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Abstract

This thesis concerns domain adaptation of automatic speech recognition (ASR) engines via
n-gram language model adaptation. We formulate different strategies to adapt an end-to-end
ASR engine trained on generic domain data towards two topic domains: biomedical sciences
and politics. The strategies implemented are: building domain-specific n-gram language mod-
els, creating hybrid language models that are trained on generic- and in-domain data, and both
Bayesian and linear interpolation between generic and domain-specific language models. Us-
ing Bayesian interpolation, we achieve a best result of 16.3% relative word error rate (WER)
reduction with respect to the baseline for biomedical sciences and a 4.3% relative WER re-
duction for the politics domain. From this, we conclude that language model adaptation is a
successful strategy to domain adaptation in ASR, optimized using Bayesian interpolation be-
tween generic- and domain models. This adaptation yields both a relative WER improvement
as well as large successes in accurate key-term transcription and improved transcript readabil-
ity, while avoiding over-adaptation and only losing up to 0.7% relative WER in generic domain
performance.
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Chapter 1

Introduction

Automatic speech recognition (ASR) is the field in natural language processing that specialises
in the conversion of speech (audio) to text. Where manual creation of subtitles and transcrip-
tions is labour-intensive and costly, developments in ASR have made it possible to offer high-
quality automated transcription and captioning of audio data with minimal or no human inter-
vention, improving accessibility of the ever-increasing amounts of video and audio material
available online. Ideally, ASR techniques can provide added understanding and value in many
practical cases in the form of subtitling or transcript availability in e.g. political meetings, sci-
ence lectures, health care etc. However, depending on the implementation, the performance
of generic ASR engines may drop as models have to deal with noise, specific jargon or rare
subject material. In such a circumstance, it is feasible to look into domain adaptation, the field
in machine learning where we aim to adapt a model that works well for a certain source data
distribution to a (related) target distribution.

In order to successfully convert speech to text, an ASR engine is in need of two compo-
nents: an acoustic model that can learn the relation between the audio signal and some form of
textual representation, and a language model that can learn the probabilities of words occurring
in natural language, both individually as well as following each other in a sequence. There is a
variety of acoustic signals that may map to the same word: there are millions of different hu-
man voices, a lot different dialects in each language and audio may be recorded under varying
noisy circumstances. While this audio-to-word mapping may seem obvious to human ears, a
computer will be in need of machine learning techniques in order to resolve such ambiguity.
The language model component aids in disambiguating potential candidate words based on the
likeliness that this particular word follows the words that were previously detected, based on
its general knowledge of language.

For many years, ASR has relied on explicit modelling of phonetic features using toolkits
such as Kaldi (Povey et al., 2011), Sphinx-4 (Walker et al., 2004), HTK (Young et al., 2002) and
Julius (Lee et al., 2001). In this conventional approach, there are several different steps to the
acoustic component. This includes the process of extracting relevant features in the acoustic
signal, implementing an acoustic model (usually a type of a hidden Markov model) that learns
the relation between observed audio signals and the expected phonemes, and a lexical pronun-
ciation model that maps these phoneme components to words (Ghai and Singh, 2012). While
this approach used by all dominant toolkits has been successful, it requires explicit alignment of
audio-to-phoneme and phoneme-to-word relationships. As a result, the creation and improve-
ment of such models is reserved to linguistic and signal processing experts, while transcription
is restricted to using phonemes explicitly coded in the pronunciation dictionary and language
model.

1



2 CHAPTER 1. INTRODUCTION

More recently, new approaches using deep learning techniques have made the process of
building ASR engines more accessible. These end-to-end ASR implementations yield promis-
ing results without the need for this explicit modelling, replacing part of the engineering pro-
cess and simplifying ASR architecture significantly (Wang et al., 2019). End-to-end models
directly map speech to text using a single neural network architecture that can automatically
learn pronunciation and language information. A typical end-to-end speech recognition archi-
tecture consists of an encoder, that maps a speech signal to a feature sequence, an aligner, which
aligns this feature sequence to language, and a decoder that maps the aligned features to text
output. While conventional models need a pronunciation lexicon, which maps the phonemes
recognized by the acoustic model to words and needs to be curated by linguists, an end-to-end
model uses a lexicon only to improve spelling of the character-level acoustic model output. A
pronunciation lexicon and language model are mandatory in the conventional pipeline, while an
end-to-end model essentially learns these steps in one pass. An external lexicon and language
model are not required, but improve results significantly and remain relevant in fine-tuning and
improving the quality of transcription (Kannan et al., 2018).

End-to-end models do not require explicit feature engineering, but are data-driven and re-
quire vast amounts of data in order to learn speech-to-text mapping internally. Modern imple-
mentations such as wav2vec 2.0 (Baevski et al., 2020) show that pre-training the Transformer-
based architecture on unlabelled audio data to acquire general knowledge of speech and then
fine-tuning on transcribed speech-to-text corpora, can generate ASR pipelines that reach state-
of-the-art performance.

1.0.1 Problem definition

Despite these large training corpora modern end-to-end models are built from, it is virtually im-
possible for a general model to cover all types of speech, themes and subjects. As mentioned
earlier, the practical requirements for using ASR can differ in terms of acoustic circumstances,
language use, syntax and specific jargon compared to a generic domain. The frequency of
words may depend heavily on the current discussion topic: hearing words like DNA or cyto-
plasm in a biology class is not very surprising, while one does does not expect to hear the same
terms in a business meeting. This not only goes for individual words, but also for the probabil-
ity of sequences: it is likely that the word prime will be followed by minister when transcribing
politics, while prime suspect is a more likely sequence in a crime series subtitle. Using one
model trained on generic data can be considered naive and makes the language model prone
to underestimating the probabilities of rare words and constructions, leading to erroneous tran-
scriptions. For a specific use-case, it is therefore feasible to look at domain-specific ASR
strategies, that enable building a model specifically designed to perform well with language in
a certain (topic) domain.

An obvious approach for domain adaptation might be to rebuild the entire model from
scratch from the acoustic component up to the language model for the specific domain in ques-
tion. However, for large end-to-end data-driven ASR models, this would require a significant
amount of domain-specific transcribed audio data, which is often not readily available or even
hard to obtain. This makes a more efficient solution to domain adaptation desirable. Moreover,
the question is whether acoustic modelling should even be considered a bottleneck in adapting
models toward content domains: for a single language, the acoustic signals should be relatively
similar. The component in ASR that actually stores most information about which words and
syntactic construction occur is the language model. Reserving the fine-tuning and tailoring to-
wards a specific domain for the language model can prove a simple yet effective way to perform
topic-wise domain adaptation in automatic speech recognition.
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The idea of using language model adaptation to adapt ASR engines has been previously
explored in combination with conventional acoustic modelling by e.g. Nanjo and Kawahara
(2003) and Hsu and Glass (2006); Hsu (2009), where authors were able to decrease word error
rate (WER) on topic-specific lectures compared to using a generic model. These studies show
that language model adaptation is can be an effective strategy for ASR domain adaptation
in the conventional architecture. However, the question is if the effects of language model
adaptation extend their usefulness in an end-to-end architecture. This research aims to provide
an in-depth evaluation of the best strategies for language model adaptation in ASR, as well as
a critical reflection on its added value, practical limitations and prerequisites.

1.0.2 Research question and outline

In this thesis, experiments are performed with different domain-specific n-gram language mod-
elling strategies in the ASR pipeline with the objective to formulate an optimal strategy for
domain adaptation. We aim to answer the following research question:

What is the impact of domain-specific n-gram language modelling on performance of end-
to-end automated speech recognition engines?

Two different topic domains are investigated: biomedical sciences and politics. We exam-
ine the effect of replacing a standard generic language model with different language model
adaptation strategies: domain-only models, that are trained on exclusively in-domain data,
hybrid language models, that are trained on mixed corpora of domain- and generic data and
(linear- and Bayesian) interpolated language models. These strategies are evaluated with re-
spect to the following factors:

• The optimal strategy to compose/train language models to adapt to a domain looking at
WER and the quality of the transcript.

• The selection of data for language modelling, taking into account data scarceness for
difficult domains and making sure to cover both jargon-rich in-domain language as well
as spontaneous speech.

• The influence of corpus size on language model quality, considering low-resource do-
mains with limited data availability.

Each language model configuration is evaluated both individually as well as part of the
ASR pipeline, reporting WER (word error rate) and relative improvement with respect to the
baseline ASR engine. A relative WER improvement of 16.3% was achieved with the best lan-
guage model adaptation in the biomedical domain; for politics, we report 4.3% WER improve-
ment. Furthermore, the use of this strategy only causes 0.7% WER gain when transcribing
generic audio, avoiding any overadaptation issues and keeping the model applicable in broad
circumstances. These results show that domain adaptation of ASR can be achieved via n-gram
language model adaptation, using a Bayesian interpolation strategy between language models
built from in-domain data and a generic model.

The outline of this thesis is as follows: chapter 2 provides a background to ASR and rele-
vant concepts, followed by chapter 3 where we discuss the research setup, data and language
modelling experiments. Chapter 4 presents the results and an error analysis by comparing the
baseline engine with an engine where the proposed improvements are implemented, followed
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by a discussion in chapter 5. Finally, we conclude our insights and recommendations in chap-
ter6.



Chapter 2

Literature review and related work

Automatic speech recognition models are designed to recognise and transcribe (speech) audio
to text. The following section contains a brief review of conventional- and end-to-end architec-
tures, the language model component and related work in domain adaptation.

2.1 Acoustic models in ASR

2.1.1 Conventional methods

As briefly touched upon in the introduction, a typical conventional ASR pipeline relies on
carefully engineered steps. This includes a feature extractor for signal parameterisation, a
Gaussian mixture model (GMM) for acoustic scoring, a hidden Markov model for sequence
modelling and a decoder module that generates an output hypothesis incorporating the acoustic
scores, language model and pronunciation model. We will cover the architecture of an ASR
pipeline in the following paragraphs.

As described by Aggarwal and Dave (2011) in their comprehensive review of acoustic
modelling in ASR, the goal of speech recognition can be statistically formulated as finding
a word sequence W = {w1, w2, ...wn} given the acoustic vector observed for speech X =
{x1, x2, ..., xT }, estimating the most likely word sequence

Ŵ = argmax
W

P (W |X) (2.1)

In order to go from the raw speech signal to some sort of textual representation, we first
need to extract features from the acoustic signal. Various signal processing methods can be
used to generate parametric spectral representations, such as mel-frequency cepstral coefficient
(MFCC), perceptual linear prediction (PLP), temporal patterns (TRAPs) and wavelets. These
spectral representations are then processed by pattern classification algorithms in the acoustic
component to create a mapping from the speech signal features to basic speech units (phones or
phonemes). Algorithms that have been implemented for this purpose are Bayesian networks,
neural networks, support vector machines and most predominantly hidden Markov models
(Aggarwal and Dave, 2011).

The acoustic model generates a sequence of (phone) symbols that are most likely to cor-
respond to the speech signal. This sequence of most likely phonemes however does not yet
correspond to the final text output. Depending on the acoustic circumstances, phones may be
transcribed wrongly, creating a sequence of most likely phonemes that does not correspond to
a word in natural language.

5



6 CHAPTER 2. LITERATURE REVIEW AND RELATED WORK

Figure 2.1: A block diagram of the ASR pipeline
from: Aggarwal and Dave (2011)

To ensure that the transcribed word both actually exists in the language and makes sense in
the language context, the sequence of phonemes is verified by looking it up in the pronunciation
dictionary. The pronunciation dictionary, or lexicon, contains a list of all words that are known
by the ASR model and which combinations of phonemes correspond to them. A probabilistic
inference between the list of most likely phonemes generated by the acoustic model and the
pronunciation dictionary is then made to obtain the final most likely transcript of the speech
signal. A conventional ASR model can only recognize speech units that it has learned during
training, but would be able to compose a new word that was not in the training data if it consists
of speech units that the model has seen, provided that the entire word itself is available in the
pronunciation dictionary.

One more module is at play in the ASR pipeline: the language model. In this component,
the general probability of words occurring in the language is encoded, based on the likeliness
of the word itself as well as the context that usually surrounds the words. More about language
models follows in section 2.2.

The final transcription is delivered by the decoder module, that searches for a correct word
sequence using the output of the acoustic model, the language model and the pronunciation
lexicon. The most widely used approach for this is Viterbi beam search, that searches the most
likely sequence of words based on the path of tokens with the highest probability.

2.1.2 End-to-end models

As can be seen in figure 2.1, a conventional ASR architecture requires several separate compo-
nents in order to provide transcription: the acoustic model, pronunciation model and language
model are all key input for the decoder module. End-to-end systems reduce the complexity
of ASR systems compared to the conventional approach by directly mapping the input signal
(speech) to text via a neural architecture. With this direct mapping, the process of feature ex-
traction of acoustic signals is performed internally by the neural network, and there is no longer
need for explicit alignment to phonemes and words or a closed look-up dictionary. End-to-end
models directly map a sequence of acoustic input into a sequence of on words, sub- words or
characters and graphemes using a neural encoder-decoder architecture (Wang et al., 2019).
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The key idea of encoder-decoder architecture is that an input sequence X = {x1, ..., xT }
is converted to an output sequence L = {l1, ..., lN}. This is achieved through two steps in the
two components: first creating a mapping (encoding) of X to a hidden feature representation
F = {f1, ..., fT }, while simultaneously calculating another mapping (decoding) from F to
L. Comparing to the conventional approach to ASR as described in the previous section, the
end-to-end model effectively combines feature extraction, acoustic modelling and phoneme-
to-character mapping in one algorithm.

One of the more complicated processes in conventional acoustic modelling is that while
training, acoustic signals and their features have to be explicitly aligned (hard alignment) to
their corresponding phonemes. End-to-end ASR is capable of soft alignment, where each audio
frame corresponds to all possible transcriptions with a certain probability distribution. The
optimal probability mapping from speech signal unit to corresponding speech unit can then be
learned by the acoustic model.

There are multiple approaches to soft alignment, one of which is connectionist tempo-
ral classification (CTC) (Graves et al., 2006). CTC enumerates all possible hard alignments
and then aggregates them in order to achieve soft alignment. Given the input sequence X =
{x1, ..., xT } of length T where we want to find the most likely word in the vocabulary that
corresponds, this essentially means that there is no hard requirement for this word to have the
same length T as the input sequence (Wang et al., 2019).

Looking back at the encoder-decoder architecture where we try to map from X to output
L, we do not decode directly from F to L. Instead, each ft at time step t from feature vector
F = {f1, ..., fT } is converted to a probability distribution sequence yt, composing vector
Y = {y1, ..., yT }. Each yt indicates how likely ft corresponds to a any possible word in the
vocabulary. The most likely path π from X to L given the input vector, p(π|X), can be seen
as the product of probabilities in Y for each character in π at each time step t:

p(π|X) =
T∏
t=1

yπt
t (2.2)

under the constraint that the most likely word predicted by π is in the vocabulary.
As can be seen, this most likely mapping from input to output still speaks of a fixed number

of time steps t. Soft alignment, the possibility to deviate from this, is achieved by mostly two
processes:

1. Merging the same contiguous labels: if multiple input timesteps xt and xt+1 map towards
the same character, they are merged into one output label.

2. Deleting blank labels: if an xt corresponds to no label, it is deleted.

With an architecture as described above, it is possible to go from speech signal to a set of
most likely characters in one pass. Merging the different modules from conventional ASR into
one model has two main advantages: joint training of the multiple ASR components allows
the algorithm to configure a global optimum instead of having to optimize the modules one-
by-one, and reduces the processing complexity. However, as is clear from the representation
of p(π|X) in equation 2.2, CTC makes an important assumption in modelling path probability
as a product of individual time steps: that each mapping from xt to πt is independent. When
seeing each character in a word as independent, a CTC-based model is consequently unable to
do language modelling; the likeliness of the characters is not evaluated in context, making it
purely an acoustic model. In order to create words that actually make sense in context, both
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lexicon- and language model scoring is incorporated in the CTC process. A lexicon in end-
to-end ASR is similar to a pronunciation dictionary, but contains a mapping from character
spelling to words (instead of phonemes to words), making sure the output words exist in the
language. For both the lexicon and the language model, each character’s probability in context
is interpolated with its initial probability from the acoustic model.

An implementation of the above end-to-end type model is used in this research project,
which is wav2vec 2.0 (Baevski et al., 2020). A further explanation of this model architecture
follows in chapter 3.

2.2 Language modelling

With either of the acoustic models in section 2.1, the character- or word-level output is subse-
quently scored by the language model. Language models are a key component in ASR systems,
searching for the most likely word given the context in the language. The language model
score is incorporated with a certain weight, reinforcing or discouraging the word formed by the
acoustic model output. A language model takes the several word hypotheses generated by the
acoustic models and scores them with a probability for each sequence of words (Aggarwal and
Dave, 2011). Scores of the acoustic model and language model are then linearly interpolated
in the decoding step to maximize:

y∗ = argmax
y

{logPASR(y|x) + β logPLM (y)} (2.3)

for acoustic input x and word output y, where β is a parameter that defines the importance
of the external language model (Inaguma et al., 2019). There are essentially two types of lan-
guage models: statistical models, that compute probabilities of words occurring in a sentence,
and neural network models. N-gram models are used in this research and will be discussed
below.

2.2.1 N-gram models

The most commonly known and widely used implementation of language modelling in ASR
is the n-gram language model. An n-gram language model is formally known as ’a probabil-
ity distribution p(s) over strings s, reflecting how frequently a string s occurs in a sentence’
(Chen and Goodman, 1999). N-gram language models compute the probability of sequences
of words under the assumption that the probability of word wi occurring depends directly on
the probability of the sequence of previous words in the string.

This means we can predict the probability of a word occurring now, based on how likely
it was to occur after the words we have already seen in the past. However, looking at the
entire history of a word is too complex: language is creative, and the chances that there is no
knowledge available about the entire previous context is high. Therefore, n-gram language
models approximate the history of previous words by only looking at n − 1 previous words:
wi−1...wi−n for an n-gram model. A unigram model, for which n = 1, stores for each word the
probability that this word occurs in the corpus by itself. A bigram model (n = 2) reflects the
probability of this word given the previous word. This can be extended to trigrams, fourgrams,
fivegrams and further to obtain more and more insight into how language in the corpus is
structured. The higher the n-gram order, the better the corpus is captured in its probability
distribution, but the lower the chance that the model can predict an unseen corpus just as well.
The probability of a string s consisting of k words wi in an n-gram language model is formally
represented as:
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k∏
i=1

p(wi|wi−1
i−n+1) (2.4)

where wi−1
i−n+1 is the n-gram word history.

Smoothing

The conceptual simplicity of n-gram language models comes with a few complications. Despite
the fact that we already approximate a word’s context by only looking at n previous words, the
chances that a finite corpus will not contain all valid n-gram sequences in the current language
are high, even for large training corpora. As a consequence, some n-gram sequences that occur
outside the training corpus will have zero probabilities even though they are valid sequences.
Because the probability of the string is computed as the product of word probabilities, this will
lead to the entire string having zero probability: something that is definitely to be avoided.

In order to prevent this, smoothing techniques are implemented, which make sure these
zero-probabilities are converted to a non-zero value. As discussed in Chen and Goodman
(1999) referring to Lidstone (1920), Johnson (1932) and Jeffreys (1998), a simplest solution
to this issue is additive smoothing: add δ (typically 0 < δ < 1) to the count of each n-gram.
Although this prevents zero counts, this smoothing method adds little informative value for
unseen n-grams. Many more elaborate techniques have been designed over the years. The
Good-Turing Estimate (Good, 1953) is a central measure in many smoothing techniques, as-
suming that for any n-gram that occurs r times, we estimate its count looking at the number
of other n-grams that also occur r times. Techniques like Jelinek-Mercer smoothing (Jelinek,
1980) use another core idea: for higher order n-grams that don’t have an estimate, we just rely
on the lower-order n−1 probability. A linearly interpolated estimate for an n-gram model then
becomes a weighted mixture between the n-gram probability and the interpolated (n-1)-gram
probability:

PI(wi|wi−1
i−n+1) = λP (wi|wi−1

i−n+1) + (1− λ)PI(wi|wi−1
i−n+2) (2.5)

with fixed weights λ. Other well-known methods building on these concepts are Katz Smooth-
ing (Katz, 1987), Witten-Bell smoothing (Witten and Bell, 1991; Bell et al., 1990), absolute
discounting (Ney et al., 1994) and Kneser-Ney smoothing (Kneser and Ney, 1995). Kneser-
Ney smoothing will be used as smoothing technique in language model building: see 3.8.2.

2.2.2 Neural language models

Another class of language models is neural language models (NLMs), which have proved to
outperform n-gram language models on several benchmarks, showing relative WER reduction
of several percentage points (Raju et al., 2019; Jozefowicz et al., 2016). Such recurrent NLMs
and LSTM-based implementations are generally better at capturing a language, considering
they take into account unlimited context history; while n-gram models only look at n − 1
previous words, NLMs learn a distributed representation of each word as well as the probability
function for the word sequence in context (Bengio et al., 2000).

This unlimited context history leads to an exponential explosion in decoder search space,
as the number of hypotheses that arises from the acoustical model can be very large (Raju
et al., 2019). This is also the main reason that n-gram language models are still most widely
implemented: the improved performance of neural models comes with added computational
complexity, which slows down the already complicated ASR pipeline. Instead of using the
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NLM directly in ASR decoding, a common approach is to run the decoding in two passes, using
a simple n-gram language model to narrow down the search space and rescoring the output with
the stronger NLM in the second pass. While narrowing down the number of hypotheses with
an n-gram model in the first pass reduces computational complexity for the NLM, adding a
second component still slows down the pipeline. Furthermore, the strength of the NLM is
not maximally exploited anymore: if the n-gram language model already throws away good
hypotheses, the NLM will not consider them either.

2.3 Domain adaptation strategies in ASR

Domain adaptation in ASR can refer to different subtasks such as adapting models to work for
different types of speech within a language ((Hwang et al., 2022), as well adapting speech mod-
els to low-resource languages (Anoop et al., 2021) or clean to noisy speech (Manohar et al.,
2018). These approaches fine-tune end-to-end acoustic models on domain data in combination
with updated language models. Techniques for domain adaptation include data augmentation,
multi-task learning, teacher-student models or semi-supervised training (Wotherspoon et al.,
2021). These techniques however approach the problem of domain adaptation to be solved
with at least some proportion of acoustic data, creating a model that can transcribe domain-
specific audio by learning from the source domain and fine-tuning on the target domain.

Using only the language model for domain adaptation in speech recognition is a lower-resource
approach, suitable in cases where the need for domain adaptation does not come from acous-
tic difficulty, but differences in the topic- or subject matter. Language model adaptation, the
procedure of changing a language model to better fit a target corpus, has been reviewed by
Bellegarda (2001). In language model adaptation, we search to maintain an adequate repre-
sentation of our target data under changing conditions. In our case, this change in condition is
the change of domain, where we want to compensate for any mismatch between training and
speech recognition.

The key idea of language model adaptation is generally centered around language model
interpolation, given a domain-specific (smaller) corpus A and a background (large) corpus B.
According to Bellegarda (2001), there are three main approaches to language model adapta-
tion. The first is simple model interpolation where a language model from A is combined with
a model from B according to preset weighting parameters. A more elaborate approach is de-
termining the optimal model mixture using constraint specification, where the domain-specific
corpus A is used to extract features that the adapted language model should satisfy. A third
approach is using metadata extraction, where corpus A is used to extract topic-, syntactic- or
semantic information about the subject matter to determine the ideal model adaptation weight-
ing.

The question how language models can be useful for adaptation to different topics in ASR
has been explored by e.g. Nanjo and Kawahara (2003) as well as Hsu and Glass (2006). The
authors examine the application of hidden Markov models with Latent Dirichlet Allocation as
a way to do topic modelling of language model training corpora, in order to create interpolated
topic-matching n-gram models models. In their work, the authors address the need for target-
domain specific language modelling in ASR, specifically regarding the challenge of fitting text
corpora to audio domains.

Following this line of work, Hsu (2009) proposes a new interpolation technique for n-
gram language models to solve the challenge of academic lecture transcription. In academic
lectures, the presence of dense scientific subject material goes hand in hand with a high de-
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gree of speaker spontaneity (hesitations, repetitions, rephrasing). This proposes a challenge
in accurate language model training, as corpora that cover scientific terms and concepts will
inevitably not cover this spontaneous speech, while general speech corpora will miss out on
special terminologies and the topics covered in the lecture. Language model adaptation can
also be performed with neural language models, which has been a central focus in more recent
work such as Raju et al. (2019); Liu et al. (2021).
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Chapter 3

Methodology

The following chapter outlines the methods used for our domain adaptation research. The
characteristics of our ASR setup and task definition are first covered in section 3.1, followed
by the evaluation metrics in 3.2. In order to investigate the effects of building domain-specific
ASR engines with custom language models, we then need to select relevant domains and create
a framework to test the transcription quality for these domains in section 3.3. A collection of
language model training data was gathered (section 3.4) as well as an evaluation set, which
has been curated to test performance over domains (section 3.5). Different language modelling
strategies are designed in order to address potential shortcomings of the baseline model in
section 3.7, from which we derive our experimental setup as discussed in 3.8.

3.1 Model characteristics and task definition

3.1.1 Acoustic model

The acoustic model evaluated throughout the entire project is the Amberscript end-to-end En-
glish engine. Amberscript is an Amsterdam-based company that specializes in speech-to-text,
using ASR to provide automatic- and improved captioning and transcripts. This model is an
implementation of a semi-supervised, pre-trained model similar to wav2vec 2.0 (Baevski et al.,
2020). Wav2vec is a model from Facebook AI that can be trained on a large corpus using self-
supervised learning, reducing the amount of labelled data that is needed by using transcribed
data only for fine-tuning. The general data representations are learned in an unsupervised way,
which means the model needs only audio data (without transcriptions) for the pre-training pro-
cess.

The model takes audio data as input and encodes this using a multi-layer convolutional
network. When passed through the encoder-decoder architecture, it produces speech repre-
sentations for each (pre-defined) timeframe of length t in the audio signal. The model learns
to convert these speech representations to text by applying techniques derived from masked
language modelling: randomly masking a proportion of the speech representations in an au-
dio signal, and learning to distinguish the true content of the masked proportion from a set
of distractors. Before performing the contrastive task of distinguishing the true latent from
distractors, the masked vectors (latent speech representations) are transformed into discrete
signals using a quantization module and fed to a Transformer context network, obtaining con-
textualised representations.

After the model has learned its basic representations of speech by this unsupervised masked
language modelling technique, it still has to be fine-tuned. This is done by adding a randomly

13
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Figure 3.1: Illustration of the Baevski et al. (2020) framework
The waveform representations X are mapped to latent representations Z from which the model jointly

learns contextualized speech representations C and an inventory of discretized speech units Q.

initialised linear projection on top of the context network that projects to C classes, represent-
ing the character vocabulary. The most likely transcript to an acoustic signal is then obtained
by minimising CTC loss over these classes. The results are incorporated with a language model
using beam search (either n-gram or Transformer-based) to obtain final speech-to-text.

3.1.2 Language models

All language models implemented in this project are n-gram models, following Amberscript’s
setup and practical considerations. Our n-gram models are built using Kneser-Ney smoothing
(Kneser and Ney, 1995), which is an optimized version of absolute discounting (Ney et al.,
1994). Absolute discounting builds on the principle of interpolating between a higher-order
and a lower-order n-gram distribution. For a certain n-gram count, we subtract a fixed discount
factor δ (Chen and Goodman, 1999). If this distracted value is larger than zero, its probability
is obtained by dividing it by the total number of n-gram counts for this word; else, we take
zero probability. This score is interpolated with the n-gram probability of the one-lower order
n-gram, describing the final n-gram probability of word wi given n-gram history wi−1

i−n+1 as:

pabs(wi|wi−1
i−n+1) =

max(c(wi
i−n+1)− δ, 0)∑

wi
c(wi

i−n+1)
+ λ(wi

i−n+1)pabs(wi|wi−1
i−n+2) (3.1)

with normalization constant λ:

λ(wi
i−n+1) =

δ

c(wi−1
i−n+1)

|wi : c(w
i
i−n+1wi) > 0| (3.2)

The problem with absolute discounting is that when a higher-order n-gram probability is low,
relying heavily on a lower n-gram probability is not always a good idea. The classic example
is the phrase San Francisco: in a text where this bigram occurs a lot, the unigram probability
of Francisco will be high. In a sentence where higher-order n-gram probability is low and the
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model reverts to unigram probability, Francisco will then be considered a likely word to follow
any other word, while in reality being very unlikely as a unigram without San preceding it.

Kneser-Ney smoothing addresses this problem by adapting unigram probabilities to not
only represent the number of occurrences of the word, but making it proportional to the number
of different words that it can follow. This means instead of just using pabs(w

i
i−n+2), we use

the continuation probability of a word, proportional to the number of higher-order n-grams it
completes. For a bigram model, this is the probability that word wi−1 is followed by wi:

Pcont(wi) =
|wi−1 : c(wi−1wi) > 0|∑
j |wi−1 : c(wi−1wi) > 0|

(3.3)

which stands for the number of n-grams that the final word can complete, divided by the total
number of possible n-grams. In the case of San Francisco, Francisco can only complete one
n-gram, so its continuation probability will be low.

This makes the generalized formula for Kneser-Ney smoothing:

pKN (wi|wi−1
i−n+1) =

max(c(wi
i−n+1)− δ, 0)∑

wi
c(wi

i−n+1)
+ λ(wi

i−n+1)
|wi−n+1 : c(w

i
i−n+1) > 0|∑

i |wi−n+1 : c(w
i−1
i−n+1) > 0|

(3.4)

3.1.3 Task overview

The purpose of this research is to adapt the ASR pipeline towards specific domains by incor-
porating a customized n-gram language model. In end-to-end ASR, the output of the acoustic
model is a character-level sequence, which is scored by a language model in order to produce
natural language in context.

As explained in the introduction, the context-level is expected to be most characteristic to
a topic domain, which is why domain adaptation is approached at the language model level.
This means the setup of this project is as follows:

1. The baseline setup of the ASR is evaluated on two specific topic-domains.

2. Experiments with several language model configurations are performed, with the goal of
improving the generic setup.

3. Language model performance is evaluated individually by computing perplexity on a
validation set.

4. Language models are evaluated as a component in the ASR pipeline focussing on word
error rate gain and transcript quality improvement on both the domain datasets as well
as on the generic dataset (to account for over-adaptation).

A more in-depth discussion of this setup and related concepts follows in the sections below.

3.2 Evaluation metrics

In order to evaluate the language models, their contribution to the ASR and the influence in
domain adaptation, we look at different metrics and aspects of evaluation. Initially, quantitative
performance is measured in terms of perplexity and word error rate. This section introduces
these evaluation metrics as well as transcript quality, another point of interest.
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3.2.1 Perplexity

Perplexity will be used in intrinsic evaluation to measure the quality of our language models.
Perplexity can be defined as the normalized inverse probability of the test set and is given by
the following formula:

PP (W ) = N

√
1

P (w1, w2, ..., wN
) (3.5)

where P (w1, w2, ..., wN ) indicates the probability that the word sequences found in the test set
follow from the sequence probability computed in the training corpus. The lower the perplexity,
the less the model is ’surprised’ by the evaluation dataset, thus the better the language model
reflects the domain.

3.2.2 Word error rate

A common metric to measure the performance of speech recognition engines is word error rate
(WER). Word error rate is a simple measure that divides the number of errors by the number
of words in the reference transcript and will be used as our extrinsic evaluation measure. The
number of errors is determined by the sum of deletions (DEL), the number of insertions (INS)
and substitutions (SUB), generating

WER =
SUB +DEL+ INS

N
(3.6)

for N words in a corpus.
Additionally to WER, we also report relative word error rate difference: the relative im-

provement of WER with respect to the baseline in percent. As baseline WER may differ across
domains, this gives us more insights in the relative impact of adapting language models.

3.2.3 Transcript quality

While WER is effective in its simplicity, the number of errors does not always reflect transcript
quality as a whole. Examining the rate of substitutions, deletions and insertions on their own
is therefore informative as well. For example, a high deletion rate that is caused by a noisy
environment that makes words indetectable for the ASR is problematic in any circumstance,
while deletions may have a different impact in other cases. When transcribing stuttering speak-
ers that repeat words and interject many uhm’s, like’s and yeah’s, a higher deletion rate might
actually improve a transcripts readability and quality. Similarly, the occasional insertion of an
interjection does not make an automatically generated caption significantly more difficult to
understand, while giving a completely unrelated substitution of a key concept term does.

A multi-applicable and practical automated speech recognition system should not only
strive to obtain the lowest possible WER and focus on the quantity of correctly transcribed
words, but also take into account a notion of transcript quality. While this is a vague concept,
carefully analysing the errors an engine made and their impact on readability should be given
accurate attention in ASR research. In our analysis, we will therefore discuss not only WER,
but also the impact of changes in transcripts with respect to the following points:

• The impact of deletions, substitutions and insertions on the overall clarity of the tran-
script: can the meaning of the sentence be understood or inferred?
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• The amount and impact of changes that should be made to obtain a perfect transcript,
as would be important in an implementation where ASR for example assists a manual
subtitler/transcriber.

3.3 Selecting domains

To test the hypothesis that domain specific language models can improve ASR performance
compared to generic language models, we first need to select relevant domains. Our baseline,
the generic domain is defined as a mixed collection of speech that covers different subjects but
is not specifically limited to certain topics or speech circumstances. A generic language model
is then trained on a mixture of speech data, adapted to cover for all possible speech.

Preferably, domain adaptation experiments are performed on both a domain that is expected
to be hard to cover for with a generic language model, as well as a domain that should pose
less challenges, in order to be able to effectively estimate the impact of customising language
models. The selected domains for this purpose are biomedical science education and politics.

Biomedical science is a scientific field that contains a lot of specific jargon that is not always
known by the common speaker: think of proteines, diseases and anatomical terms. This jargon
is likely only partially or not at all covered by a generic language model. This means we can
expect low probability for these words to be selected in speech recognition. The hypothesis
is therefore that ASR should show a relatively large improvement when experimenting with
domain-specific adapations of the language model, making it our high-effect domain. In order
to reflect a potential practical use of biomedical speech recognition, we select the academic
lectures subdomain.

A second domain should still benefit from domain adaptation. However, it is interesting
to select a domain where the influence of domain adaptation is expected to be at a different
level in order to infer where and when this strategy is worth to implement. Political speech
is expected to be less ’difficult’ for the generic model to handle; while jargon will be present,
politicians are discuss a broad range of themes and actualities that can be thought of as generic
to some degree. As a consequence, politics will therefore be our lower-effect domain.

3.4 Training corpora

To adapt language models towards the selected domain, biomedical- and politics text corpora
were collected. The text data and used partitions are discussed in the section below.

3.4.1 Biomedical domain

In search for a large, open-source corpus that contains biomedical jargon, text data for biomed-
ical language model training was scraped from Wikipedia. Making sure that only relevant
biomedical texts are included, scraping was performed by selecting specific categories and col-
lecting the contents of all pages in these categories. The categories included in the language
model are displayed in table 3.1. Equations and headers were removed from the raw page
contents. The total corpus size of the scraped Wikipedia articles makes up 5.7 million words,
which has been divided into a train (Bio-TRAIN) set of 4.8 million words, and a tuning (Bio-
TUN) set of 0.9 million words that will be used to determine the ideal weights in language
model adaptation (see section 3.7).
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Anatomy Human anatomy Human biology
Physiology Organs (anatomy) Tissues (biology)

Human physiology Medical terminology Cell biology
Membrane biology Cell anatomy Cells

Cell signalling Embryology Cellular respiration
Metabolism Cellular processes Molecular biology

Protein structure Biochemisty Proteins
Biomolecules Peptides Genetics
Cytogenetics Molecular genetics Medical genetics

Population genetics Gene expression Neuroscience
Molecular neuroscience Brain anatomy Neurochemistry

Brain Nervous system Neuroanatomy
Cellular neuroscience Immunology Molecular oncology

Oncology

Table 3.1: Wikipedia categories included in the training corpus of the biomedical domain

3.4.2 Political domain

In the politics domain, two separate corpora were used for different experiments: a British
parliament dataset and the European Parliament Proceedings Parallel Corpus (Europarl). Both
corpora are described in the paragraphs below.

British Parliament corpus

As our political domain test set is focused on British politics, the closer a language model can
approach British political speech, the better. The main corpus for political language model
training consists of transcripts of meetings of the British House of Commons1. Transcripts
were scraped from 01-01-2021 up to 29-03-2022, obtaining a dataset of approximately 15 mil-
lion words. As a preprocessing step, the frequent abbreviation hon. was converted back to
honourable (from the phrase right honourable friend, a common way politicians refer to each
other in Parliament). In order to be able to compare the language model to the biomedical
domain model, the final corpus was brought down to 5.7 million words and a train-validation
split was created resulting in a 4.8 million word training corpus (Poli-TRAIN) and 0.9 mil-
lion word tuning/validation set (Poli-TUN/VAL). As we want to minimize the risk of creating
a language model that is largely biased towards only current topics discussed in parliament,
coherent speech paragraphs were randomly sampled from the 15 million words corpus over a
larger time span opposed to only including more recent transcripts.

Europarl corpus

Since 5.7 million words compose a relatively small language model, a second external cor-
pus is added for the politics domain in order to be able to investigate the effect of model size.
The English partition of the Europarl corpus (PoliEU-TRAIN) (Koehn, 2005) is therefore in-
cluded in one of the language model experiments for politics. This dataset is a 55 million word
collection of European Parliament proceedings.

1Available under an Open Parliament License v3.0, scraped from https://www.theyworkforyou.com/api.
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3.4.3 Generic domain

During experimentation, partitions of generic data are also used in language model training in
order to potentially improve the domain-specific model implementations. To make the mod-
els containing generic data comparable to the language modelling baseline, the data that was
used to train Amberscript’s generic language model was recollected. This corpus consists of
a 639 million word composition of open-source datasets extended with company data, and
contains a wide range of spoken- and written language sources. A collection of randomly sam-
ple sentences from these corpora is used in language model building throughout this project
(Gen-TRAIN).

3.5 Extrinsic evaluation data

In order to test the effect of designing new language models, audio data has been gathered for
each domain to evaluate the ASR engine performance. For the biomedical domain, the model is
evaluated on a collection of educational- and lecture video’s available on YouTube that consider
topics like DNA, the immune system, neurobiology and cell biology. For the politics domain,
performance is evaluated on a collection of video excerpts of British Parliamentary events2.
This includes debates in the House of Commons, the House of Lords and meetings of the
Treasury Committee and Children and Family Act 2014 Committee.

Both domain-specific datasets are curated to contain ±4h of speech and include a variety
of speaker accents and genders. In the biomedical domain, an effort was made to include
different varieties of English such as American (en-US), British (en-GB), South African (en-
ZA) and Australian (en-AU), simulating an education environment that features teachers and
experts from different backgrounds. The politics dataset however does limit to British (en-GB)
and Irish (en-IE) including several regional dialects, in order to simulate a practical use case of
a domain model as political practices are often country-specific. A more in-depth description
of the evaluation dataset is available in appendix A (7).

In order to be able to compute performance statistics, ground-truth transcriptions are needed
for all evaluation data audio. These were obtained via Amberscript’s online platform, where
manual transcribers created verbatim (true to utterance) transcriptions for each file that are used
as reference for computing error statistics.

Finally, a generic audio dataset has been composed to evaluate potential over-adaptation of
language model implementations to a specific domain. This dataset consists of two hours of
Amberscript company data. A complete overview of the training corpora and evaluation data
used can be found in table 3.2.

3.6 Intrinsic evaluation data

To evaluate the language models prior to running the entire ASR pipeline, validation sets were
constructed for both domains. For the politics domain, the language models are validated on
Poli-VAL, the 0.9 million word partition of the scraped data from 3.4.2. This validation set
consists of transcripts similar to the language model training data, which is expected to be a
good representation of the evaluation data. For the biomedical domain on the other hand, we
anticipate a larger gap between training and extrinsic evaluation data subdomains. To better

2Available for download on parliamentlive.tv.
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reflect the extrinsic evaluation set, the validation set is selected to be a 1 hour transcript of a
biology lecture (Bio-VAL).

Dataset Domain Specification Size

Bio-TRAIN Biomedical Wikipedia corpus 4.8M
Poli-TRAIN Politics Parliament transcript 4.8M
PoliEU-TRAIN Politics Europarl corpus 60M
Gen-TRAIN Generic Amberscript sample 4.8M

Bio-VAL Biomedical Lecture transcript 11.1K
Bio-TUN Biomedical Wikipedia corpus 0.9M
Poli-VAL/TUN Politics Parliament transcript 0.9M
Gen-TUN Generic Amberscript sample 0.9M

Bio-TEST Biomedical Lecture audio 4hrs
Poli-TEST Politics Parliament debates 4hrs

Table 3.2: Overview of datasets used and their purpose

3.7 Domain adaptation

Using the datasets described in previous section 3.4, language models were created according
to three main different strategies. The goal of this research is to compare these strategies and
gain insight not only in the general effect of domain adaptation via language models, but also
to find the optimal approach. Three methods of training language models are discussed in this
section: implementing domain-specific-only models, combining the domain-specific and gen-
eral training corpora to obtain a hybrid model, and language model adaptation by interpolating
between the generic and domain specific model. Another point of interest is the effect of corpus
size and the trade-off between domain match and size.

3.7.1 Baseline

In order to compare the language models that are generated with the above domain-specific cor-
pora and determine an optimal strategy, a baseline was established for the entire evaluation set.
The baseline was obtained by running the ASR pipeline while incorporating the default generic
language model. This language model has been trained on the complete generic domain cor-
pus from Amberscript (639 million words) and calculated using KenLM (Heafield, 2011) with
n-gram order 4 and pruning threshold 1. For this generic baseline model we expect suboptimal
performance on domain-specific terms, as the probabilities drawn from a large, mixed corpus
will likely underestimate both biomedical jargon as well as words specific to British politics.

3.7.2 Domain-only language models

A first strategy to domain adaptation is integrating language models into the ASR pipeline that
are exclusively trained on the collected domain-specific training corpora. Such a model will
be specifically tuned to the training material and the domain. The success of this approach
depends largely on how well the language model training data is expected to cover the audio to
be transcribed: if their subdomains are very close, this should work well; if the training data is
no perfect match, performance may drop.
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For the biomedical domain we are using Wikipedia data as training corpus, while our eval-
uation data consists of lectures. This means we can expect a partial mismatch between the
language model data and the evaluation data that might influence the performance of a domain-
only language model integration negatively. For the political domain, this effect is not neces-
sarily expected: our corpus consist of Parliament transcripts which are very similar to the test
audio.

Lexicon

In addition to the language model, the lexicon also plays an important role in the ASR’s lin-
guistic component. The lexicon acts as a constraint of what words are possible in the language;
for end-to-end ASR, a word not being present in the lexicon significantly reduces the chances
of producing it in a transcript. When performing domain adaptation, it is also important to take
this component into account and expand the lexicon with domain-specific words if the model
is to transcribe these words correctly.

There are two possible strategies for the lexicon when adapting the language model. The
first one is to rebuild the lexicon with domain-only data, which should work adequately if the
training corpus is large enough and covers the test domain. In practical cases however, when
performing domain adaptation from an existing generic ASR engine, it makes more sense to
simply extend the lexicon: since it is only a constraint, adapting fully to the domain language
model means an unnecessary loss of generality. With domain specific language models, we
experiment with both building the lexicon and language model both with domain-only data,
as well extending the generic lexicon from the 639 million word language model used in the
baseline with the domain vocabulary. All other strategies discussed below will use the latter
strategy.

3.7.3 Hybrid language models

While using a domain-only language model may work well in cases where the audio to tran-
scribe exactly matches the domain the language model was trained on, there is also a risk of
overfitting to the text corpus. This can be especially problematic in ASR if we think about an
important language style difference that persists even if the training corpus matches the domain
topic very well: written language opposed to spoken language. Word use and especially word
sequence in spoken language is different compared to written language; the former contains
more incomplete sentences, stutters and repetitions and is less formal. While finding domain-
specific corpora that contain the relevant jargon might be challenging already, the chances of
finding suitable domain text data that also matches spontaneous speech are even slimmer.

Enriching the domain-specific corpus with a portion of generic data decreases the risk of
the final model missing out on generic words as well as spontaneous speech, given that our
generic corpus consists for a large part of speech transcripts. For both domains, a language
model is trained on a balanced combination of generic and in-domain data, accompanied by
a combined lexicon. For the biomedical domain, where the language model training corpus
is more scientific in nature and of a narrow domain, partial integration of the generic corpus
is expected to achieve better results than using domain-only training data. For the political
domain, where our corpus consists of speech transcripts, the integration of the generic data is
expected to have less impact.



22 CHAPTER 3. METHODOLOGY

3.7.4 Language model interpolation

Instead of training on a joint corpus, interpolation is a widely used technique to combine two
language models. In interpolation, language models are combined by drawing probabilities
from separate language models trained on separate corpora (Pusateri et al., 2019). Compared
to joint training, interpolation provides the opportunity to customize the weights given to either
domain. Furthermore, it allows for combining two already existing language models, dismiss-
ing the need for complete retraining in each new data configuration.

The probability of a word w given an n-gram history h can then be expressed as the sum of
probabilities over all different domains i as

p(w|h) =
∑
i

p(w, i|h) =
∑
i

p(i|h)p(w|i, h) (3.7)

In this research, we will use two different methods for interpolating between domains:
linear interpolation and Bayesian interpolation.

Linear interpolation

By plugging Bayes’ rule:

p(i|h) = p(i)p(h|i)
p(h)

(3.8)

into equation 3.1, we can derive the interpolated estimate of the probability of a word given its
history, pint(w|h), as the sum over all word histories for each individual domain multiplied by
the probability of this history existing in the current domain, divided by the probability of the
word history occurring over all domains:

pint(w|h) =
∑
i

λip(h|i)
p(h)

pi(w|h) (3.9)

Here, constant λi = p(i) represents the prior probability of the current domain i. In linear
interpolation, the strong assumption is then made that word history h is independent of the
domain i: p(h|i) = p(h). This simplifies equation 3.3 to

pLI(w|h) =
∑
i

λipi(w|h) (3.10)

By doing this, we essentially assume that both domains share the same vocabulary, which is a
naive assumption given our domain-adaptation premise.

The interpolation weight λi for each domain can be either explicitly specified or learned
by tuning the interpolated model on a representative text file, optimizing the parameters using
gradient descent.

Bayesian interpolation

The second approach to interpolation implemented is Bayesian interpolation. This method
does not assume that word history is independent of the domain, which is expected to show
a significant improvement with respect to linear interpolation if the interpolated models are
not very similar. Since this is the case for both our domains (especially biomedical sciences),
Bayesian interpolation is expected to be more successful than linear interpolation.

Bayesian interpolation does not disregard a relation between word history and domain and
computes p(h|i) as the probability of word sequence h given by the ith component language
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model. This is denoted pi(h) (Pusateri et al., 2019). Plugging this estimate into Equation 3.3,
the formula of Bayesian interpolation is:

pBI(w|h) =
∑
i

λipi(h)pi(w|h)∑
j λjpj(h)

(3.11)

3.8 Experimental setup

The following section discusses the final experimental setup, as derived from the domain adap-
tation strategies discussed above.

3.8.1 Configurations

The different language modelling experiments are conducted as listed below. Each experiment
is assigned an acronym, which will be used as a reference in the remainder of this paper. Where
not explicitly mentioned, the lexicon used consists of the generic baseline lexicon extended
with the domain vocabulary from the training data. An overview can be found in table 3.3.

ACRONYM Corpora used LM strategy Specifics

BASE 639M word generic Baseline -
GEN-S Gen-TRAIN - -
DOM-dLX TRAIN - Domain lexicon
DOM-cLX TRAIN - Combined lexicon
HYBRID-EU (Poli-)TRAIN + EUTRAIN Hybrid -
HYBRID-L TRAIN + Gen-TRAIN Hybrid -
HYBRID-S 1

2 TRAIN + 1
2 Gen-TRAIN Hybrid -

LINT-D TRAIN + Gen-TRAIN Linear int. Tuned on TUN + Gen-TUN
LINT-V TRAIN + Gen-TRAIN Linear int. VAL-tuned
BAYI-11 TRAIN + Gen-TRAIN Bayesian int. 1:1 weights
BAYI-32 TRAIN + Gen-TRAIN Bayesian int. 3:2 weights

Table 3.3: Overview of the experiments from section 3.5 and their acronyms.
Where not specified, a model was trained on both the Bio- and Poli-variant of the corpus.

Generic domain experiments

Two experiments are performed that focus on only the generic domain as training data source:

• BASE: the baseline experiment, setting the starting point for potential improvement by
language model changes.

• GEN-S: since the baseline model is particularly large (639 million words) compared
to the domain models used in the rest of the experiments (4.8 million words), there is
a substantial chance that the domain adaptation strategies in this research will display
relatively weak performance due to this size difference. To make sure such effects can
be detected, an ’equal match’ was created by training a language model on in order
to obtain more insight in relative improvements as well as the importance of language
model size.
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Domain model experiments

The following experiments are performed with domain-only corpora:

• DOM-dLX: a language model trained on exclusively domain data for both domains
(Bio- or Poli-TRAIN), accompanied by a lexicon from the same corpus.

• DOM-cLX: the same domain language model, accompanied by a lexicon that contains
the generic vocabulary extended with the domain vocabulary.

Hybrid model experiments

• HYBRID-EU: as the domain specific models are both quite small, we look at the use of
a larger domain language model for politics only, trained on PoliEU-TRAIN and Poli-
TRAIN together obtaining a total corpus size of 60 million words. While the Europarl
corpus consists of politics transcripts (from the EU parliament), its subdomain is further
from our British politics test set than our small British language model. A point of
interest is therefore also the tradeoff between exact domain match and size. Due to
limited access to data in the biomedical domain, a similar experiment was not repeated
for biomedical sciences.

• HYBRID-L: a hybrid language model trained on both Bio- or Poli-TRAIN and with a
combined lexicon.

• HYBRID-S: another model that should give more insight in the effect of model size is
this hybrid language model trained on half of Bio- or Poli-TRAIN and half of Gen-
TRAIN.

Interpolation experiments

• LINT-D: a model that is linearly interpolated between a domain model as used in DOM-
experiments and the small generic model GEN-S. The model is tuned with gradient de-
scent on Bio- or Poli-TUN and Gen-TUN, which leads to an approximately 1:1 weight
ratio (see table 3.4 for the tuning weights).

• LINT-V: a model that is linearly interpolated between a domain model as used in DOM-
experiments and the small generic model GEN-S. The model is tuned with gradient de-
scent on Bio- or Poli-VAL. This means our intrinsic evaluation of this model will be
biased and should be interpreted carefully, but the overlap between tuning- and vali-
dation data does not influence the extrinsic evaluation. Adapting the language model
more directly towards the needs of the domain is therefore still an interesting experi-
mental strategy (again, see table 3.4 for the tuning weights). For biomedical sciences,
this means a slight leaning towards the domain model, while the generic model influ-
ence is almost eliminated for politics. As the politics validation set is very similar to the
language model training data, it is no surprise the tuning leads to favouring the domain
language model.

• BAYI-11: a Bayesian interpolated model between the Bio- or Poli-DOM model and
GEN-S model with a weight ratio 1:1, approximating the weighting from LINT-D.

• BAYI-32: a Bayesian interpolated model between Bio- or Poli-DOM and GEN-S with
a weight ration 3:2, giving some dominance to the domain model probabilities approxi-
mating the weighting from LINT-V. The slight overweighting of the domain is expected
to give better results than using the 1:1 ratio.
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Model Generic weight Domain weight

Biomedical

LINT-D 0.52 0.49
LINT-V 0.43 0.58

Politics

LINT-D 0.58 0.45
LINT-V 0.09 0.94

Table 3.4: Interpolation weights

3.8.2 Specifications and hyperparameters

Language models were trained using KenLM (Heafield, 2011) except for Bayesian interpola-
tion models for which OpenGRM (Roark et al., 2012) is used. All models use n-gram order
4, keeping language model complexity similar to the generic reference language model used
as baseline. This decision was validated experimentally (see 4.2.1). No pruning constant was
used as all language models are relatively small.
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Chapter 4

Results

This chapter discusses the evaluation of the customized language models. First, an extensive
analysis of the baseline results is provided in section 4.1. Second, a perplexity evaluation of
all language models on the validation set is provided in section 4.2. Subsequently, we discuss
the WER statistics of the different language model pipelines in section 4.3. An evaluation of
(over-)adaptation of the models on a generic testset can be found in section 4.4.

4.1 Baseline

In order to determine the optimal domain adaptation strategy and desired language model ca-
pabilities, a baseline (BASE) was established for the entire evaluation set. We will cover the
mistakes and shortcomings of the baseline model in the following section to illustrate the need
for domain-specific language modelling.

4.1.1 Intrinsic evaluation

The perplexity scores of the generic language model on both the intrinsic validation set as
well as the (transcripts of the) evaluation set are displayed in table 4.1. The perplexity of the
model is significantly higher on the biomedical domain, which along the expected lines consid-
ering domain distance. The difference between validation- and test perplexity is lower for the
biomedical domain (29.1) than for politics (42.3), indicating that the biomedical validation set
is a better reflection of the test set than the political validation set. Another interesting observa-
tion is that the test set perplexity of the generic model on the generic domain is higher (375.1)
than on the politics domain (318.4). This means that the generic model is a surprisingly good
predictor for the politics domain.

Domain Val. perplexity Test perplexity

Generic - 375.1
Politics 276.1 318.4
Biomedical 528.4 557.5

Table 4.1: Perplexity of the generic language model on validation and test set

27
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Domain WER SUB DEL INS

Biomedical Average 8.6 4.2 3.7 0.8
Standard Deviation 2.4 1.0 2.5 0.6

Politics Average 13.9 4.9 7.9 1.1
Standard Deviation 3.2 0.8 3.0 0.4

Table 4.2: Baseline performance of the ASR with the generic Amberscript language model

4.1.2 Extrinsic evaluation

Generally, the WER baseline for both domains is already quite solid with an average of 8.6
WER for the biomedical domain dataset and 13.9 WER for the politics domain dataset (see
table 4.2). In the following section, we look further into the baseline results.

Biomedical domain

An average word error rate of 8.6 is quite low in the jargon-rich biomedical domain and exceeds
initial expectations. This overall good performance can probably be attributed to the quality of
the dataset; the files are low-noise and generally clear-spoken. The interesting part therefore
lies in the types of errors made. The hypothesis for the biomedical domain was that the terms
that are specific to biomedical sciences and are likely to occur frequently in our domain-specific
dataset, are not extensively covered by the generic language model.

For a lot of domain-specific words, the model is correct in some occasions, while failing
at the exact same words in other contexts. We can suspect that the generic language model
includes some biomedical training data, but the probability of jargon words is not large enough
to encourage the ASR to transcribe these words in a variety of situations. For example, the
word eukaryotes is substituted by carriers, years, chariots or you Karioti, prokaryotes becomes
precarious and DNA is substituted by Diana, day or diner. The model also does not recognize
proteins and sugars as cytosine (citizens) and guanine (gunn and) and ribose (boswell). An
example sentence can be seen in figure 4.1. Words in red represent ASR mistakes; corrected
words of interested are marked in bold.

Generic engine transcription:
”The first group of organisms are called carriers. The second group of organisms are called precari-
ous.”

True transcript:
”The first group of organisms are called eukaryotes. The second group of organisms are called
prokaryotes.”

Figure 4.1: Example sentences where the baseline engine provides incorrect transcription of
domain-specific jargon

Political domain

Contrary to what might be expected looking at assumed domain distance, the WER for the
politics domain is higher than for the biomedical domain with an average of 13.7. How-
ever, when we look into the statistics, more things seem to be at play than simply missing
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out on Parliament-specific terms; a substantial amount of errors are related to either the acous-
tic model or post-processing. The deletion rate is relatively high with 7.6 compared to 3.6 in the
biomedical domain while the number of substitutions is similar (4.9 for politics versus 4.2 for
biomedical). A parliamentary debate contains more interruptions, stutters and crosstalk than
biomedical lectures. These are not always picked up and lead to a higher number of deletions
compared to the reference file. Another cause for higher WER is spelling: the baseline model
produces American spelling, while the reference transcripts are British. While this issue is not
a point of interest in this research, it is important to keep its potential influence on WER in
mind.

Other than that, we see a similar type of substitutions as in the biomedical domain where
terms that are very specific to the dataset are substituted by more generic words: Tory MP’s
becomes tops, Prime Minister is transcribed as port minister and the term right honourable
friend (a common way colleagues refer to each other in Parliament) is transcribed as right one
friend. These are terms that ought to be given more priority when a domain-specific language
model is implemented. In debates or meetings about specific topics, substitutions are also
common: Ukrainians is transcribed as uranian, and surrogacy and fertility become sagas and
fatality. Again, an example can be found in figure 4.2.

Generic engine transcription:
”Well actually, I have the first quest hold bate on the subject in 2015”.

True transcript:
”Well actually, I held the first Westminster Hall debate on this subject in 2015.”

Figure 4.2: Example sentences where the baseline engine provides incorrect transcription of
domain-specific jargon

4.1.3 Summary

Summarizing the findings in the baseline experiments, the generic end-to-end model has quite
a good performance on both domains. This good performance can be partially attributed to
the fact that the evaluation data contains little noise, which gives the acoustic model better
chances of transcribing the right content to begin with. Updating the language model with (a
large proportion of domain-specific) text is expected to contribute and improve it further by
increasing the probabilities of domain-specific terms and including new words. We can update
our hypotheses as follows:

• We expect the biomedical domain to benefit relatively more from domain-specific lan-
guage modelling than the political domain, as the former contains more domain-specific
terms. The political domain is expected to show relative improvement, but is limited as
the error rate is also largely caused by the number of deletions which is within the range
of the acoustic model.

• In analysing domain adaptation, the focus should be on the relative improvement and
mostly on changes in the amount of substitutions the model makes.
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• Spelling errors appear to play a role in the higher word error rate for the political domain.
Using a British corpus for language modelling might help increase the probabilities given
to British spelling compared to American spelling. This should be taken into account in
case of significant changes in WER.

4.2 Domain adaptation: intrinsic evaluation

After establishing the baseline obtained by the use of a generic language model, the different
language mode strategies from 3.7 are evaluated. A primary intrinsic evaluation of the language
models on their own can be found in the section below. Next, the language models are evaluated
as component of the ASR pipeline in section 4.3.

4.2.1 N-gram order

As a first evaluation, perplexity is computed for all language models on the validation set. The
decision to use n-gram order 4 was validated by computing perplexity for bigrams, trigrams,
fourgrams and fivegrams in two basic configurations: domain-specific language models and
models trained on a combination of domain- and generic data. A visualization of perplexity
vs. n-gram order can be found in figure 4.3, accompanied by table 4.3. All demonstrated mod-
els follow the same pattern: perplexity significantly decreases when moving from bigrams to
trigrams; fourgrams still exhibit relative improvement to trigrams but this stagnation of per-
plexities comes more or less to a stop for fivegram models. This validates our decision to take
fourgram models as our general implementation.

Figure 4.3: Perplexity plotted for different n-gram orders

4.2.2 Language model strategies

Biomedical

Table 4.4 displays perplexity of all generated language models on the validation set.
For the biomedical domain, the best model is trained on a combined corpus of domain- and

generic data with a perplexity score of 312.9 and a reduction of 40.1%. Similar to the baseline
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n-gram order Biomedical Bio-Generic Political Politic-Generic

2 642.5 372.9 164.7 176.7
3 572.4 322.2 109.4 113.7
4 560.3 312.9 99.1 101.6
5 556.9 309.6 97.2 99.3

Table 4.3: Perplexity for different n-gram orders.

Language Model Perplexity Difference Rel. difference

Biomedical

BASE 528.4 - -
GEN-S 715.4 +187 +26.2%
DOM 560.3 +31.9 +6.0%
HYBRID-L 312.9 -215.5 -40.1%
HYBRID-S 345.0 -183.4 -34.7 %
LINT-D 476.6 -51.8 -9.8%
LINT-V * 468.0 -60.4 -11.4&
BAYI-11 397.86 -130.5 -24.7%
BAYI-32 397.36 -131.0 -24.8%

Politics

BASE 276.1 - -
GEN-S 313.17 +37.07 +13.4%
DOM 99.1 -177 -64.1%
HYBRID-EU 110.08 -166.0 -60.1%
HYBRID-L 101.59 -174.5 -63.2%
HYBRID-S 119.7 -156.4 -56.6%
LINT-D 116.6 -159.5 -57.8%
LINT-V * 117.6 -158.5 -57.4%
BAYI-11 139.25 -136.9 -49.7%
BAYI-32 136.76 -139.3 -50.5%

Table 4.4: Perplexity scores of the language models
DOM refers to the language model used in either DOM-dLX or DOM-cLX, as the lexicon has

no influence in perplexity.
* These perplexity scores have been verified on the same data the model is tuned on, which means this result should be interpreted carefully.

results, modelling of the biomedical domain appears to be harder than the political domain:
the perplexity scores are significantly higher overall. As hypothesized, the baseline-exceeding
perplexity score of 560 by DOM indicates that the validation data shows too few overlap with
the language model training data domain to make a domain model viable on its own. Biomed-
ical lectures are a tricky combination of spontaneous speech and jargon; considering this, a
6% perplexity loss compared to the baseline for the domain model is not surprising. This is
also likely the reason that incorporating generic data is a more successful strategy in language
modelling, making HYBRID-L the best model perplexity-wise, followed with a notable but not
surprising difference of 32.1 points by its smaller counterpart HYBRID-S. The LINT-models
show the least improvement with respect to the baseline, but LINT-V outperforms LINT-D.
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Politics

For the politics domain, we can see that the best model appears to be the domain-specific
model with a very good perplexity score of 99.1 and a relative gain compared to the baseline
of 64.1%. As the validation set of the politics domain is from the same source as the language
model training data (House of Commons transcripts), it is no surprise that this model shows the
most promising results. All other language model configurations show relative gain compared
to the baseline language model, except for the small generic language model, which is also to
be expected. Linear interpolation shows better results than Bayesian interpolation in both con-
figurations. The LINT-D model tuned on a combination of domain- and generic data performs
slightly better than LINT-V, tuned on validation data only.

An interesting fact is that Bayesian interpolation appears to do a better job at modelling our
validation data for biomedical sciences, while linear interpolation takes the lead with politics.
This difference may be caused by the difference in domain distance: since politics is closer
to the generic domain (as was confirmed by the baseline perplexity in table 4.1), the naive
assumption of linear interpolation that word history is independent of the domain causes less
issues than for the biomedical domain, where domain distance is larger.

Following our expectations, the language model that is trained on half of both generic
and domain data (HYBRID-S) is significantly less successful than the model where all data
was used HYBRID-L with scores of 119.7 versus 101.59. On the other hand, the even larger
HYBRID-EU model performs worse than HYBRID-L. Again, this may be caused by the fact
that the validation data is an exact domain match to the politics data used in all other models and
appears to be covered very well by the generic language model. As HYBRID-EU is trained on
European Parliament transcripts, it might be disadvantaged having neither a dominant influence
of British Parliament data nor any generic data incorporated. However, the fact that this model
is significantly larger might prove more important in our evaluation of the test audio in the
ASR pipeline. If more types of political meetings than only the House of Commons are to be
transcribed and if there is more variation in topics, the larger vocabulary and size of HYBRID-
EU might compensate for where it lacks in subdomain-specificness.

4.2.3 Summary

Summarizing our findings above, we add the following expectations regarding the extrinsic
language model evaluation component:

• Domain-only language modelling has some potential in the politics domain, while for
biomedical sciences some influence of generic data is definitely needed to obtain any
performance increase.

• Building on the perplexity scores, the hybrid language models appear to have an advan-
tage on the interpolated models.

• Linear interpolation shows better perplexity scores for politics, while Bayesian interpo-
lation takes the lead in biomedical sciences. Because the politics domain is closer to the
generic domain, the history independence assumption has limited influence on interpo-
lation results.

4.3 Doman adaptation: extrinsic evaluation

In the following section, we discuss the final results of running the ASR pipeline with all
proposed language model strategies incorporated. Strategies are discussed by domain. An
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overview of all WER statistics for all models is given in table 4.5 and visualized in figure 4.4.

Experiment WER Rel. WER diff. SUB DEL INS

Biomedical

BASE 8.6 - 4.2 3.7 0.8
GEN-S 9.3 +8.1% 4.8 3.9 0.6
DOM-dLX 10.9 +26.7% 3.7 6.6 0.5
DOM-cLX 8.6 0% 3.6 4.6 0. 5
HYBRID-L 7.3 -15.1% 3.2 3.5 0.5
HYBRID-S 7.4 -14% 3.3 3.5 0.5
LINT-D 8.4 -2.3% 3.9 4 0.5
LINT-V 8.2 -4.7% 3.7 4 0.5
BAYI-11 7.2 -16.3% 3.2 3.5 0.5
BAYI-32 7.2 -16.3% 3.1 3.5 0.5

Politics

BASE 13.9 - 4.9 7.9 1.1
GEN-S 14.4 +3.6% 5.1 8.2 1.1
DOM-dLX 15.4 +10.8& 4.6 9.8 1.0
DOM-cLX 14.0 +0.7% 4.6 8.4 1.0
HYBRID-EU 14.2 +2.2% 4.6 8.6 1
HYBRID-L 13.5 -2.9% 4.5 7.9 1.1
HYBRID-S 13.6 -2.2% 4.5 8.0 1.1
LINT-D 13.9 0% 4.7 8.1 1.1
LINT-V 14.1 +1.4% 4.7 8.4 1
BAYI-11 13.3 -4.3% 4.4 7.8 1.1
BAYI-32 13.4 -3.6 % 4.4 7.9 1.1

Table 4.5: Averaged word error rate statistics of running the ASR pipeline with different lan-
guage models

4.3.1 Biomedical science domain

Balanced generic language model

The difference between the baseline generic model and the small generic model is significant,
with the latter showing a 8.1% WER loss over the biomedical test set. Reducing the generic
model size increases the (if not sporadic) presence of in-domain training data that is already
present in the generic corpus. However, considering the enormous size difference (640 million
words vs. 4.8 million words), the effect is not that severe.

Domain-only language models

The language model that was trained on only domain-specific data shows an increase to 10.9
WER if the lexicon is also limited to only corpus vocabulary (DOM-dLX) and a similar WER
of 8.6 to the baseline with a combined lexicon (DOM-dLX). This corresponds to the higher
perplexity score that we have seen for the domain-only language model and the fact that the
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Figure 4.4: Plot of word error rates over all models
The models are sorted by their performance averaged over both domains (decreasing WER);

the red line represents the standard deviation.

biomedical lectures from the test set contain a combination of domain-specific terminology and
spontaneous speech, which the Wikipedia corpus does not completely cover.

Nevertheless, we can see that the number of substitutions (SUB) does go down for both
these model configurations: from 4.2 for BASE to 3.7 for DOM-dLX and even 3.6 DOM-dLX
if we use the combined lexicon. Deletions (DEL) on the other hand increase from 3.7 to 6.6
and 4.6 respectively. This indicates that while the model may lose generality, it might be more
capable of transcribing specific biomedical terms. On the other hand, when the language model
lacks coverage of spontaneous expressions the model appears to be more eager to delete these.

We examine an example transcript for the DOM-dLX model in 4.5. There are quite a
few deletions in this transcript, which are all frequent, non-content words like a, the and I.
Meanwhile domain words eukaryotic and DNA are transcribed correctly. The reverse is true
for the baseline transcript: here the accompanying words are correct, while the domain-jargon
is substituted. Which of these deletions/wrong substitutions is worse, is up for discussion.
When evaluating not only word error rate, but also transcript quality and the added value such
ASR may have in automated subtitling or serving as a base for manual transcribers, it might be
more effective in the end to accept the filler word deletions and at least get the content words
right. More about this follows in the discussion in chapter 5.

Hybrid language models

As soon as some generic data is incorporated in the language model, performance improves
with 14% for HYBRID-S and even 15% for HYBRID-L compared to the baseline. In terms of
size effects, the double-sized domain-generic model HYBRID-L appears to have little advan-
tage over the smaller HYBRID-S model. The distincition between these models is visible in a
0.1 point difference for substitutions yielding a 1.1% relative WER improvement for doubling
corpus size.

Training a language model on this combination of biomedical jargon from the Wikipedia
corpus and generic spoken data appears to decrease the amount of both substitutions as well
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True transcript:
”The defining feature of a eukaryotic cell is the presence of a nucleus, which contains the DNA that
controls the cell’s activities.”
Generic engine transcription:
”The defining feature of a Critic cell is the presence of a nucleus which contains the diner that controls
the cell’s activities.”
Bio DOM-dLX transcription:
”The defining feature of [DEL] eukaryotic cell is the presence of [DEL] nucleus, which contains the
DNA that controls the cell’s activities.”

Figure 4.5: Example sentences illustrating the changes in deletions and substitutions when
using Bio-DOM-dLX

as deletions. An illustration can be observed in figure 4.6: while Bio DOM-dLX omits the I’s,
HYBRID-L fixes this mistake.

Contrary to what might be expected from the perplexity scores in 4.2, HYBRID-L is not
the best performing model when implemented in the ASR pipeline and loses to the Bayesian
interpolation methods by 0.1-0.2 points. The differences between interpolation and joined
corpus language model training will also be covered in the discussion.

DOM-cLX transcript:
[DEL] want to ask you one question before [DEL] move on.
True / HYBRID-L transcript:
I want to ask you one question before I move on.

Figure 4.6: Example sentence illustrating the impact of generic training data in the language
model

Interpolated language models

With a small difference of 0.1 WER point to the domain-generic language model, the overall
best biomedical model is the Bayesian interpolated implementation with a 3:2 domain-generic
weight ratio (BAYI-32), achieving 7.2 WER. This model has also the lowest substitution ration
(3.1); while weighting difference of BAYI-11 and BAYI-32 does not appear to have a large
impact, the latter has a 0.1 point advantage in substitutions. An example transcript from BAYI-
32 is provided in figure 4.7: here we see how the language model fixes the most important
substitutions and deletions made by the baseline generic engine.

True transcript:
”Yeah. I got rid of the DNA. This is the mRNA that we were able to transcribe from that DNA.”
Generic engine transcription:
”Now I got rid of the [DEL]. This is the man that we were able to transcribe from that [DEL].”
Bio-BAYI-32 transcription:
”Now I got rid of the DNA. This is the mRNA that we were able to transcribe from that [DEL].”

Figure 4.7: Example sentences illustrating the changes in deletions and substitutions when
using Bio BAYI-32

The Bayesian interpolation method is significantly better than the linear interpolated mod-
els LINT-V (8.2 WER) and LINT-D (8.4 WER). As previously mentioned in the perplexity
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validation 4.2, linear interpolation assumes that word history is independent of domain. This
assumption is probably too naive given the large difference between the biomedical and generic
domain. Still, corresponding with the expectations from perplexity scores, tuning on the vali-
dation set is more effective than tuning on a combination of domain and generic data.

4.3.2 Politics domain

The overall impact of language model adaptation in the politics domain is lower compared to
the biomedical domain. The best performing model, BAYI-11, only loses 0.6 WER compared
to the baseline (13.3 and 13.9 respectively), making it a relative WER decrease of 4.3%. This
is a far less significant effect compared to 16.3% decrease in the biomedical domain.

Balanced generic model

The small generic model GEN-S again shows lower performance than BASE (14.4 vs. 13.9),
although the performance drop is less significant than for the biomedical domain. When further
examining the differences between BASE and GEN-S, we can see that the performance drop
for both domains is most importantly caused by an increase of substitutions. This increase is
significantly lower in the politics domain, where it goes up by only 0.2 points, compared to 0.6
for the biomedical domain. As previously mentioned, it can be hypothesized that as the politics
domain lies closer to the generic domain, the small generic model does a better job at covering
for its vocabulary than for the biomedical domain.

Domain-only language model

Contrary to what one might expect based on the perplexity scores, the domain-only language
model is no longer the best performing in the politics domain when incorporated in the ASR
pipeline. It is even the worst performer with a WER of 15.4. The number of deletions increases
significantly from 7.9 to 9.8 if we also only use an in-domain lexicon (DOM-dLX), and still
goes up to 8.4 if the generic lexicon is kept (DOM-dLX). Despite that the politics training
corpus consists of transcripts that are an exact domain match to our test set, these transcripts
are cleaned, excluding repetitions and stuttering. Evaluating on similar clear transcript in the
validation round has not posed a problem, but this may be different when applying the language
model in noisy speech conditions. We can suspect that the discrepancy between train- and test
data might have been underestimated and generic speech data is still needed to account for
spontaneous, spoken language.

The type of improvements domain models make in the politics domain are actually quite
similar to their contribution in the biomedical domain. The substitution rate improves with a
modest 0.3 rate from 4.9 (DOM-dLX) to 4.6 (DOM-dLX); on the other hand deletions rise
from 7.9 to 9.8 and 8.4. An example sentence is found in 4.8.

Hybrid language models

Similar to the biomedical domain, WER starts improving as soon as some generic data is in-
corporated. We see a relative improvement of 2.9% for the HYBRID-L model and 2.2% for
the HYBRID-S model. Considering corpus size, doubling the size of the domain and generic
corpus language model in HYBRID-L compared to HYBRID-S again does not have a large
impact. Together with what we have seen for the biomedical corpus, this confirms the ef-
fectiveness of the language model adaptation on its own: sheer corpus size is not the most
important factor.
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True transcript:
”Mr. Speaker, at the very same time, Tory MPs were gathering across the street for a champagne bash
in the Park Plaza.”
Generic engine transcription:
”[DEL] At the very same time, tops, we’re gathering across the street for a champagne bash in the park,
fabrication problems.”
Politics DOM-dLX transcription:
”[DEL] At the very same time, Tory MPS were gathering across the street for [DEL] champagne base
in the park fabric of problems.”

Figure 4.8: Example sentences illustrating the changes in deletions and substitutions when
using Poli-DOM-dLX

The HYBRID-EU model was hypothesized to provide a larger domain coverage for the
politics domain. Its performance however is disappointing, not only as we have seen in per-
plexity score but also in WER performance. Word error rate goes up with 2.2% from the
baseline to 14.2. Even more interesting, the HYBRID-EU model for the politics domain per-
forms worse than the DOM-dLX model, even though being over 30 times larger. The problem
is again mostly in the higher deletion rate: similar to the other domain-only language models,
the HYBRID-EU model seems overeager to delete filler- and speech words such as a, I and
the. This causes the deletion rate to increase from 7.9 to 9. The DOM-dLX model still shows
a slightly lower deletion rate with 8.6.

In terms of substitutions, the HYBRID-EU model misses the probability mass to transcribe
terms like the before mentioned Tory or right honourable friend correctly in all circumstances,
while the model trained on exclusively British politics gets these terms in most of the cases.
From this we can draw a careful conclusion that exact domain match in a smaller language
model is to be chosen above a larger, medium domain-match language model.

Interpolated language models

A Bayesian interpolation between the generic and domain language model is again the most
successful model with a 13.3 WER and a relative WER loss of 4.3% for BAYI-11. The best
strategy here is using 1:1 interpolation weights compared to 3:2 in the biomedical domain,
making a 0.1 difference in the deletion rate.

An example sentence for this best language model configuration is seen in 4.9. We can
see how the model improves on some substitutions while continuing to suffer from a high
amount of deletions. While SNP business speaker is somewhat closer to the true transcript
SNP spokesperson than Boston Custom speaker, the entire phrase ”Thank you Mr. Speaker” is
deleted by both the politics language model and the baseline model. While Bridgend is tran-
scribed wrongly by the generic language model to James, the politics language model deletes
it entirely. A significant proportion of the higher deletion rate in the politics domain is likely
also caused by failure of the acoustic model; as these test files contain a lot of cross-talk and
noise and deletions are present regardless of language model configuration.

While linear interpolation looked more promising in our perplexity validation (see 4.2),
performance does not show any improvement with LINT-D and even appears to cause a rise
in deletion rate with model LINT-V (7.9 to 8.4). Again, like previously mentioned, the dis-
crepancy between the in-domain politics data and generic data is perhaps larger than expected,
giving linear interpolation the same disadvantages as for the biomedical domain.
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True transcript:
”We now come to SNP spokesperson Kerstin Boswell. Thank you Mr. Speaker, I’d like to add my best
wishes to the honourable member for Bridgend.”
Generic engine transcription:
”We now come to Boston Custom speaker [DEL]. an I’d like to add my best wishes to the honourable
member for James.”
Poli-BAYI-11 transcription:
”We now come to SNP business speaker [DEL]. I’d like to add my best wishes to the honourable
member for [DEL].”

Figure 4.9: Example sentences illustrating the changes in deletions and substitutions when
using Poli-BAYI-11

4.4 Over-adaptation

To measure how significantly the language models influence domain adaptation, all models
were also tested on a generic evaluation set to visualise performance loss across the generic
domain. These results are displayed in table 4.6.

Experiment WER Rel. WER. diff. SUB DEL INS

BASE 15.3 - - - -
GEN-S 15.5 +1.3% 7.8 6.6 1.1

Biomedical

DOM-dLX 19.2 +20.3% 8.5 9.8 0.9
DOM-cLX 18.1 +15.5% 8.4 8.8 0.8
HYBRID-L 15.3 0% 7.6 6.6 1.1
HYBRID-S 15.7 +2.5% 7.8 6.9 1
LINT-D 15.8 +3.2% 7.8 7.1 1
LINT-V 16.1 +5% 7.8 7.3 1
BAYI-11 15.4 +0.6% 7.6 6.6 1.2
BAYI-32 15.4 +0.6% 7.6 6.6 1.1

Politics

DOM-dLX 18.1 +18.3% 8.6 8.4 1.1
DOM-cLX 16.5 +7.8% 8.2 7.3 1
HYBRID-EU 16.2 +5.9% 8 7.3 0.9
HYBRID-L 15.4 +0.7% 7.6 6.7 1.1
HYBRID-S 15.8 +3.3% 7.8 7 1
LINT-D 16.4 +7.2% 8.3 7.1 1
LIND-V 15.9 +3.9% 7.9 6.8 1.1
BAYI-11 15.4 +0.7% 7.6 6.5 1.2
BAYI-32 15.4 +0.7% 7.7 6.6 1.2

Table 4.6: Performance of language models on generic domain dataset

The performance loss is significant for the domain specific models DOM-dLX, DOM-cLX,
and HYBRID-EU. The domain-only models that also use a domain-only lexicon lose 20% and
18.3% for biomedical sciences and politics respectively, the HYBRID-EU model 5.9%. As
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HYBRID-EU is trained from a significantly larger corpus size, it inevitably contains more
vocabulary which explains the significant difference.

As all these models have seen none of the generic data, it is not too surprising that some
loss is inevitable. The DOM-dLX implementations already do better than their domain-lexicon
only counterparts with relative WER increases of 15.5% (biomedical) and 7.8% (politics).

For models that have shown the most potential in domain-adaptation, the Bayesian inter-
polation models and the larger hybrid implementations, the loss of generality is more than
reasonable ranging between 0% and 0.7%. This means that performance loss is negligible:
an ASR engine with one of these models implemented should be safe to use not only when
transcribing a narrow domain, but also when exposed to more generic data.

The LINT-D and LINT-V show between 3.2% and 7.2% WER loss, being affected more
than other combined models. Considering the mediocre WER performance on either domain,
we can suspect that the linear interpolation as executed has simply not found a right probability
interpolation between generic and domain n-grams, showing suboptimal performance for each
of its parent domains.
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Chapter 5

Discussion

In this chapter, we summarize the results from the previous section and analyse their contribu-
tion to answering the question how language models can be most effectively implemented in
ASR for domain adaptation.

5.1 The impact of language models

The following section provides a discussion of the impact language models in domain adapta-
tion in general as well as the benefits and pitfalls of the different strategies used in this research
project.

5.1.1 Best models

The highest obtained word error rate gain for the biomedical domain was by language model
BAYI-32, showing a 16.3% WER reduction. This gain is composed of 1.1 difference in sub-
stitutions (26% reduction), 0.2 difference in deletions (5.4%) and 0.3 difference in insertions
(37.5%). For politics, BAYI-11 is the best with a 4.3% WER reduction, composed of 10.2%
substitution-, 1.2% deletion- and no insertion improvement. These results show that domain
adaptation in automated speech recognition can indeed be performed by language models.

For both domains, the difference in word error rate between Bayesian interpolated models
and hybrid models is small. Considering the fact that the interpolation weights are relatively
balanced, this is perhaps not surprising. Both interpolated models have a similar impact on the
final n-gram weights, which is comparable to retraining on the combined corpus.

In practice, interpolating language models has the advantage over hybrid training. Hav-
ing two separately trained domain language models that can be re-used in different domain- or
weight configuration can be considered convenient compared complete retraining of models on
combined corpora if we imagine a practical implementation of domain adaptation. Given both
the high-score in terms of WER and practicality, interpolating a generic language model with
a domain-specific language model is therefore the most promising domain-adaptation strategy
found in this research. In this, it is important to use an interpolation method such as Bayesian
interpolation that does not assume word history independence, since the purpose of this in-
terpolation is in fact to combine two very different domain vocabularies. Choosing Bayesian
interpolation is in line with the findings of Pusateri et al. (2019), who proved superiority of
Bayesian interpolation above linear interpolation.

The Bayesian- and linear models in this research have been interpolated between the do-
main language model and the small generic language model GEN-S. While this strategy has
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proven successful, interpolating between a larger generic model (BASE) and the domain model
can potentially be even better. While such size difference would be of influence in hybrid train-
ing, the larger representation of the generic domain n-grams should be only beneficial, as the
weighting ratio will continue to give equal weight to the domain-specific language model com-
ponent. Using the largest available model size should be given priority to using small subsam-
ples when repeating this research. This also applies to the rest of our language models: while
we have proven the concept of language model adaptation and the used domain adaptations
strategies, it would be interesting to verify these results with larger-sized models.

5.1.2 Reflecting on improvements

Improvements in WER are mainly achieved by reducing the amount of substitutions the model
makes. This is expected, as one of the premises of domain adaptation via language model is
increasing probability of uncommon domain-specific words to prevent erroneous substitution
of such terms with more generic words.

The language model however also appears to have an impact on the deletion rate: for
models that do not include any generic data (DOM-dLX, DOM-cLX, HYBRID-EU) deletion
rate increases significantly. This effect is present across both domains, although it has relatively
more impact in the biomedical domain. The most likely explanation for this given the error
samples is that the language modelling data does not contain enough n-grams that reflect the
probability of stop-words such as I, the and a in spoken language. Generally speaking, written
language is more formal and uttered from a more objective viewpoint than speech. Using
a domain-only language model as the ones in this project can then cause the probability of
jargon being preceded by articles, interjections or pronouns to be underestimated, ultimately
contributing to their deletion.

While the deletion rate is definitely affected by language modelling (as is clear given the
difference between DOM-dLX and BAYI- models), a significant proportion of the higher dele-
tion rate is likely also caused by failure of the acoustic model. This is especially true for the
politics domain, where the deletion rate was already high to begin with. These test files contain
a lot of cross-talk and noise compared to the biomedical test set and deletions are present re-
gardless of language model configuration. Another different research design is required to rule
out the acoustic model effect (see chapter 6.2).

Language modelling as spelling adaptation

An interesting side effect of language model adaptation is spelling correction. While the
generic language model used in the baseline produced American English spelling, integrat-
ing the in-domain language model results in a spelling change as can be seen in example 5.1.
As the exact number of words that are counted as substitutions but were caused by spelling
differences has not been checked, this may have had a distracting influence on WER in our re-
search setup. Even so, using language model adaptation as a form of spelling adaptation might
be an interesting practical implementation.

Generic engine transcription:
”There has not been enough spent on defense for some years.”
Pol- transcription:
”There has not been enough spent on defence for some years.”

Figure 5.1: Example sentences illustrating spelling adaptation with Poli-BAYI-11
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5.1.3 Data quality

Implementing domain-only language models (DOM-dLX, DOM-cLX) with either an extend
or domain specific lexicon has shown a relative increase in word error rate for both domains,
deeming it a suboptimal strategy for language modelling in ASR domain adaptation. Especially
for the biomedical domain, the subdomain of language model training data has proven too
narrow to provide accurate coverage of the test domain, as mainly visible in the rise in deletions.
Like discussed in the previous section, this is probably caused by a loss of generality and
coverage of spontaneous speech, which the language model training data does not provide.

While the influence of imperfect data coverage was expected for the biomedical domain,
the problem also persists for the politics domain. As this corpus is formed of transcripts that are
recorded from the same type of meetings as the test data, this was not hypothesized in advance.
Despite the fact that the politics corpus is a close match to the test data, the transcripts used
for language model training are cleaned. This means that they inherently also represent a more
formal category of language. Instead of containing spontaneous utterances, they are reshaped
to a pre-written speech-type format. This may influencing the coverage of political debates,
which are more spontaneous by nature. Another possible explanation might be simply that the
politics domain is selected to be relatively close to the generic domain to begin with, as was
confirmed by the perplexity scores of the baseline model. If politics covers a potentially broad
range of topics, using a smaller set of data for (domain-specific) language modelling might
have a disadvantage over a large generic model, that covers a wider array of topics and speech
types.

In terms of corpus size, we have observed a definite advantage of BASE (640 million
words of generic data) over GEN-S (4.8 million words of generic data), while HYBRID-S and
HYBRID-L (4.8 million vs. 9.6 million) showed relatively similar performance for both do-
mains. Although the size difference between BASE and GEN-S is a lot larger than between
HYBRID-S and HYBRID-L, the fact that double the amount of data makes less then 1% dif-
ference in relative WER difference for both domains is surprising. We can infer that a larger
corpus size of generic data has definite added value in domain-specific ASR (as the probability
of covering the domain increases), while size has less impact once a good domain model has
already been obtained.

HYBRID-EU, containing a large amount of politics data which was not an exact subdo-
main match combined with the British politics data, was outperformed by BASE on the poli-
tics domain. HYBRID-EU may suffer from the same setbacks as discussed in above: absence
of generic, spontaneous speech and formal speech-like transcripts as well as the general dis-
advantage of the topic-range of politics. While a balanced weighting of British politics data
and generic data provided the language model with the power to transcribe British Parliament
terms correctly ánd cover generic topics and words, the 55 million words of European Parlia-
ment data in HYBRID-EU overpower the British jargon, in addition to still dealing with the
formal speech issue.

5.2 Word error rate vs. transcript quality

As discussed, domain-only language models that do not contain generic data show a rise in
deletion- and word error rate. Although the introduction of generic data in the BAYI- and
HYBRID models seems to solve this problem adequately, there are some points of interest that
are worth discussing.
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5.2.1 Redeeming the domain-only models

Quantitatively, the rise in WER makes these models worse than our baseline model that uses
a generic language model. However, as we have seen in figure 4.5 and can again observe in
figure 5.2, the readability of a transcript made by such a model is perhaps not worse than the
one produced by the baseline engine. Compared to the generic transcript that gets a lot of
jargon terms incorrectly, the domain specific model misses out on frequent stop-words more
often, but correctly transcribes key terms. When looking from a more qualitative viewpoint,
the question is whether WER truly reflects which model is better.

True transcript:
”If you’ve had an influenza virus, that doesn’t stop you getting another type of virus, herpes simplex
virus or a human papilloma virus.”

Generic engine transcription:
”If you’ve had an influenza virus, that doesn’t stop you getting another type of virus, a hip simplex
virus or [DEL] human papaloi virus.”

Bio DOM-dLX transcription:
”If you [DEL] had an influenza virus, that doesn’t stop your getting another type of virus, herpex
simplex virus or [DEL] human papilloma virus.”

Figure 5.2: Example sentences illustrating transcript quality

Reflecting on our concept of transcript quality (3.2.3), it might be more effective in the
end to accept the filler word deletions and at least get the content words right. Examining 5.2,
both BASE and Bio-DOM-dLX get three errors: BASE does two substitutions on key concepts
and one filler word deletion, while DOM-dLX makes one stopword substitution and two filler
word deletions. Imagining a situation where one would be provided with either transcript as
a subtitle for a biomedical lecture, DOM-dLX would contribute a lot more to understanding
what has just been said. A similar effect is also true when we imagine such a situation for
politics: when providing live subtitles for a political debate, it would be very questionable to
never transcribe party names correctly, even though all other language comes through perfectly.

5.2.2 Alternatives for WER

Observations such as the above call for investigation of alternative error measures: while WER
is simple and effective, its equal treatment of content- and stop words is not always an accurate
reflection of transcript quality. Ideally, automated speech recognition is not only evaluated and
improved on number of errors made, but on the a weighted error measure that takes into account
some informational value. Nanjo and Kawahara (2005) have proposed such an error measure,
weighted key-word error rate (WKER) that is based on the tf-idf criterion used in information
retrieval. Tf-idf, which stands for term frequency-inverse document frequency captures the
informational value of a word by weighting its importance in a document. If a words occurs
frequently in a document, but almost never in other documents in the knowledge base, it is a
key term that defines the informational value; if a term occurs frequently over all documents
or only once in a document, it is less likely to be a key term and is weighted less accordingly.
Weighting each deletion, substitution and insertion by its tf-idf weight delivers more insight in
the importance of the error and its effects on understandability than using conventional WER.
Other contributions include simple weighting based on part-of-speech tag (Garofolo et al.,
2000), learning with human-rated weighting scorers to penalize some errors more than others
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(Mishra et al., 2011), or the ACE measure that takes into account word predictability and
semantic distance to the reference word (Kafle and Huenerfauth, 2017). Improving on the
WER statistic is still a relevant topic in ASR resarch (see Future work section).

5.3 Formulating an optimal language modelling strategy

While we have found that language model adaptation is an effective strategy to adapt ASR
engines to a topic domain, an interesting question remains if the impact of language model
adaptation for a certain topic domain can be predicted. Although language model adaptation
is a relatively low-cost strategy, it is clear that some domains benefit more than others. If
attempting to transcribe biomedical sciences audio and coming from a generic engine similar
to the one used in this project, language model adaptation can be considered a priority, while for
politics improvements appear quantitatively less impactful, even though error analysis shows
importance for transcribing key concepts.

Ideally, an indication of feasibility of domain adaptation for a certain topic would be
achieved by obtaining a measure of domain distance. As a proxy of domain distance, we
can use the number of new words that is incorporated into the model by expanding the generic
lexicon with the vocabulary of the domain-specific corpora. Adding the vocabulary of the
biomedical domain to the generic lexicon, we expand with 13,968 new words. For the poli-
tics domain, the number of new words is limited to 1,384. This is still a small addition to the
original lexicon, which consists of 2271656 words making it a 0.6% and 0.06% growth respec-
tively. This difference of a factor 100 however does not appear to correlate with the difference
of factor 4 in word error rate reduction between 16.3% and 4.3%.

Another measure that may give an indication of domain distance is the perplexity of the
generic language model on the evaluation data: see 4.1. While the perplexity of the generic
model on the biomedical test data set (528.1) is significantly higher than perplexity on the
politics dataset (276.1), this measure appears flawed: perplexity on our generic test set is not
the lowest, but between politics and biomedical with 375.1. Apart from indicating a larger
impact in biomedical domain, nor the lexical distance nor the generic perplexity is explicitly
correlated with the chances of reducing the word error rate. Finding such a correlation in order
to quantitatively predict impact of language model adaptation is an interesting topic for further
research. In order to draw conclusions on this front, a larger study that explores more domains
ought to be set up (again see 6.2).

As discussed in section 4.4, over-adaptation to a domain only plays a key role in domain-
only models that do not incorporate generic data. As soon as generic data is part of the language
model, performance loss does not exceed 7.2%, while staying minimal under 0.7% for the best
models. Implementation of a model such as BAYI-11 or BAYI-32 is therefore expected to not
lose enough generality to make it only applicable to a narrow domain. The extension instead
of replacing the generic model provides the best of both worlds: being able to capture domain-
specific jargon as well as overall generic transcription.
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Chapter 6

Conclusion and future work

6.1 Summary

In this research, we have explored the power of n-gram language modelling in domain-adaptation
of automated speech recognition engines. Three different approaches to language model adap-
tation have been tested: training topic-domain specific language models, extending existing
generic language models to hybrid models by retraining from a combined domain- and generic
corpus, and interpolating between domain-specific and generic language models. A fourth
factor taken into account is model size and trade-off between domain match and model size.
Word error rate evaluation of ASR engines with different language model configurations was
performed for two topic domains: biomedical sciences and politics.

Using a strategy of Bayesian interpolating between domain- and generic fourgram language
models, a word error rate reduction of 16.3% for the biomedical- and 4.3% for the politics do-
main was achieved compared to the baseline model. This shows that topic-domain adaptation
of ASR can indeed be performed by language model adaptation. The effect of replacing the
baseline generic model with a domain-adapted language model is mostly visible in a significant
reduction in the amount of domain-jargon substitutions in the transcripts. By extending the lex-
icon vocabulary and enhancing the n-gram probability of domain-jargon through an in-domain
language model corpus, transcription quality increases significantly.

Language modelling from only in-domain corpora is tricky, due to the fact that it is very
important that spontaneous speech n-grams get enough coverage to prevent an increase of dele-
tions. As it is likely that access to spoken, exact topic-match transcripts for specific domains is
limited, incorporating generic data with good in-domain data will often be the best approach.
Priority should be given to finding proper data that is a close match and provides coverage of
the test domain, instead of gathering suboptimal data for a large language model.

Although in-domain language models still improve the understandability of transcripts by
getting domain jargon right, they show an increased deletion rate that can be easily prevented
by extending the generic lexicon constraint instead of replacing it and using a proportion of
generic data in training. This can either be the hybrid training approach from a combined
corpus or Bayesian interpolation, but the latter is preferred. Linear interpolation is not the best
choice for combining two domains with very different vocabularies, given its assumption of
word history independence across domains.
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6.2 Future work

In this thesis, we only cover the impact of language model adaptation compared to a generic
baseline model under the assumption that language modelling is an effective way to perform
domain adaptation. Although this assumption is more than affirmed, we can not exclude the
possibility that adapting the acoustic model would have influence to some extent as well: the
difference in effect between adapting language models and acoustic adaptation remains un-
known. In order to draw conclusions about the degree to which either the language models or
acoustic model contributes to e.g. deletion rate, this research should be extended with experi-
ments that compare language model only domain adaptation to an approach where the acoustic
model is retrained with domain-specific data. A comparison between acoustically adapted
models, language model only adapted models and a fully adapted ASR pipeline on the task of
topical domain adaptation should give more insight to which components contribute to which
errors most heavily, solidifying the grounds to choose either language model adaptation or a
different approach for domain adaptation.

Due to limits in time and data availability, only two domains have been covered in lan-
guage model adaptation research. Although the successes and optimal approach found can be
regarded as a proof of concept, verifying this domain adaptation strategy in more domains and
languages would be an interesting topic for further research. More specifically, a quantitative
prediction of language model domain adaptation impact could be of great interest for many
practical ASR users. Since language model adaptation is a relatively low-impact strategy in
terms of data scarcity and computational resources, this could potentially allow for easier and
accessible improvement of individual speech recognition engines. In order to estimate the im-
pact of of a refined language model, we would ideally find some type of correlation between
a measure of domain distance and transcript quality- or word error rate improvements. As this
research has only considered two domains, no such correlation could be retrieved. A quanti-
tative analysis of the benefits of our method of domain adaptation is therefore also a line or
research worth exploring.

This research has only considered n-gram language models, which are still the most widely
implemented type of language models in automated speech recognition. As mentioned in chap-
ter 2 however, neural language models have shown great potential for improving word error
rate in ASR (Raju et al., 2019) and can be applied in domain-adaptation (Raju et al., 2019; Liu
et al., 2021). The added computational complexity in the pipeline is the main reason practical
implementations still use n-grams. As more and more research also takes interests in ways
to circumvent this issue and take benefit of the neural language model revolution, extending
our domain adaptation task to neural language models is of course also interesting. As neural
language models take into account unlimited context history to begin with and already improve
significantly on n-gram language models, a comparative study similar to this thesis would be
interesting to answer the question in how far domain adaptation would still be feasible, or if
one large language model would provide sufficient coverage overall.

Finally, the insights obtained in the error analysis of our results have reconfirmed the limits
of how informative word error rate is in evaluating quality of ASR transcripts. If or when
repeating this project setup, an interesting angle would be to use another measure for transcript
quality that takes into account understandability.



Chapter 7

Appendix A: evaluation data

Reference Duration Speaker(s) Attribution

Biomedical science education

Cell anatomy 04:44 F en-GB Doctor Me Clever (2018a)
Subcellular structures 04:34 F en-GB Doctor Me Clever (2018b)
Immunity introduction 14:31 M en-GB John Campbell (2011a)
Immunity types 10:20 M en-GB John Campbell (2011b)
Neurobiology 51:26 F en-ZA MIT OpenCourseWare (2014)
Stem cells 46:03 M en-US MIT OpenCourseWare (2020)
Cancer 1:04:22 M/F en-US Harvard Medical School (2019)
DNA 28:05 M en-US Khan Academy (2009)
Telomeres 18:46 F en-AU TED (2017)

Politics

House of Commons 1 18:42 M/F en-GB British House of Commons (2022)
House of Commons 2 20:42 M/F en-GB British House of Commons (2022)
House of Commons 3 14:20 M/F en-GB British House of Commons (2022)
House of Commons 4 15:15 M/F en-GB British House of Commons (2022)
House of Lords 1 13:01 M/F en-GB British House of Lords (2022)
House of Lords 2 11:20 M/F en-GB British House of Lords (2022)
House of Lords 3 10:30 M/F en-GB British House of Lords (2022)
House of Lords 4 10:53 M/F en-GB British House of Lords (2022)
Children Committee 1 19:11 M/F en-GB Children and Families Act 2014 Committee (2022)
Children Committee 2 15:43 M/F en-GB Children and Families Act 2014 Committee (2022)
Children Committee 3 23:28 M/F en-GB Children and Families Act 2014 Committee (2022)
Treasury Committee 1 15:10 M/F en-GB Treasury Committee (2022)
Treasury Committee 2 15:19 M/F en-GB Treasury Committee (2022)
Treasury Committee 3 22:19 M/F en-GB Treasury Committee (2022)
Treasury Committee 4 15:30 M/F en-GB Treasury Committee (2022)

Table 7.1: (Extrinsic) evaluation data for the biomedical science education and politics do-
mains
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