM annotations to quality scores, for weight setting, Freitag
et al. (2021) give Minor weight at 1 and Major at 5, the combination of which was found
to provide the best balance between stability and ability. When calculating the quality
score for each segment, the MQM official website provides “Scoring method without
calibration” method 2 (see Figure 2.1). Because of the 5-time weight difference, a major
error will be penalized more severely than a minor error. Negative quality score values
from this formula will all be mapped to 0. By applying this method to a segment with
MQM annotation, a quality score ranging from 0 to 1 can be derived, with 1 indicating
perfect quality with no error and 0 bad quality.

1https://themqm.org/the-mqm-typology/, access date: June 14th, 2024
2https://themqm.org/error-types-2/the-mqm-scoring-models/, access date: June 7th, 2024

https://themqm.org/the-mqm-typology/
https://themqm.org/error-types-2/the-mqm-scoring-models/

Figure 2.1: Quality score calculation from MQM official website

2.1.4 Metric meta-evaluation

The goal of metric meta-evaluation is to estimate translation from MT systems “by
comparing the agreement between the metric scores and ground-truth quality scores”
(Fernandes et al., 2023), where three correlation scores are usually used for the com-
parison: Pearson, Spearman, and Kendall’s τcoefficient. The Pearson correlation
coefficient assumes that two variables are of normal distribution and have a linear rela-
tionship. Spearman and Kendall’s τcoefficient, on the other hand, computes by rank
of two variables that may or may not have a linear relationship. Kendall’sτcoefficient
calculates the number of concordant and discordant pairs. All three coefficients range
from -1 to 1, with 0 indicating two variables are completely independent, 1 if they are
the same, and -1 if they are the same but in the opposite direction (Lee et al., 2023).

2.1.5 Learned metrics

LLMs based neural metrics

The multi-head attention mechanism in transformers is the key component that en-
ables a deeper contextualized understanding of input sentences (Vaswani et al., 2017;
Liu et al., 2019) and is shown to perform well in many NLP tasks including machine
translation. Researchers of automatic evaluation metrics have also started to build
MT evaluation frameworks by using transformer-based models, such as XLM-R Large
(Conneau et al., 2020)3 used in Rei et al. (2022). These learned metrics, aiming at
assigning a single quality score to a candidate translation, correlate better than tradi-
tional metrics like BLEU (Freitag et al., 2022).

The COMET framework

COMET (Cross-lingual optimized metric for evaluation of translation) is a neural
framework for “training highly multilingual and adaptable MT evaluation models that
can function as metrics” (Rei et al., 2020). The COMETKIWI model is built on top
of the COMET framework and OPENKIWI (Kepler et al., 2019) and can be trained
on human judgment data for QE tasks. Figure 2.2 shows the general architecture of
COMETKIWI from Rei et al. (2022).

3https://huggingface.co/xlm-roberta-large

https://huggingface.co/xlm-roberta-large

Figure 2.2: General architecture of COMETKIWI

2.2 Background: Prompt engineering

2.2.1 Large language models

GPT-4, with its variants GPT-4.0-Turbo and GPT-4o, is a large-scale transformer-
based model pre-trained with the objective of predicting the next token in a document.
Its training data includes both publicly available data and licensed proprietary data
from third parties (Achiam et al., 2023). Llama 3 is a collection of open-source founda-
tion language models with different scales from 7B to 65B parameters. Unlike GPT-4,
LLaMA models are trained completely using only publicly available datasets (Touvron
et al., 2023).

Hallucination

Despite LLMs’ ever-improving capabilities, they do not always produce truthful re-
sponses and have the tendency to hallucinate. Sometimes LLMs generate content that
is unfaithful to the input context, or provide false information about the world (Achiam
et al., 2023).

2.2.2 Prompt engineering guideline

White et al. (2023) describes a prompt pattern catalog for prompt engineering that can
serve as a framework to solve a range of tasks, enabling effective conversations with
LLMs. Prompts can be designed using the below patterns from this catalog, combining
both deductive and inductive approaches:

The question refinement pattern

1) Intent: this pattern can be used in the prompt engineering process by asking the
LLM to refine the input questions, and providing additional information to optimize
the prompt.

2) Contextual statement example: what is the best way to instruct a professional
Chinese-to-English translator to assess the quality of a translation?

The alternative approach pattern

1) Intent: this pattern can mitigate the cognitive biases of the user, enabling the LLM
to provide an alternative approach to the task.
2) Contextual statement example: When you are assessing the translation quality,
summarize all potential approaches.

The reflection pattern

1) Intent: this pattern can to used to obtain LLMs’ rationale behind the given answer.
2) Contextual statement example: Please provide an explanation for each error you
identified.

The cognitive verifier

1) Intent: the pattern is to ask the LLM to convert a high-level question into multiple
sub-questions.
2) Contextual statement example: Please provide other questions that can help to solve
the Chinese-English translation quality estimation task.

The persona pattern

1) Intent: the persona pattern can direct the LLM to take a certain point of view or
perspective when generating answers.
2) Contextual statement example: You are a multilingual Chinese and English speaker
and you work as a translation quality annotator.

The output automater pattern

1) Intent: this pattern can instruct LLM to generate a script or other automation
artefact that can reduce the manual editing effort
2) Contextual statement example: from now on, whenever you generate annotations
for each error, provide them in a JSON format with the following keys: error type,
severity, error span index, marked text.

2.3 Related work: Prompting for MQM style annotations

2.3.1 MQM prompting techniques

Recent works have shown a growing interest in employing LLMs for translation evalu-
ation via zero- and few-shot methods (Fernandes et al., 2023). Prompting techniques,
such as GEMBA (Kocmi and Federmann, 2023b), AUTOMQM (Fernandes et al., 2023)
and GEMBA-MQM (Kocmi and Federmann, 2023a), demonstrate that LLMs can show
state-of-the-art performance at the system-level, but at the segment-level, when com-
pared to learned metrics, their correlations with human judgment data are still low.

Rei et al. (2023) design a five-shot prompt GPT4-QE to predict the location and
severity. It performs well in the fine-grained error span detection task. However,

sentence-level scores derived from span and severity annotations show a poor correlation
with human DA. They also discovered that in the few-shot setting, the number of
examples, the order of examples, and the number of errors in each example influence the
behaviors of GPT-4 noticeably. Similarly, the GEMBA metric described in Kocmi and
Federmann (2023b) also demonstrates that among the four prompt templates tested,
the least constrained one has the best performance.

GEMBA and GEMBA-MQM are all GPT-based metrics. However, there are several
problems revolving around proprietary LLMs like OpenAI models: firstly, running QE
with a system such as GPT-4 is expensive (Rei et al., 2023); secondly, their training
processes largely remain opaque in terms of the training data and whether any published
test data is included in it; thirdly, the reproducibility of these systems can not be
guaranteed since users have no control over its future availability or update (Kocmi
and Federmann, 2023a).

Chapter 3

Methodology

In Section 1.1, we concluded the limitations of current MQM prompting techniques and
presented our research goal as to improve the quality of segment-level MQM annotations
for downstream QE model training.

In this chapter, we describe our approaches in prompting experiment design, data
and preprocessing by presenting the experiment design section first, since the design
affects our data pre-processing approach. Lastly, we introduce the intrinsic and extrinsic
evaluation methods. We derive all quality scores from MQM annotations by applying
the formula described in Section 2.1.3.

3.1 Prompting experiment design

Kocmi and Federmann (2023b) mention that the GEMBA prompting technique only
works with GPT-3.5 and larger models. Based on this finding, in our project, we
select GPT-3.5 Turbo, GPT-4.0 Turbo, GPT-4o and LLaMA 3 70B for prompting
experiments.

To explore LLMs’ capabilities for the MQM annotation task, we design four prompt-
ing experiments. Each sub-experiment is adapted based on the result of the previous
experiment. We call this approach iterative prompt development. A prompting tech-
nique ‘PPbMQM’ will be developed based on these four sub-experiments.

3.1.1 Sub-experiment 1: Explore LLMs’ knowledge on QE and MQM

In this experiment, we ask LLMs questions in order to test their knowledge of the
machine translation quality estimation task and their reasoning capabilities for MQM
annotation. All questions are refined using ChatGPT by applying the question re-
finement pattern . Initially, we will conduct experiments on four models: GPT-3.5,
GPT-4 Turbo, GPT-4o, and LLaMA 3.

3.1.2 Sub-experiment 2: Basic prompt and format adjusting

In this second sub-experiment, aiming to examine and adjust the output format, we
prompt each LLM with 10 test segments with a basic prompt, the design of which will
be explained in Section 3.1.5. Based on the result, the basic prompt is improved and
adjusted for the follow-up sub-experiment.

11

3.1.3 Sub-experiment 3: Basic prompt with 1000 segments

In this sub-experiment, we use 1000 segments to test LLMs’ capabilities using zero-shot
prompting. The LLM output will be evaluated automatically for error span, error type,
severity, quality score correlation, and manually for hallucination.

3.1.4 Sub-experiment 4: Improving basic prompt prompt

Based on the analysis of sub-experiment 3, one LLM will be chosen with a further
improved prompt version. Few-shot method will be implemented to improve the per-
formance.

3.1.5 Basic prompt design

Figure 3.1 shows the basic prompt. To reduce the complexity of the task, we will
prompt for the top category error types: Accuracy, Fluency, Terminology, Style, and
Locale convention with two severity level labels ‘Major’ and ‘Minor’. Three prompt
patterns presented in Section 2.2.2 are used for the basic prompt design:

1) The persona pattern: You are a professional Chinese-English translator.
This statement asks LLM to act as a specific persona – in this case, a Chinese-English
translator for our task, which should evoke traits associated with the persona.

2) The output automater pattern: Please output a json file with the following keys;
Please only generate in json format
These two statements ask the LLM to provide the output in JSON format, constraining
the structure of the output. If the LLM follows the instructions and produces JSON
pattern output, the manual editing effort for automatic evaluation can be reduced.
Additional instructions also are given for each key in order to obtain output with a
standard vocabulary for MQM annotations.

3) The reflection pattern: 5. explanation
Asking LLMs to produce an explanation for each error identified can help us to under-
stand the reasoning and assumption behind it.

Furthermore, ‘using the MQM annotation scheme’ is added in order to elicit more
domain knowledge that could be possibly acquired during the training phase.

3.1.6 Reproducibility

OpenAI states: determinism is not guaranteed, and you should refer to the system fingerprint
response parameter to monitor changes in the backend. This fingerprint represents the
backend configuration that the model runs with1.

In all prompting experiments, we track this value for each request and will conduct
analysis by comparing results from different fingerprints. To our knowledge, LLaMA
models do not have such a backend system marker value that can be retrieved when
calling APIs. The hyperparameter settings for each experiment are well-documented
and presented in Appendix A.

1https://cookbook.openai.com/examples/reproducible_outputs_with_the_seed_parameter,
access date: April 24th, 2024.

https://cookbook.openai.com/examples/reproducible_outputs_with_the_seed_parameter

Figure 3.1: The basic prompt designed by applying prompt patterns

Column Description

system The name of the translation system

doc The document ID

docSegId The segment ID in the document

globalSegID the global segment ID

rater The rater ID

source The source Chinese sentence.

target The target English translation with error span marked by
delimiters

category The concatenated top and sub category

severity The severity level (Major or Minor)

Table 3.1: Main data fields of the Expert-based human evaluation WMT 2023 gen-
eralMT dataset

3.2 Data

The datasets used for this project are Expert-based Human Evaluations for 16 sub-
missions of WMT generalMT 2023 and generalMT 2022 for the Chinese-to-English
language pair 2. The 2023 dataset contains data from news, e-commerce user reviews,
and manuals domains (Kocmi et al., 2023). The 2022 dataset contains data from con-
versation, e-commerce, news, and social media domains (Kocmi et al., 2022). The
MQM framework-based annotation methodology is explained in Freitag et al. (2021).

3.2.1 Data description

The 2023 dataset contains 55216 instances and the 2022 data contains 46419 instances
in total, with each row representing an error for a segment. Table 3.1 describes the
main data fields in the 2023 dataset, with which the 2022 data shares similar field
properties.

2Github repository:
https://github.com/google/wmt-mqm-human-evaluation/

https://github.com/google/wmt-mqm-human-evaluation/

Error type

The error hierarchy includes the five top-level categories: Accuracy, Fluency, Terminol-
ogy, Style, and Locale convention, each with several sub-categories. The original data
uses a top-category ‘Source-issue’ to indicate errors in the source Chinese sentences.

Severity

The error categories include three levels: 1. Major: actual translation and grammatical
errors; 2. Minor: smaller imperfections; 3. Neutral: purely subjective opinions about
the translation.

Data pre-processing

The goal of data pre-processing is to generate a new dataset with each instance repre-
senting a translation pair segment with its MQM annotation and other relevant details,
including the system and document/segment ID information. Below are the detailed
pre-processing steps for the 2023 dataset using Pandas package3:

1. Get the marked text in the target/source sentence indicated by delimiters. A
marked span in the source sentence usually indicates an omission error and most
source sentences do not have a marked error span.

2. Get the marked span index in source/target sentences by the positions of
delimiters. This is done by splitting the sentences by NLTK tokenizer for English
target sentences and Jieba cut method for Chinese source sentences with omission
error.

3. Remove delimiters in source and target sentences.

4. Get only the top category from the field of category for each error, keeping only
the subcategory Omission, which is under the top-level Accuracy. We keep this
sub-category to explore how LLMs handle this type of translation error.

5. Concatenate the top category, severity, marked text and error span index
as the MQM annotation for each identified error into a new column

6. Remove rows in which the MQM annotations contain unclear information (such
as ‘HOTW’, ‘nan’ and ‘Other’ in the error category).

7. Remove rows with severity labels ‘Neutral’ which indicates only the subjective
opinions of annotators, keeping only the ‘Major’ and ‘Minor’ labels.

8. Remove rows with the error category ‘Source-issue’, since our project focuses on
identifying errors in the target translation.

9. Group the DataFrame by fields of system, doc, docSegID, globalSegID, rater,
source, and target to get a new DataFrame with each row representing a segment
with its MQM annotation

3We use a similar approach to process the 2022 dataset

10. Remove segments with more than 5 errors.4

11. Remove outlier segments where the target sentences are shorter than 2 tokens or
longer than 100 tokens.

12. Randomize the DataFrame5 and reset index.

After pre-processing, we obtained 13970 segments with MQM annotations from
the 2023 dataset and 29344 segments from the 2022 dataset. We further split these
segments into three datasets for different experiments:

• A prompt development dataset with 1000 segments from the 2023 dataset

• A QE model train dataset with 20703 segments from the 2022 data (we consider
around 20000 segments to be sufficient for QE model training)

• A QE model test dataset with 5000 segments from the 2023 data

3.2.2 How well do human annotators agree with each other?

In the 2023 dataset, each annotator annotated different segments, thus the annotation
agreement between annotators can not be calculated.

In the 2022 dataset, we tested the correlations of quality scores between different
annotators for the same segments. From Table 3.2 we can conclude that the agreements
between annotators are very low or even negative.

Annotators Number of segments Pearson Spearman

rater1, rater2 702 0.287 0.274

rater1, rater3 1049 0.036 0.063

rater1, rater6 299 0.059 0.088

rater1, rater5 11 -0.407 -0.337

rater1, rater4 13 -0.143 -0.06

rater2, rater3 515 -0.005 -0.042

rater2, rater6 280 0.128 0.07

rater2, rater4 22 0.212 0.062

rater3, rater6 736 0.043 0.009

rater3, rater8 21 -0.101 0.024

rater4, rater6 16 -0.22 -0.011

Table 3.2: Agreement between annotators in the Expert-based human evaluation of
WMT generalMT 2022 dataset (Chinese-to-English)

3.3 Evaluation

In Section 3.1, we described the design of four prompting experiments. For the first and
second experiments, the results will be evaluated manually. For sub-experiments 3 and

4In the work of Freitag et al. (2021), they mentioned that they imposed a maximum of 5 errors per
segment in the annotator guideline. However, segments with more than 5 errors were found during
pro-processing. We decided to remove these segments for the purposes of consistency.

5Random state: 31415926

4 in which we test with 1000 segments, we will conduct intrinsic automatic evaluation,
and additionally hallucination analysis in sub-experiment 3.

3.3.1 Intrinsic evaluation

Figure 3.2: A segment with human and GPT-4 Turbo MQM annotations

Figure 3.3: Flowchart: intrinsic evaluation

Multi-level and multi-dimensional evaluations will be conducted at the segment level
(Figure 3.2 shows an example of a segment with human and GPT-4 Turbo annotations):
for error span, we will follow the approach implemented by the WMT 2023 QE shared
task (Blain et al., 2023) by calculating the recall, precision, and f1; for severity and error
type, if the LLM annotated span overlaps with human-annotated span, we will extract
the severity and error type labels in order to compare with the human annotations; for
quality score evaluation, we will calculate the quality score for each segment, and then

calculate the correlation scores between system quality scores and gold quality scores.
For each segment, the detailed steps, as demonstrated in Figure 3.3, include:

1. Extract JSON format MQM annotations from LLMs’ output.

2. Convert the annotations into a list of errors and calculate the quality scores
for metric meta-evaluation obtaining quality score Pearson and Spearman
correlations.

3. For each error in human annotations, find the best matching LLM outputted
error with the highest character overlap by matching the start and end indexes
with the gold indexes; Calculate the error span recall for each gold error that
equals to the ratio of the overlap character length to the gold error length (or 0 if
no overlap); Extract the error type and severity labels from the human-annotated
error and its best matched LLM annotated error for severity and error type
evaluation.

4. For each LLM generated error, find the best matching gold error with the highest
character overlap by matching the start and end indexes with the gold indexes;
Calculate the error span precision for each LLM annotated error that equals
the ratio of the overlap character size to the LLM outputted error length (or 0 if
no overlap).

5. Average recall/precision scores of errors as the final segment recall/precision score
for the segment

3.3.2 Extrinsic evaluation

For extrinsic evaluation, we compare the performance of two sentence-level QE models.
The first model will serve as a baseline model and be built on the COMET framework.
The training input segments are from the QE model training dataset described in
Section 3.2.1. The gold quality scores for these segments are derived from human
MQM annotations.

We will use the same settings for the second model as for the baseline model ex-
cept for quality scores, which will be derived from the annotations produced by our
prompting technique.

Test set

The test set below will be used to test the above-mentioned two models:

• The QE model testing dataset with 5000 segments that were introduced in Section
3.2.1.

Initially, we also selected a second test set taken from WMT 2022 QE task 1 mqm
that consisted of 500 segments with gold quality scores (z-score) 6, which would enable
us to compare our QE models with other 12 participated systems in this shared task7.

6https://github.com/WMT-QE-Task/wmt-qe-2022-data/tree/main/test_data-gold_labels/

task1_mqm/zh-en
7Results: https://codalab.lisn.upsaclay.fr/competitions/6866#results; access data: June

14th, 2024

https://github.com/WMT-QE-Task/wmt-qe-2022-data/tree/main/test_data-gold_labels/task1_mqm/zh-en
https://github.com/WMT-QE-Task/wmt-qe-2022-data/tree/main/test_data-gold_labels/task1_mqm/zh-en
https://codalab.lisn.upsaclay.fr/competitions/6866##results

However, we later discovered that this test set was created using the segments from
the WMT generalMT 2022 dataset that was also the source of our QE model training
dataset. Then we did a duplicate check for these 500 segments with our QE model
training dataset and found that 373 source sentences overlapped. To avoid the issue of
data leakage, we decided to discard this test set.

Chapter 4

Prompting for MQM annotations

This chapter describes four sub-experiments conducted using an iterative prompt de-
velopment approach to investigate the LLMs’ behaviors on the MQM annotation task.
The analysis of the previous sub-experiment is used to provide direction for the follow-
up prompting experiment.

4.1 Sub-experiment 1: Explore LLMs’ knowledge of QE
and MQM

In this sub-experiment, we explored LLMs’ knowledge of machine learning quality esti-
mation and details of API parameters can be found in Appendix A.1. Questions were
related to the QE task, which had been refined using ChatGPT by applying the ques-
tion refinement pattern. For example, the first question was refined by ChatGPT
with the initial input “Please suggest a better version of the question: what is machine
translation quality estimation?”.

4.1.1 Results analysis

All responses from four LLMs were assessed by a scoring schema ranging from 1 to 5:

• 1 point: the answer is completely incorrect, irrelevant, and nonsensical. It does
not address the question at all.

• 2 points: the answer is partially correct but contains significant errors or is in-
complete.

• 3 points: the answer covers the basic information and is mostly correct.

• 4 points: the answer is correct, clear, and detailed.

• 5 points: the answer is comprehensive and shows a strong reasoning capability.

Table 4.1 summarizes points for each question of GPT-3.5, GPT-4 Turbo GPT-4o,
and LLaMA 3.

19

Question GPT-
3.5

GPT-4
Turbo

GPT-4o LLaMA
3

1. Can you explain what machine
translation quality estimation is?

3 4 4 4

2. Could you provide an overview of the
Multidimensional Quality Metrics (MQM)
annotation scheme in around 150 words?

3 4 4 4

3. What are the core error categories of
MQM?

2 3 4 4

4. How can I effectively evaluate the
Chinese sentence and its English
translation using the MQM annotation
scheme? Provide a concise response within
100 words, please.

3 5 5 4

5. How would you, as a language model,
annotate the translation of a Chinese
source sentence into English using the
MQM scheme? Please provide an example

3 4 3 3

Total score 14 20 20 19

Table 4.1: Results of sub-experiment 1: Explore LLMs’ knowledge of QE and MQM

1. Can you explain what is machine translation quality estimation?

All four LLMs provide valid answers, yet GPT-3.5 states that quality estimation is ”typ-
ically done by comparing the machine-translated output with reference translations”,
which is mostly not the case.

2. Could you provide an overview of the Multidimensional Quality Metrics
(MQM) annotation scheme in around 150 words?

All four LLMs listed the below key characteristics of MQM:

• It is an annotation scheme for translation quality estimation;

• It contains multiple category dimensions such as Fluency and Accuracy

• It supports consistent and effective evaluation by standardizing quality assess-
ment.

Besides, LLaMA 3 mentioned that MQM provided a standardized vocabulary and
methodology, while GPT 4 turbo and GPT-4o highlighted its flexibility and adaptabil-
ity for diverse applications. In addition, only LLaMA 3 included that MQM defined
severity levels.

3. What are the core error categories of MQM?

On the MQM official website 1 there are currently seven high-level error type dimen-
sions: Terminology, Accuracy, Linguistic conventions (Fluency in version 1), Style, Lo-
cale conventions, Audience appropriateness (Verity in version 1), Design and markup.

1https://themqm.org/error-types-2/typology/; access date: May 9th, 2024

https://themqm.org/error-types-2/typology/

LLaMA 3 listed eight categories: Accuracy, Fluency, Terminology, Locale conven-
tion, Style, Verity, Design, and Internationalization.

GPT-3.5 listed seven: Accuracy, Fluency, Terminology, Style, Locale-specific, Con-
sistency errors, and Compliance errors.

GPT-4 Turbo listed six categories: Accuracy, Fluency, Terminology, Locale conven-
tion, Design, and Verity.

GPT-4o listed eight categories: Accuracy, Fluency, Terminology, Style, Locale con-
vention, Verity, Design, and Internationalization.

The responses show that all LLMs outputted categories with the previous version
category name, such as ’Fluency’ for ’Linguistic conventions’, and ‘Verity’ instead of
’Audience appropriateness’ from LLaMA 3 and GPT 4.0. This was possibly due to the
fact that the training data of LLMs had been cut off before the MQM error categories
were updated.

In terms of numbers of correct matches with top categories, GPT-4o and LLaMA
outputted the same 8 top categories with a correct match of six, one extra category of
‘Internationalization’, and one ‘Design’ instead of ‘Design and markup’, while GPT-4
Turbo also matched six correctly but missed ‘Style’. GPT-3.5 was the least accurate,
only with a complete match of four.

4. How can I effectively evaluate the Chinese sentence and its English
translation using the MQM annotation scheme? Provide a concise response
within 100 words, please.

GPT-3.5 did not provide executable steps, only included identifying error types as steps,
nor mention assigning severity level. LLaMA 3, GPT-4 Turbo, and GPT-4o provided
comprehensive and executable steps including identifying errors using MQM categories,
assigning severity levels, and calculating the quality score. In addition, GPT-4 Turbo
and GPT-4o mentioned customizing error categories based on the specific context,
which demonstrated MQM’s flexibility, one of its core characteristics.

5. How would you, as a language model, annotate the translation of a Chi-
nese source sentence into English using the MQM scheme? Please provide
an example.

GPT-3.5, GPT-4o, and LLaMA 3 only include identifying different error types without
mentioning assigning severity labels while GPT-4 Turbo provides a more systematic
step-by-step approach from error identification, error categorization, and severity as-
sessment to documentation. Aside from that, all LLMs give very short no-error seg-
ments as examples, thus no error span was mentioned.

Sub-Conclusion

In this sub-experiment, it can be concluded that GPT-3.5 displayed less knowledge base
and reasoning capability for the machine translation quality estimation tasks than the
other three LLMs. Based on the results from this experiment, we decided to remove
GPT-3.5 for further prompting experiments.

4.2 Sub-experiment 2: Basic prompt and format adjust-
ing

A clean and consistent output format benefits the automatic evaluation. This sub-
experiment was conducted to explore how well the LLMs adhere to the prompt instruc-
tion with regard to the output format. We tested 10 segments by applying the basic
prompt on three LLMs. The detailed LLM setups can be found in Appendix A.2. We
kept API parameters the same as those in their official playgrounds2, since we assumed
that the settings had been tested sufficiently and could display stable performances.

4.2.1 Experiment result

Results of this sub-experiment exhibit the following:

1. GPT-4 Turbo, GPT-4o, and LLaMA 3 all provided clear and readable values for
fields of required keys following the instruction. The output can be parsed using
‘json.load()’ function after removing the beginning and the end markers.

2. For all systems, the error span indexes can’t be accurately mapped to the indexes
obtained from MQM human annotations. During the pre-processing, the NLTK
package was used to tokenize target sentences, and the start and end indexes were
obtained by the positions of error span delimiters, while LLMs did not seem to
utilize the same or even a stable and consistent method when generating indexes
for error spans.

For the following experiments, to solve the index mapping issue, an automatic
method was devised to obtain the start and end error span indexes for each error by
the position of the ‘marked text’ in the target translation:

• If the ‘marked text’ occurs only once in the target translation, the final error span
will be obtained by searching its position in the target sentence;

• If the ‘marked text’ occurs more than once in the target translation, the final
error span will be mapped to the nearest one with the start index of the LLM
outputted error span index.

For example, if the marked text is ‘her father’ and it appears twice in the target
with starting index 5 and 15 respectively, and the LLM output starting index is 7, the
index of 5 will be chosen as the start index for this error because the distance with the
LLM output index is smaller.

4.3 Sub-experiment 3: Basic prompt with 1000 segments

From the result of the above sub-experiment 2, we updated the basic prompt by adding
‘using NLTK tokenizer’ to better direct the LLM to output accurate index values with
a clearer JSON format example. Figure 4.1 shows the updated version of the basic
prompt:

2Llama 3: https://replicate.com/meta/meta-llama-3-70b-instruct?input=python; OpenAI:
https://platform.openai.com/playground/, access date: April 25th, 2024.

https://replicate.com/meta/meta-llama-3-70b-instruct?input=python
https://platform.openai.com/playground/

Figure 4.1: Sub-experiment 3: the updated prompt based on the result of sub-
experiment 2

4.3.1 Results analysis

We tested with our 1000 instance development dataset respectively on GPT-4 Turbo,
GPT-4o and LLaMA 3 (with detailed setup presented in Appendix A.2), and parsed
the output for each segment for further evaluation. Table 4.2 shows the results of this
sub-experiment.

LLM Parsable
output

Error
numbers
(Major in
parathesis)

Error
span f1

Severity
- macro
avg f1

Error
type -
macro
avg f1

Quality
score -

Pearson

Quality
score -
Spear-
man

GPT-4
Turbo

692 1237 (684) 0.359 0.49 0.24 0.383 0.343

GPT-4o 957 3146 (1256) 0.318 0.51 0.26 0.485 0.382

LLaMA
3

885 2286 (1143) 0.296 0.49 0.16 0.486 0.401

Table 4.2: Sub-experiment 3: results of three LLMs

Output parsing

GPT-4 Turbo: For the 1000 output strings of GPT-4 Turbo, first, we removed
the leading and trailing characters at the beginning and at the end. Next, we used
“json.loads()” method and key values provided in the basic prompt to extract data
for each field. As a result, 692 valid Python dictionaries, with each dictionary repre-
senting the MQM annotation for a segment, were obtained and evaluated with human
annotations.

A deeper look at the invalid output strings revealed that one of the reasons was
the presence of invalid key values that were outside the scope instructed in the basic
prompt, e.g., “marked Yue” instead of the instructed “marked text”.

GPT-4o and LLaMA 3, on the other hand, displayed more robustness in produc-
ing valid JSON outputs, resulting in 957 and 885 valid output dictionaries.

Figure 4.2: Sub-experiment 3: error number distribution with yellow indicating the
counts of human identified errors and blue the LLM generated errors

Error number

Figure 4.2 shows the histplots of error number distribution. GPT-4.0 Turbo: As
the basic prompt instructed, GPT-4 Turbo generated 5 or less than 5 errors for each
segment with an average of 1.79 errors, in comparison to 1.39 in human annotations.

In total, 1237 errors were identified by GPT-4 Turbo for these 692 segments whereas
961 errors were identified in human annotations. Furthermore, the system generated
all severity (Major/Minor) labels correctly following the instructions of the prompt.
However, a handful of incorrect error type labels were generated3: punctuation (6);
fluentcy (1); fluent (1). These labels were removed in the evaluation.

GPT-4o: In total, 3146 errors were identified for these 957 segments, while human
annotations identified 1525 errors. As the basic prompt instructed, the number of
errors of each segment was all less than or equal to 5. For each segment, GPT-4o
produced 3.29 errors in comparison to 1.59 from human annotations. Just like GPT-4
Turbo, GPT-4o also followed the instructions generating only Major and Minor labels
for error severity. However, a small portion of out-of-scope error type labels was also
discovered: punctuation (13), termology (2), consistency (2), redundancy (1), trans-
lation (1), translation accuracy (1), clarity (1), term (1), which were removed during
evaluation.

LLaMA 3: LLaMA 3 identified 2286 errors for these 885 segments resulting in 2.58
errors per segment. Human annotations, on the other hand, had 1389 errors identified
in total and an average of 1.57 errors for each. LLaMA 3 followed the value scopes of
severity and error type and produced labels as instructed in the basic prompt.

Error severity

Figure 4.3 shows three confusion matrix figures of Severity labels for each LLM.

GPT-4 Turbo: Among all generated errors, 684 were Major and 553 were Minor
resulting in a Major-to-Minor ratio of 1.24. However, in human annotations, this ratio
was 0.24. That is to say, GPT-4 Turbo tended to identify more Major errors than
human annotators. The Major labels had a higher recall score of 0.78 compared to 0.39
for Minor. 225 Minor errors were misclassified as Major while only 30 Major errors
were misclassified as Minor.

3The value in parentheses indicates the count of the label

Figure 4.3: Sub-experiment 3: confusion matrix of severity

GPT-4o: GPT-4o generated 1256 Major and 1890 Minor labels, resulting in a ra-
tio of 0.66 compared to 0.27 in human annotations. The Major labels had a recall rate
of 0.74 and the Minor 0.45. The confusion matrix showed that for the Minor class, 401
Minor errors were misclassified as Major while only 65 Major errors were misclassified
as Minor.

LLaMA 3: For 885 segments, LLaMA 3 generated 1143 Major and 1143 Minor
errors (ratio 1.0), while in human annotations there were 306 Major and 1083 Minor
errors (ratio 0.28). The Major labels had a recall rate of 0.70 and the Minor 0.43. 358
Minor errors were misclassified as Major, compared to only 63 Major errors that were
misidentified as Minor.

Error type

Figure 4.4: Sub-experiment 3: GPT-4 Turbo error type classification report and con-
fusion matrix

Figures 4.4, 4.5 and 4.6 show the error type confusion matrix and classification
report for each LLM. Below are the key insights:

• Three classification reports show that Accuracy, Style, and Fluency were the top
three common labels. Accuracy had the highest recall and Style the lowest.

Figure 4.5: Sub-experiment 3: GPT-4o error type classification report and confusion
matrix

Figure 4.6: Sub-experiment 3: LLaMA 3 error type classification report and confusion
matrix

• Fluency was often misclassified as Accuracy by three LLMs, additionally, as Ter-
minology by LLaMA 3.

• GPT models’ f1 scores achieved a macro average of 0.25, higher than LLaMA-3’s
score of 0.16

4.3.2 Hallucination

To conduct analysis on the hallucination behaviors of LLMs on our task, 20 extra errors
were sampled for each LLM, resulting in 60 MQM error annotations in total. These
errors all had zero overlapped span with human annotations. We analyzed these errors
by combining the output of the key “explanation”, in which we asked LLMs to provide
the reasoning and assumptions behind the error identified.

LLMs Hallucination
cases (Major)

Non-
hallucination
cases (Major)

Uncertain cases
(Major)

GPT-4 Turbo 3 (2) 14 (6) 3 (2)

GPT-4o 5 (4) 12 (3) 3 (2)

LLaMA 3 7 (4) 6 (3) 7 (3)

Table 4.3: Hallucination analysis (the numbers in parentheses represent the count of
Major errors)

In the non-hallucination cases of these extra errors that LLMs made, common cases
were LLMs suggesting more natural and accurate word usages that are more contextu-
ally appropriate or idiomatic than the literal translations. The hallucination cases, on
the other hand, included making the exact same corrections as the source sentence or
identifying the correct translation as erroneous and suggesting the opposite translation
that was not aligned with the source.

Due to the ambiguity in the source sentence, some of the uncertain cases were
difficult to judge by LLMs. Some cases suggested explaining further an abbreviation
occurring in the target sentence “for the audience who may not be familiar with the
abbreviation”.

Table 4.3 also presents the counts of Major errors in parenthesis. For the cases of
hallucination and uncertainty, GPT-4 Turbo, GPT-4o and LLaMA 3 had respectively
4 (0.67), 6 (0.75) and 7 (0.5) Major errors. From this data, it can be concluded that
in our sample, percentage-wise, LLaMA 3 identified fewer Major errors than the two
GPT-4 models.

Overall, the existence of these non-hallucination cases indicated that LLMs were
able to identify the nuanced and subtle word usages that human annotators failed to
capture, calling the need for re-examining and refining the human annotations. The
hallucination cases revealed that LLMs still had reasoning limitations when perform-
ing the task making plausible-sounding but unreasonable answers. Nevertheless, the
uncertain cases made us aware of the inherent complexities of our task.

4.3.3 Error span recall, precision and f1

LLM Error numbers Recall Precision F1

GPT-4 Turbo 1237 0.406 0.42 0.359

GPT-4o 3146 0.422 0.351 0.318

LLaMA 3 2286 0.381 0.377 0.296

Table 4.4: Sub-experiment 3: recall, precision and f1 on avg segment error span

Table 4.4 shows the error span recall, precision, and f1 scores of three LLMs, of
which GPT-4 Turbo had the highest precision and f1, while GPT-4o had the highest
recall. When combining the factor of the number of total generated errors, it can be
found that despite GPT-4 Turbo only identified 1237 errors, its recall was still higher
than LLaMA 3, which produced 2286 errors.

4.3.4 Quality score correlation

The Pearson and Spearman correlations were calculated for three LLMs, among which
LLaMA 3 scored the highest in both (see Table 4.1). Interestingly, the result was
reversed in error span f1 scores: LLaMA 3 had the lowest score of 0.296. In addition,
from the hallucination analysis in Section 4.3.2 we found that in our sample LLaMA 3
had the highest number of hallucinations and uncertain cases.

In quality score correlation, for each segment with a certain token length, the factors
being taken into account include the number of errors and their severity levels, as
Major is penalized 5-times higher than Minor. Thus, to achieve a high correlation,
LLMs should be able to label Major and Minor errors with a ratio that is as close
as possible to human annotations. In our experiment, LLaMA 3 had the lowest error

span f1, which indicated that compared to GPT-4 models, it failed to identify accurate
error spans that overlapped with human annotations. However, the Major to Minor
ratios in segments may be closer to human judgment, leading to high correlations. This
could also possibly provide an explanation for its high tendency toward hallucinations:
despite potentially having more hallucination cases, these cases were mostly Minor and
penalized less in quality scores, or had a good balance between Major and Minor cases
compared to human annotations.

4.3.5 Additional stability test

In this sub-experiment, we added an additional stability test. We modified the basic
prompt by removing the part where we requested LLM to generate an explanation
for each error while keeping all the other setups the same. We tested on the first 400
segments and compared the result with the original setup for the same segments. Table
4.5 shows the result, demonstrating that GPT-4o showed a stable performance in the
stability test, obtaining scores in reasonable ranges with the original.

Test Parsable
output

Error
span f1

Severity
- macro
avg f1

Error
type -
macro
avg f1

Quality
score -

Pearson

Quality
score -

Spearman

GPT-4o
original
test

380 0.307 0.46 0.23 0.452 0.345

GPT-4o
stability
test

386 0.308 0.49 0.20 0.457 0.376

Table 4.5: Result of the additional stability test with 400 segments

4.3.6 Sub-conclusion

From this sub-experiment, we discovered that three LLMs shared similar behaviors
listed below:

• All three LLMs followed the prompt error number restrictions, the errors pre-
dicted for each segment are all less than or equal to 5.

• In general, three LLMs tended to predict more errors with higher severity levels
compared to human annotators.

• The ‘Style’ error types were the most commonly misclassified category. Despite
’Style’ being among the most frequent error types identified by human annotators,
in our experiment, all three LLMs failed to identify most of them with recall scores
around 0.15 for two GPT models and only 0.05 for LLaMA 3.

On the other hand, different behaviors were also detected among these three LLMs.

• Output Parsing: GPT-4 Turbo produced more problematic JSON outputs that
can not be easily parsed and evaluated automatically, while GPT-4o displayed the
most robust capability in producing consistent JSON outputs.

• Error numbers: GPT-4o identified the highest number of errors (3146) among
all compared to LLaMA 3 (2286) and GPT-4 Turbo (961).

• Error span identification: GPT models scored approximately 0.05 higher in
error span f1 than LLaMA 3, suggesting that they predicted more accurate error
spans that were aligned with human annotations (see Table 4.2).

• Error type: GPT models demonstrated better capabilities in distinguishing
different error types than LLaMA 3.

• Hallucination: LLaMA 3 tended to hallucinate more often than GPT models.

• API stability: The API of LLaMA 3 provided by Replicate didn’t display
stability in this sub-experiment. During the requests in the batch that included
our 881 segments, its API stopped responding multiple times returning errors
like ‘ModelError: Prediction interrupted; please retry (code: PA)’ or ‘The read
operation timed out ’. On the contrary, the OpenAI API ran smoothly without
any error, showing more stability than the LLaMA 3 API.

Overall, compared to GPT-4 Turbo and LLaMA 3, GPT-4o produced more auto-
matically parsable JSON format annotations and achieved high error span f1 scores
as GPT-4 Turbo. Its macro average f1 scores of severity and error type are also the
highest among all LLMs. Despite LLaMA 3 having a 0.01 higher Pearson correlation
score and a 0.02 higher Spearman score than GPT-4o, LLaMA 3 tended to display
a stronger hallucinating tendency and a less stable API. Cost-wise, GPT-4 Turbo is
twice as expensive as GPT-4o. Considering the stability of API, capability of generat-
ing parsable JSON format, tendency of hallucination, and cost, GPT-4o was selected
for sub-experiment 4.

4.4 Sub-experiment 4

In this sub-experiment, we developed the basic prompt based on the findings from the
previous sub-experiments.

4.4.1 Prompt design

What errors did GPT-4o miss?

In total, GPT-4o completely missed 544 errors (with span recall scores of 0). Among
these, 75 were Major errors and 479 were Minor errors. For the combinations of error
type and severity, Fluency + Minor, Style + Minor, and Accuracy + Minor were the
top 3 missing types. In addition, since ‘Omission’ was not included in the basic prompt,
all 77 Omission errors were missed.

4.4.2 Prompt development

The above analysis suggested several directions to enhance the correlation with human
annotations.

Firstly, since GPT-4o tends to identify more errors with higher severity than human
annotators, we would want to mitigate the severity level and total errors identified. We
then devised a scaling approach by converting the severity labels Major and Minor to

a scale of 1 to 5, with 1 representing the least severe and 5 most severe. This approach
allowed for better control over the total errors identified and their severity levels. This
was because based on the severity scale number, errors with lower severity can be
removed. In addition, by mapping severity scale numbers to Major or Minor labels, we
can balance the number of these two labels.

Secondly, the macro f1 score of error type was only 0.26 indicating that GPT-4o
performed poorly in assigning the correct error type labels. We wanted GPT-4o to
have a better understanding, so we decided to provide detailed explanations of each
error type.

As mentioned in Section 2.3.1, Rei et al. (2023) discovered that the behaviors of five-
shot prompt GPT4-QE were influenced greatly by the number of examples included
in the prompt, the order of examples, and the number of errors in each example.
According to Kocmi and Federmann (2023b), the least constrained prompt template
showed the best performance. Ideally, for the annotation task, we want to leverage
LLM’s multilingual capability, obtained from multilingual training data, to identify
subtle linguistic patterns considering the specific context of segments. Consequently,
an over-specific behavior is not desired. Given the above considerations, we decided
to improve the prompt by using a two-shot only approach. One example was selected
to instruct GPT-4o to recognize comma splice Fluency errors, which were among the
common Fluency errors in the development dataset. The other example aimed to guide
GPT-4o in identifying Omission errors, in which the marked text and error span were
not from the target English translation, but from the source Chinese sentence.

Additionally, we removed the part in which we required LLM to generate an expla-
nation for each error. Figure 4.7 is the improved version of the prompt4

4.4.3 Result analysis

We analyzed the results in two Setups. In Setup 1, we kept errors of all severity scales.
In Setup 2 we removed errors of severity scales 1 and 2. From Figure 4.8 we can see that
by removing low severity errors, Setup 2 had a more similar error number distribution
with human annotations.

After testing different mappings of the severity scale numbers to Major or Minor
labels, we found that the highest quality score correlations occurred when 3 and 4 were
mapped to Minor and 5 to Major. We used this mapping for both Setups. Table 4.6
shows the results of two setups.

Number of parsable output

More parsable segment annotations were obtained in Setup 2, which was reasonable
because fewer errors led to fewer problematic annotations that were due to key parsing
failures.

Severity

In Setup 2, for 942 segments in the development dataset, human annotations had
1490 errors (with 318 Major and 1172 Minor), while in the 1307 errors that remained,

4The format of the actual prompt in used was slightly different to better fit the format provided in
this OpenAI cookbook: https://github.com/openai/openai-cookbook/blob/main/examples/How_

to_format_inputs_to_ChatGPT_models.ipynb; access date: April 25th, 2024.

https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb

Figure 4.7: Two-shot prompt for sub-experiment 4 improved upon previous prompting
experiments

there were 367 Major and 940 Minor errors. Both the absolute numbers of Major and
Minor errors and the ratio of Major to Minor labels were closer to human annotations
compared to Setup 1.

By implementing a scale mapping method for severity labels, we managed to in-
crease the severity f1 score: in sub-experiment 3, GPT-4o obtained a score of 0.51 (see
Table 4.2), while in Setup 1 and 2, the scores were 0.65 and 0.62.

Error span

Setup 2 had a higher error span f1 than Setup 1. In terms of recall and precision scores,
Setup 1 had a higher recall score than Setup 2, which was reasonable because more
errors were reserved for evaluation of error span matching. Meanwhile, the precision
of Setup 2 was higher than Setup 1, which revealed a better match between higher
severity scale errors (3, 4 and 5) and human annotations.

Figure 4.8: Sub-experiment 4: error number distribution of two setups

Setup Parsable
output

Num. of
outputted

errors
(Ma-

jor/Minor)

Error
span f1

Severity
- macro
avg f1

Error.
type -
macro
avg f1

Quality
score -

Pearson

Quality
score -
Spear-
man

Setup 1 909 2428
(354/2074)

0.33 (r
0.458; p
0.334)

0.65 0.37 0.492 0.376

Setup 2 942 1307
(367/940)

0.343 (r
0.379; p
0.407)

0.62 0.35 0.504 0.404

Table 4.6: Sub-experiment 4: results of two setups

Error type

In our two-shot setting, we added two examples: a common comma splice Fluency error
and an Omission error. When evaluating error type, Omission was added as one of the
top-category labels.

Figure 4.9: Error type classification report: Setup 1

In Setup 1 (see Figure 4.9 classification report), there were 7 support cases for
the Omission label with an f1 score of 1, suggesting that GPT-4o was able to identify
Omission errors, extracting text from the source Chinese sentence. For Fluency, the f1
score increased from 0.29 to 0.33 (with recall/precision from 0.37/0.23 to 0.39/0.28).
The results showed a potential positive influence when two examples were provided.

For all error type labels, Setup 1 in this sub-experiment achieved a higher macro
avg f1 of 0.37 compared to 0.26 in the previous sub-experiment 3 of GPT-4o. The
weighted average was 0.39, which was also higher than the 0.35 in sub-experiment 3.
This might indicate adding detailed explanations had improved GPT-4o’s performance
in assigning correct labels.

Quality score correlation

Both Setup 1 and 2 obtained higher Pearson and Spearman correlations than the re-
sult from sub-experiment 3 (see Table 4.2). In all prompting experiments, Setup 2
exhibited the highest correlations among all LLMs. In the MQM annotation to quality
score formula defined in Section 2.1.3, Major errors were penalized 5 times more than
Minor errors. In this sub-experiment, we implemented a severity scale to Major/Minor
mapping, which may have increased the correlations.

4.4.4 Sub-conclusion

In this sub-experiment, we improved our prompt by adding: 1) the Omission error
type; 2) detailed explanations for each error type; 3) one Fluency example and one
Omission example. Additionally, instead of Major/Minor labels, we prompted GPT-4o
for a scale number of 1-5 for severity. Then we devised a scale number to Major/Minor
labels mapping method. As a result, we found that: GPT-4o was able to identify
Omission Errors; the performance for error type classification improved slightly; the
quality score correlations increased.

We decided to use Setup 2 to annotate segments for the QE model training and
named it PPbMQM (prompt-pattern-based-MQM), for it having a similar error num-
ber distribution with human annotations and obtaining the highest correlations. This
prompting technique includes:

• The implementation of the GPT-4o model

• The prompt used in this sub-experiment (showed in Figure 4.7)

• The method of handling severity scale number to Major/Minor label (Remove
errors with scale 1 and 2; label 3 and 4 as Minor and 5 as Major)

Chapter 5

Training QE model with LLM
generated annotations

In this chapter, we introduce the QE model training experiment. First, we apply
the PPbMQM prompting technique to annotate the development dataset, the pre-
processing of which was described in Section 3.2.1. Then we use the quality scores
deriving from human annotations to train the baseline QE model, and scores deriving
from PPbMQM annotations to train the PPbMQM QE model. The goal of this exper-
iment is to explore how LLM annotations will influence the downstream QE model in
comparison with the baseline model.

5.1 Training data annotation

We annotated 20703 segments by GPT 4o applying the PPbMQM prompting tech-
nique, resulting in 19869 parsable MQM annotations. For these segments we further
conducted a fingerprint analysis, the result of which is shown in Table 5.1. Compared
to other scores, the quality score Pearson correlations of two fingerprints showed a
larger difference, with one of 0.399 and the other of 0.478. It was worth noticing that
there was an imbalance in segment numbers between two fingerprints: one with 19155
segments and the other with 714. Considering the imbalance of segments and not-so-
big correlation difference, it was difficult to infer that one fingerprint performed better
than the other. The overall performance of GPT-4o can still be considered stable.

GPT-4o
system-
fringerprint

Parsable
output

Error
span F1

Severity
- Macro
avg F1

Error
type -
Macro
avg F1

Quality
score -

Pearson

Quality
score -

Spearman

fp 319be4768e 19155 0.276 0.47 0.29 0.399 0.274

fp aa87380ac5 714 0.289 0.49 0.28 0.478 0.239

Table 5.1: The result of two fingerprints

35

5.2 Model training

5.2.1 Baseline human annotation model

The baseline reference-less QE model of this project was built on the COMET neural
framework1. We kept the default setting, using XLM-RoBERTa as the encoder and
xlm-roberta-large as the pre-trained model. The model was trained on 19869 segments
with human annotations. The detailed setup of this model can be found in Appendix
B.

5.2.2 PPbMQM QE model

The PPbMQM QE model was trained on the same 19869 segments with quality scores
deriving from GPT 4o annotations which was described in Section 5.1. In this model,
except for the learned quality scores, the rest setup remained the same as the baseline
model.

5.3 Model testing

The test set, which was introduced in Section 3.2.1, contained 5000 segments. As
described in Section 3.2, the domains of test set data include news, e-commerce, and
manuals. The training data, on the other hand, covers all domains of the test set except
for the manuals domain. Table 5.2 shows the result on the test set.

Model Pearson Spearman Kendall

Baseline 0.470 0.410 0.290

PPbMQM QE 0.513 0.381 0.272

Table 5.2: The results of the baseline model and PPbMQM QE model

5.3.1 Result analysis

On the test set, the PPbMQM QE model achieved a higher Pearson correlation score
than the baseline model (0.513 compared to 0.470), but the Spearman and Kendall
correlation scores were slightly lower than the baseline model. Nevertheless, this further
revealed that the segments annotated by the PPbMQM prompt technique could achieve
human-annotation level performance and be used in downstream QE model training.

Number of
segments

Gold score
range

Pearson Spearman Kendall

2592 0.9 - 1.0 0.019 0.020 0.016

910 0.8 - 0.9 0.063 0.077 0.053

1304 less than 0.8 0.434 0.425 0.294

Table 5.3: Baseline model: bucket analysis

Furthermore, we conducted bucket analysis for the baseline model and PPbMQM
QE model: we divided the test set into buckets based on the ranges of quality scores.

1Github: https://github.com/Unbabel/COMET

https://github.com/Unbabel/COMET

Number of
segments

Gold score
range

Pearson Spearman Kendall

2592 0.9 - 1.0 -0.157 -0.128 -0.085

910 0.8 - 0.9 -0.005 0.016 0.011

1304 less than 0.8 0.523 0.526 0.370

Table 5.4: PPbMQM QE model: bucket analysis

The test set was bucketed into three: segments with quality scores ranging from 0.9
- 1 (high quality), 0.8 - 0.9 (medium quality), and lower than 0.8 (low quality). The
result can be found in Tables 5.3 and 5.4. Two models performed better on low-
quality segments than high quality. However, the PPbMQM QE model showed larger
differences in three buckets than the baseline model, revealing a more nonmonotonic
relationship between variables. We assumed the reason was that GPT-4o tended to be
stricter than humans when annotating which amplified the effect of errors, resulting in
quality scores of a larger range that increased the non-monotonic relationship between
the two variables.

5.3.2 Sub-conclusion

From this experiment, we conclude that segments annotated by PPbMQM can be used
to train a downstream QE model that can even surpass models trained on human
annotations. In addition, our PPBMQM QE model correlated better with segments of
lower quality.

Chapter 6

Discussion

The QE model experiment shows that the PPbMQM QE model achieved better Pearson
correlation with human judgment than the baseline model trained on human annota-
tions. This provides strong evidence of the feasibility of using LLMs annotations for
downstream QE model training.

6.1 Humans are not always the best annotators

In Section 3.2.2, we conducted a correlation analysis of the agreement on the same
segments between human annotators. The annotations claimed to be performed by
experts (Freitag et al., 2021), but we found that the Pearson correlations were very
low, and in some cases, even negative. As previously mentioned, MQM annotations
require experts proficient in both languages. The low level of agreement highlights
several issues related to the Chinese-to-English annotation task:

First, different annotators may have different criteria when identifying specific trans-
lation errors, involving their subjectivity. Furthermore, obtaining objective annotations
becomes more challenging when the annotation requires domain-specific knowledge or
when the source sentence itself is ambiguous.

Secondly, the low agreement between annotators may lead us to question annotators’
proficiency in both languages. In Section 4.3.2, we examined the extra errors that
were identified only by LLMs. The non-hallucination cases show that LLMs are adept
at identifying errors related to natural word usage. The language pair we study in
this project is Chinese to English. These two languages are from different language
families and have few similarities in linguistic features, such as syntax, morphology,
and vocabulary. These differences make it more challenging to recruit annotators.
Additionally, Chinese is considered a high-resource language with a vast amount of
internet data for LLM training. Given these factors, we encourage researchers not to
be discouraged by the seemingly low correlation between LLM annotations and human
annotations. Instead researchers should always evaluate the quality of human
annotations, as LLMs may produce better results.

Third, in regard to hallucinations, our analysis in Section 4.3.2 revealed that in our
samples, hallucinations were not particularly prevalent, especially for GPT-4 models.
Additionally, when utilizing annotations generated by language models to train a score
prediction QE model, the tendency of hallucinating Minor errors would not make such
a big negative impact. This is because Minor errors are penalized less severely than
Major errors when converting annotations to quality scores.

39

Despite the tendency for hallucinations, LLMs may still be better annotators than
humans for the Chinese-to-English language pair.

6.2 Reproducibility

6.2.1 LLMs stability

In Section 4.3.5, we tested on 400 segments by using a basic prompt variant. In Section
5.1, we compared the results from two different fingerprints of GPT-4o. Both results
indicate that GPT-4o can perform in a consistent way for annotation tasks.

6.2.2 Experiment setup and open resources

We already tested that GPT-4o can perform in a stable manner for our annotation task.
In our project, to ensure reproducibility, we have made several attempts to present as
many experiment details as possible: for every prompt experiment, all setups, including
seed values, can be found in Appendixes A and B. For every dataset, website, and
GitHub repository, all links were attached as footnotes.

6.2.3 Proprietary or open-source LLM?

In sub-experiment 3, the open-source model LLaMA 3 obtained the highest quality
score Pearson and Spearman correlations, which demonstrates its capabilities for QE
tasks. Nevertheless, it also had an unstable API and tended to hallucinate more often
than GPT-4 models. Nonetheless, as the capacity of open LLMs continues to grow, we
are positive about employing them in future MQM annotation research.

Our prompting technique PPbMQM depends on GPT-4o, a ‘black-box’ proprietary
model (Kocmi and Federmann, 2023a). Since the training and deployment details for
proprietary models are usually not transparent to the public, there have been concerns
about using such models in the academic environment. Yet undeniably, GPT models
demonstrate promising capabilities for our annotation tasks and stabilities of APIs with
traceable backend fingerprints.

We argue that alongside the debate over proprietary or open-source
LLMs, consistent efforts should be made to establish a strong methodolog-
ical framework for prompt engineering. A systematic and robust methodology
approach will enable more advanced capabilities of rapidly evolving LLMs.

6.3 Limitation and ethical issues

• The baseline model and PPbMQM QE model were both trained with only one ini-
tialization. Future efforts should be made to train with multiple initializations to
obtain a sufficient sample for the statistical test, strengthening the experimental
evidence (Ulmer et al., 2022).

• We only investigated the Chinese-to-English language pair, which are both high-
resource languages. We cannot infer our method performs well for other low-
resource language pairs.

• Ethical statement: in our project, the LLMs we used may have biases that per-
petuate stereotypes.

6.4 Future research

6.4.1 Flexible prompt development for other language pairs

Future research can focus on adapting our prompting technique to other language pairs.
We assume that our prompting technique can have decent performance for English and
another language that is high or at least medium resource. In addition, before testing
on a large number of segments, we encourage researchers to interact with LLMs first
using various prompting patterns such as the question refinement pattern to explore
their behaviors on other language pairs.

6.4.2 From score prediction to fine-grained error detection QE

In future research, we encourage researchers to use LLM-generated annotations to train
downstream QE models with smaller sizes, instead of directly prompting models with
sizes of GPT-4 for QE. To make full use of the rich information provided by MQM
annotations, one possible approach is to train a downstream QE model that can predict
the error spans and their severity labels.

6.4.3 Combine output from different LLMs

In our project, we prompted three LLMs for MQM annotations and compared the
results of each with human annotations. Future research can further compare one
LLM’s result with other LLMs, e.g., obtain the overlapped errors from LLMs to examine
if these LLMs have similar tendencies towards specific types of hallucinations.

Chapter 7

Conclusion

In this project, we investigated LLMs’ behaviors on the MQM annotation task and
developed a prompting technique PPbMQM. We conclude that for the Chinese-to-
English language pair, it is feasible to use LLMs as annotators. From the result of
the QE model experiment, we see that the model utilizing LLM annotations can even
outperform the model trained on human judgment data.

We applied prompt patterns in prompt design and developed the prompt iteratively
based on a series of prompting experiments. This approach strengthens the method-
ological aspect of prompt development and increases prompts’ structural component
and reusability.

The prompting technique PPbMQM can be used directly for MQM annotation
tasks, or further refined and adapted to other LLMs and other language pairs. Future
research should focus on training downstream QE models that can predict more labels
such as error spans and severity, making full use of the rich information provided
by MQM annotations. Meanwhile, consistent efforts should be made consistently to
1) enhance the methodology for prompt engineering to adapt to the rapidly evolving
capabilities of LLMs and 2) target low-resource language pairs.

43

Appendix A

Prompting experiment setup

A.1 Sub-experiment 1

LLM Parameters

LLaMA 3 min token= 0, max token = 512, temperature = 0.6, top p:
0.9, presence penalty = 1.15, seed = 240425

GPT-3.5 Turbo; GPT-4.0
Turbo; GPT-4o

seed = 240425, max tokens = 512, temperature = 0.2, top p
= 1,frequency penalty =0, presence penalty= 0

Table A.1: Experiment setup: Sub-experiment 1

A.2 Sub-experiment 2 & 3

LLM Parameters

LLaMA 3 min token= 0, max token = 1024, temperature = 0.6,
top p: 0.9, top k = 0, length penalty = 1, presence penalty
= 1.15, seed = 240425

GPT-4.0 Turbo; GPT-4o seed = 240425, max tokens = 1024, temperature = 1, top p
= 1,frequency penalty =0, presence penalty= 0

Table A.2: Experiment setup: Sub-experiment 2 & 3

A.3 Sub-experiment 4

LLM Parameters

GPT-4o seed = 240425, max tokens = 1024, temperature = 1, top p
= 1,frequency penalty =0, presence penalty= 0

Table A.3: Experiment setup: Sub-experiment 4

45

Appendix B

Baseline model experiment setup

Hardware:
Machine: x86 64
Platform: Linux-6.1.85+-x86 64-with-glibc2.35

Below are the hyper-parameter from the hparam.yaml file that was automatically
generated containing configuration details:
activations: Tanh
batch size: 4
class identifier: referenceless regression metric
dropout: 0.1
encoder learning rate: 1.0e-06
encoder model: XLM-RoBERTa
final activation: null
hidden sizes:
- 2048
- 1024
keep embeddings frozen: true
layer: mix
layer norm: false
layer transformation: sparsemax
layerwise decay: 0.95
learning rate: 1.5e-05
load pretrained weights: true
loss: mse
nr frozen epochs: 0.3
optimizer: AdamW
pool: avg
pretrained model: xlm-roberta-large
In addition, the seed value used for both models was 12 (the seed everything parame-
ter).

47

Appendix C

Resources

Below are open resources we used in this project:

COMET framework: https://github.com/Unbabel/COMET

Expert-based Human Evaluations of WMT General MT: https://github.com/google/
wmt-mqm-human-evaluation

OpenAI cookbook How to make your completions outputs consistent with the new
seed parameter : https://cookbook.openai.com/examples/reproducible_outputs_
with_the_seed_parameter

OpenAI cookbook How to format inputs to ChatGPT models: https://github.com/

openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_

models.ipynb

MQM official website: https://themqm.org/error-types-2/typology/

49

https://github.com/Unbabel/COMET
https://github.com/google/wmt-mqm-human-evaluation
https://github.com/google/wmt-mqm-human-evaluation
https://cookbook.openai.com/examples/reproducible_outputs_with_the_seed_parameter
https://cookbook.openai.com/examples/reproducible_outputs_with_the_seed_parameter
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://themqm.org/error-types-2/typology/

Bibliography

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. GPT-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

F. Blain, C. Zerva, R. Rei, N. M. Guerreiro, D. Kanojia, J. G. de Souza, B. Silva,
T. Vaz, Y. Jingxuan, F. Azadi, et al. Findings of the WMT 2023 shared task on
quality estimation. In Proceedings of the Eighth Conference on Machine Translation,
pages 629–653, 2023.

A. Burchardt. Multidimensional quality metrics: a flexible system for assessing trans-
lation quality. In Proceedings of Translating and the Computer 35, 2013.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán,
E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual rep-
resentation learning at scale. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault,
editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 8440–8451, Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/

2020.acl-main.747.

P. Fernandes, D. Deutsch, M. Finkelstein, P. Riley, A. F. Martins, G. Neubig, A. Garg,
J. H. Clark, M. Freitag, and O. Firat. The devil is in the errors: Leveraging large
language models for fine-grained machine translation evaluation. arXiv preprint
arXiv:2308.07286, 2023.

M. Freitag, G. Foster, D. Grangier, V. Ratnakar, Q. Tan, and W. Macherey. Experts,
errors, and context: A large-scale study of human evaluation for machine translation.
Transactions of the Association for Computational Linguistics, 9:1460–1474, 2021.

M. Freitag, R. Rei, N. Mathur, C.-k. Lo, C. Stewart, E. Avramidis, T. Kocmi, G. Foster,
A. Lavie, and A. F. Martins. Results of WMT22 metrics shared task: Stop using
BLEU–neural metrics are better and more robust. In Proceedings of the Seventh
Conference on Machine Translation (WMT), pages 46–68, 2022.

F. Kepler, J. Trénous, M. Treviso, M. Vera, and A. F. T. Martins. OpenKiwi: An
open source framework for quality estimation. In M. R. Costa-jussà and E. Alfon-
seca, editors, Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations, pages 117–122, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-3020. URL
https://aclanthology.org/P19-3020.

51

https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/P19-3020

T. Kocmi and C. Federmann. GEMBA-MQM: Detecting translation quality error spans
with GPT-4. arXiv preprint arXiv:2310.13988, 2023a.

T. Kocmi and C. Federmann. Large language models are state-of-the-art evaluators of
translation quality. arXiv preprint arXiv:2302.14520, 2023b.

T. Kocmi, C. Federmann, R. Grundkiewicz, M. Junczys-Dowmunt, H. Matsushita, and
A. Menezes. To ship or not to ship: An extensive evaluation of automatic metrics
for machine translation. arXiv preprint arXiv:2107.10821, 2021.

T. Kocmi, R. Bawden, O. Bojar, A. Dvorkovich, C. Federmann, M. Fishel, T. Gowda,
Y. Graham, R. Grundkiewicz, B. Haddow, et al. Findings of the 2022 conference on
machine translation (WMT22). In Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 1–45, 2022.

T. Kocmi, E. Avramidis, R. Bawden, O. Bojar, A. Dvorkovich, C. Federmann,
M. Fishel, M. Freitag, T. Gowda, R. Grundkiewicz, et al. Findings of the 2023
conference on machine translation (wmt23): Llms are here but not quite there yet.
In Proceedings of the Eighth Conference on Machine Translation, pages 1–42, 2023.

S. Lee, J. Lee, H. Moon, C. Park, J. Seo, S. Eo, S. Koo, and H. Lim. A survey on
evaluation metrics for machine translation. Mathematics, 11(4):1006, 2023.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

A. Lommel, H. Uszkoreit, and A. Burchardt. Multidimensional quality metrics (MQM):
A framework for declaring and describing translation quality metrics. Tradumàtica,
(12):0455–463, 2014.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318, 2002.

M. Popović. chrF: character n-gram F-score for automatic MT evaluation. In Proceed-
ings of the tenth workshop on statistical machine translation, pages 392–395, 2015.

R. Rei, C. Stewart, A. C. Farinha, and A. Lavie. COMET: A neural framework for MT
evaluation. arXiv preprint arXiv:2009.09025, 2020.

R. Rei, M. Treviso, N. M. Guerreiro, C. Zerva, A. C. Farinha, C. Maroti, J. G. De Souza,
T. Glushkova, D. M. Alves, A. Lavie, et al. CometKiwi: IST-Unbabel 2022 submis-
sion for the quality estimation shared task. arXiv preprint arXiv:2209.06243, 2022.

R. Rei, N. M. Guerreiro, J. Pombal, D. van Stigt, M. Treviso, L. Coheur, J. G. de Souza,
and A. F. Martins. Scaling up CometKiwi: Unbabel-ist 2023 submission for the
quality estimation shared task. arXiv preprint arXiv:2309.11925, 2023.

T. Sellam, D. Das, and A. P. Parikh. BLEURT: Learning robust metrics for text
generation. arXiv preprint arXiv:2004.04696, 2020.

L. Specia and K. Shah. Machine translation quality estimation: Applications and future
perspectives. Translation quality assessment: from principles to practice, pages 201–
235, 2018.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

D. Ulmer, E. Bassignana, M. Müller-Eberstein, D. Varab, M. Zhang, R. Van Der Goot,
C. Hardmeier, and B. Plank. Experimental Standards for Deep Learning in Natural
Language Processing Research. arXiv preprint arXiv:2204.06251, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-
Smith, and D. C. Schmidt. A prompt pattern catalog to enhance prompt engineering
with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

S. Xenouleas, P. Malakasiotis, M. Apidianaki, and I. Androutsopoulos. SumQE: a bert-
based summary quality estimation model. arXiv preprint arXiv:1909.00578, 2019.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. BERTScore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

	Abstract
	Declaration of Authorship
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Aim and relevance
	Problem definition
	Sub-question 1
	Sub-question 2

	Contribution
	Outline

	Background and Related Work
	Background: Machine translation evaluation
	Reference-based evaluation
	Quality estimation
	Human judgement data
	Metric meta-evaluation
	Learned metrics

	Background: Prompt engineering
	Large language models
	Prompt engineering guideline

	Related work: Prompting for MQM style annotations
	MQM prompting techniques

	Methodology
	Prompting experiment design
	Sub-experiment 1: Explore LLMs' knowledge on QE and MQM
	Sub-experiment 2: Basic prompt and format adjusting
	Sub-experiment 3: Basic prompt with 1000 segments
	Sub-experiment 4: Improving basic prompt prompt
	Basic prompt design
	Reproducibility

	Data
	Data description
	How well do human annotators agree with each other?

	Evaluation
	Intrinsic evaluation
	Extrinsic evaluation

	Prompting for MQM annotations
	Sub-experiment 1: Explore LLMs' knowledge of QE and MQM
	Results analysis

	Sub-experiment 2: Basic prompt and format adjusting
	Experiment result

	Sub-experiment 3: Basic prompt with 1000 segments
	Results analysis
	Hallucination
	Error span recall, precision and f1
	Quality score correlation
	Additional stability test
	Sub-conclusion

	Sub-experiment 4
	Prompt design
	Prompt development
	Result analysis
	Sub-conclusion

	Training QE model with LLM generated annotations
	Training data annotation
	Model training
	Baseline human annotation model
	PPbMQM QE model

	Model testing
	Result analysis
	Sub-conclusion

	Discussion
	Humans are not always the best annotators
	Reproducibility
	LLMs stability
	Experiment setup and open resources
	Proprietary or open-source LLM?

	Limitation and ethical issues
	Future research
	Flexible prompt development for other language pairs
	From score prediction to fine-grained error detection QE
	Combine output from different LLMs

	Conclusion
	Prompting experiment setup
	Sub-experiment 1
	Sub-experiment 2 & 3
	Sub-experiment 4

	Baseline model experiment setup
	Resources

