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Abstract

With the rapid development of large language models (LLMs), it is crucial to explore the
strengths and weaknesses of implementing LLMs for natural language tasks, which we
aim to do for the task of Native Language Identification (NLI). This thesis investigates
the difference in performance between open-source and closed-source LLMs on NLI,
a text classification task in which a system automatically predicts authors’native
language (L1) based on texts written in their second language (L2). The task is based
on the assumption that second language speakers transfer certain properties from their
L1 to the production of their L2, from which we can derive linguistic patterns that are
indicative of one’s L1.

Previous research has shown that closed-source LLMs like GPT-4 obtain state-of-
the-art performance on the NLI task, outperforming previous efforts that relied on
heavily feature-engineered supervised classification models. While closed-source LLMs
achieve impressive results on the NLI task, they are accompanied by many risks to
research in Natural Language Processing (NLP), such as the high costs associated with
the use of closed-source LLMs and the limited access through APIs. With these risks,
it is important to consider open-source LLMs for which we often have better insights
into training procedures and openly publish their model weights, which allows for fine-
tuning for downstream tasks.

Taking into account the advantages of open-source LLMs, this study aims to com-
pare the performance of smaller open-source LLMs on the NLI task, when used out-
of-the-box and after fine-tuning, to closed-source LLMs. We further explore the ad-
vantages that are unique to implementing generative models for NLI, by 1) leveraging
open-source LLMs to provide natural language explanations for L1 classifications for
explainability and 2) examining their ability to classify without a pre-defined set of
L1s, i.e., open-set classification.

The results indicate that smaller open-source LLMs out-of-the-box perform consid-
erably worse than closed-source LLMs, not only achieving significantly lower accuracy
scores on the NLI benchmarks but also generating less coherent explanations of L1-
indicative features. After fine-tuning, however, open-source LLMs can achieve state-
of-the-art performance, with our fine-tuned Gemma model setting a new performance
record of 96.6% accuracy on the ICLE-NLI benchmark, outperforming previous state-
of-the-art approaches and GPT-4. Our study demonstrates the promising application
of fine-tuning smaller open-source LLMs for text classifications like NLI.
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Chapter 1

Introduction

Native Language Identification (NLI) is the task of automatically identifying the native
language (L1) of authors based on texts written in their second language (L2). The task
is based on the language transfer hypothesis that states that L2 learners subconsciously
transfer certain properties from their L1 into their L2 production, which allows us to
distinguish between groups of speakers of particular L1s. This chapter introduces the
task of NLI and its relation to the language transfer hypothesis. The chapter then
outlines the applications of the NLI task, the recent implementation of large language
models for this task, and the main contributions of this work.

1.1 Language transfer effect
One’s native language and other previously acquired languages directly and indirectly
influence the acquisition of a target language, which is also known as the process of
language transfer or cross-linguistic influence (Odlin, 1989). In other words, an L2
learner’s linguistic background predisposes them to display certain patterns in their L2
that are influenced by their native language. For example, native speakers of Mandarin
tend to make more mistakes with determiners, such as ‘the’ or ‘an’, when writing in
English than other learners, as there is no direct equivalent to English determiners in
Mandarin (Malmasi, 2022). This, among other phenomena, would differentiate the use
of English by native Mandarin speakers from, for example, native speakers of Spanish,
which does have determiners like ‘el’ and ‘la’ and are used similarly to English. In
Italian, there are only seven vowel sounds for the five different vowels whereas English
has 15-20 possible vowel sounds (depending on the variety of English). Hence, it is very
common for native speakers of Italian to confuse the use of vowels in English, which
is manifested in particular spelling error patterns (Chen et al., 2017). These examples
demonstrate how second language learners’ L1 interferes with language production in
their L2 and how this interference gives rise to different transfer patterns in relation to
the L1.

1.2 Native language identification
Efforts have been made to computationally model these language transfer patterns and
automatically predict learners’ native language based on their writing in the second
language, which is also known as the task of Native Language Identification (NLI).

1



2 CHAPTER 1. INTRODUCTION

From a machine learning perspective, NLI is commonly framed as a supervised multi-
class classification task where an author’s L1 is assigned from a predefined set of classes.
On the basis of features extracted from L2 learner texts, a model is trained to predict
the most likely native language of the speaker of each text. Figure 1.1 provides a
schematic representation of the task, where an NLI model takes a set of English texts
written by English as a second language speakers as input and then assigns the most
likely native language of the author of the text, such as Spanish, German, or Chinese.

Figure 1.1: Simple representation of the Native Language Identification task as a multi-
class classification problem, in which a model predicts the native language of authors
based on texts written in their second language. Source: Malmasi (2022, p. 21).

The task of NLI is useful for various applications. In an educational context, NLI
can help provide insights into language learners’ patterns of language transfer. NLI sys-
tems can, for instance, be used to create writing tutor systems that can detect the likely
native language of an author in order to provide more tailored and detailed feedback
that connects certain errors to common properties of the learner’s L1 (Tetreault et al.,
2013). Additionally, NLI can aid in developing grammatical error detection and cor-
rection systems, such as including specific language profiles of users which can improve
the performance of these systems (Rozovskaya and Roth, 2011; Malmasi, 2022).

Not only is NLI useful for educational purposes, but also for forensic analyses. NLI
is regarded as a sub-task of author profiling, that attempts to find and describe the
relation between stylistic features in texts and characteristics of the author, such as age,
birthplace, or native language (Estival et al., 2007). NLI can be used in the context of
tracing the likely native language of a suspect, or used to trace linguistic influence in
multi-author texts (Malmasi et al., 2017; Malmasi, 2022). In this way, NLI models can
be implemented as a linguistic profiling method and a tool for author profiling.

Furthermore, NLI can aid research in the field of linguistics. NLI-based analyses can
enhance our understanding of language transfer patterns, allowing for further develop-
ment of research in Second Language Acquisition (SLA). As Malmasi (2022) argues,
while most work in SLA takes a more deductive corpus-based approach to test certain
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language transfer theories, NLI takes a more inductive approach to SLA. In NLI, we
derive certain patterns of L1 transfer from the available data. On the basis of patterns
from the data, we can form certain hypotheses about likely causes of the differences
between groups of speakers from a specific L1 background. Subsequently, NLI-based
analyses can support research in cognitive linguistics to better inform researchers on
how multilingual speakers process language.

1.3 Large language models for NLI
Previous research in NLI has obtained state-of-the-art results on the task using conven-
tional machine learning approaches based on extensive feature engineering. Approaches
using deep learning models, on the other hand, like long short-term memory networks
(LSTM), convolutional neural networks (CNN), and bidirectional encoder representa-
tions from transformers (BERT), appear to yield poorer performance than conventional
machine learning approaches for the NLI task (Markov et al., 2022; Steinbakken and
Gambäck, 2020).

Recently, large language models (LLMs) have gained a lot of attention in the field
of Natural Language Processing (NLP), achieving state-of-the-art (SOTA) results on
a wide range of tasks. GPT-4, for example, at the time of its release achieved SOTA
results on numerous LLM benchmarks for commonsense reasoning, language under-
standing, and reading comprehension, beating previous SOTA even with benchmark-
specific training (OpenAI, 2023). When prompted in a zero-shot setting, the use of
these models also eliminates the need of fine-tuning and training data for a specific
NLP task. In this way, generative LLMs challenge the traditional approach that does
require fitting a model to labeled data (Bucher and Martini, 2024).

Likewise, the use of LLMs has also been explored for the NLI task. Zhang and Salle
(2023) performed experiments using the TOEFL11 dataset, the de facto benchmark
dataset for NLI, with GPT-3.5 (Brown et al., 2020) and GPT-4 (OpenAI, 2023) in a
zero-shot setting. Their results indicate that GPT-4 achieves a state-of-the-art accuracy
score of 91.7% on the TOEFL11 test set, demonstrating remarkable out-of-the-box
performance on this task.

In addition to reporting the remarkably high performance of LLMs on the NLI
task, Zhang and Salle (2023) outline two advantages of implementing LLMs for NLI
over traditional supervised approaches. First, LLMs used in a zero-shot setting can
be implemented for NLI without specifying the set of known L1 classes, i.e., open-set
classification. While traditional supervised models are limited in the sense that they
can only predict a native language based on the predefined set of classes that have
been seen in training, LLMs when used out-of-the-box do not have to be limited to the
known set of classes. As there is no a priori knowledge of what an author’s L1 would
be in a real-world setting, leveraging the ability of generative LLMs to predict any
possible L1 removes the restriction of a predefined set of L1s, a persistent shortcoming
of previous NLI studies using supervised models for real-world applications, such as for
forensic linguistic purposes.

Second, Zhang and Salle (2023) showcase the capability to leverage LLMs to pro-
vide explanations for their classifications. In language learning contexts, the focus of
NLI lies not only on the ability to predict L2 learners’ L1 accurately, but also what
underlying features are indicative of learners’ L1, expanding the measurement of clas-
sification accuracy with the analysis of language transfer features and patterns. For
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real-world applications, such as for educational purposes, it is important to examine
how second language learners’ L1 influences their second language learning and pro-
duction to improve the proficiency of their L2. For this reason, the authors leverage the
LLMs’ capability to provide reasoning for their prediction based on linguistic features
in the text, such as spelling errors, word choice, and syntactic patterns. A manual
examination of these explanations reveals seemingly plausible claims, suggesting that
LLMs can be used as a tool for linguistic analysis of learner texts.

While Zhang and Salle (2023)’s results indicate that LLMs achieve state-of-the-art
results on NLI, their approach only explores the implementation of GPT-3.5 and GPT-
4. Given their closed-source nature, these models are accompanied by a multitude of
limitations with respect to research and society (a more detailed explanation is provided
in Section 2.5.1). Companies releasing closed-source models often disclose little to
no information regarding the training data or procedure, hindering the evaluation of
results achieved with these models and obscuring the biases in the training data and
model. Moreover, the undisclosed nature of the training data has raised concerns among
researchers about data contamination risks, as it is challenging to determine whether
a model’s high performance on tasks can indeed be attributed to the model’s effective
generalization or potential data leakage (Yu et al., 2023). In addition, closed-source
models are typically only accessible via an API, causing lack of control over model
updates and model versioning which are often not well-communicated to users (Yu
et al., 2023). In turn, the reproducibility of experiments using closed-source LLMs
cannot be guaranteed. The usage of closed-source LLMs is also highly costly, which
negatively impacts the accessibility of LLMs and inhibits the growth of research in
NLP. Thus, despite closed-source LLMs’ high performance on many tasks, including
NLI, the undisclosed nature of the training data, the API-only access, and the high
costs of closed-source LLMs greatly inhibit the development of research in the field of
NLP.

Open-source LLMs, on the other hand, often release more information regarding
training data and procedures, allowing for a better understanding of possible biases
in the model. In addition, the open release strategy somewhat reduces the impact of
training LLMs on the environment, as the open release strategy of model weights means
that other organizations do not have to make the same pretraining costs (Touvron
et al., 2023). As model weights are released openly, open-source LLMs provide the
additional advantage of the possibility of fine-tuning on a down-stream task, which is
often highly costly or not supported for closed-source models. In this study, we aim to
compare open-source LLMs out-of-the-box and after fine-tuning on the NLI task with
closed-source LLMs to observe whether fine-tuned open-source LLMs can match the
performance that closed-source models achieve on the task when used out-of-the-box.

1.4 Main contributions
With the negative impact of closed-source models like GPT-4 and the advantages of
open-source LLMs, it is crucial to gain a better understanding of the gap in perfor-
mance and explanation capabilities between open-source and closed-source LLMs. As
previous research using LLMs for Native Language Identification shows very promis-
ing results using closed-source LLMs, the question is whether open-source LLMs can
achieve similar results as closed-source LLMs for the NLI task.

Previous research comparing closed-source against open-source LLMs on classifi-
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cation tasks have noted a large drop in performance between closed-source and open-
source models when used out-of-the-box (Yu et al., 2023; Zhang et al., 2024b). With the
recent development of techniques for efficiently fine-tuning open-source LLMs, such as
Quantized Low-Rank Adaptation (QLoRA) (Dettmers et al., 2023), we are interested
in fine-tuning open-source LLMs on the NLI task. Specifically, we examine how much
fine-tuned open-source LLMs improve on the NLI task in comparison to open-source
LLMs when used out-of-the-box, and whether fine-tuned open-source LLMs can match
the performance of closed-source LLMs.

By implementing open-source LLMs for NLI, we aim to 1) investigate how smaller
open-source LLMs perform on the task, and 2) further explore the advantages of using
LLMs for NLI, i.e., gaining insights into linguistic features for NLI by leveraging the
LLMs’ ability to provide explanations for certain classifications, and performing open-
set classification, as previously explored by Zhang and Salle (2023) using GPT-3.5 and
GPT-4. Taking into account the advantages of using open-source LLMs over closed-
source LLMs, we conduct a comparative study of open-source and closed-source LLMs
for Native Language Identification, to better understand the difference in performance
between these groups of models on the task. The code used for the experiments is
openly available on GitHub1.

The main research question of this thesis is as follows: How do smaller open-
source generative LLMs perform on Native Language Identification com-
pared to closed-source LLMs?

The research sub-questions guiding this work are as follows:

• Is the difference in performance between open-source and closed-source LLMs
consistent across two benchmark NLI datasets, ICLE-NLI and TOEFL11, and
across open-set and closed-set settings?

• How do closed-source LLMs out-of-the-box compare to open-source LLMs out-
of-the-box and after fine-tuning in terms of performance on the NLI task?

• Can open-source LLMs provide targeted explanations for their L1 classifications?

1.5 Thesis structure
This thesis is structured as follows: Chapter 2 provides an overview of previous work on
NLI with respect to the results of the NLI shared tasks, conventional machine learning
methods and deep learning approaches for NLI. Chapter 3 outlines the experimental
setup, the chosen NLI benchmark datasets, and open-source and closed-source large
language models used in this study. Chapter 4 presents the results of our experiments
in a comparative evaluation of open-source and closed-source models on NLI across
different experimental settings. Chapter 5 contains a discussion of the results in light
of the research questions, the limitations of our approach, and possibilities for future
research. Chapter 6 summarizes our work and the overall impact of the findings.

1The relevant GitHub repository can be found here: https://github.com/yeem4n/thesis-NLI
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Chapter 2

Background

2.1 Introduction
This literature review is dedicated to providing an overview of previous work on Native
Language Identification (NLI), describing the NLI Shared Tasks and computational
approaches that have been explored for NLI. This chapter first outlines traditional
machine learning methods and features that have been proven to be useful for NLI,
followed by an account of current approaches using large language models (LLMs) for
the NLI task. We address the context of current developments in Natural Language
Processing (NLP), i.e., the ‘race of LLMs’, in which LLMs are continuously being
developed to match the performance of current state-of-the-art closed-source LLMs
and emphasize the importance of investigating open-source LLMs in the context of
NLI.

2.2 NLI Datasets and Shared Tasks
Before the organization of NLI shared tasks, most work on NLI had been performing
experiments with the International Corpus of Learner English (ICLEv2), a dataset
consisting of essays written by college-level English learners. However, as the dataset
was not compiled specifically for the purpose of NLI, there were idiosyncrasies in the
data, such as topic bias and the use of language-specific characters, that made the
dataset less suitable for the NLI task (Brooke and Hirst, 2012; Tetreault et al., 2012).
Variation across studies in the selection of L1s and the use of cross-validation also
hindered the comparison of approaches to the NLI task Tetreault et al. (2013). To
address these issues, Tetreault et al. (2012) sampled a subset of this corpus, referred
to as ICLE-NLI, in which the topics and L1s are more balanced. ICLE-NLI covers 7
native languages: Bulgarian, Chinese, Czech, French, Japanese, Russian, and Spanish.
Our experiments also make use of the ICLE-NLI dataset, which is explained in more
detail in Section 3.1.

In 2013, Tetreault et al. (2013) organized the first shared task for English NLI,
allowing researchers to compare approaches using a much larger corpus specifically
designed for NLI, called TOEFL11 (Blanchard et al., 2013). The 2013 Native Language
Identification Shared Task greatly boosted the popularity of NLI; with 29 participating
teams working in a variety of fields, this shared task was one of the largest NLP
competitions that year (Tetreault et al., 2013; Malmasi et al., 2017). The TOEFL11-
13 dataset consists of essays written during a college entrance test and includes 11

7
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different L1s: Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean,
Spanish, Telugu, and Turkish. The dataset consisted of a training set with 900 essays
per L1, a validation set of 100 essays per L1, and a test set of another 100 essays per
L1, totaling in 12,100 essays. The best performance achieved in this shared task was
83.6% accuracy on the TOEFL11-2013 test set using a Support Vector Machine (SVM)
classifier with lexical and POS n-grams. The TOEFL11-2013 dataset is also used in
our experiments and is described in more detail in Section 3.1.

In 2017, Malmasi et al. (2017) organized another shared task for English NLI,
which covered both speech-based and text-based NLI. The 2017 edition attracted 19
participating teams. For the essay-only NLI track, the training and validation data
used in the 2013 Shared Task were combined to form the training data in the 2017
Shared Task, the test data from the previous task formed the validation dataset, and
a newly released TOEFL11-2017 test set was used for evaluation. The TOEFL11-17
includes the same 11 different L1s as in the 2013 Shared Task and consisted of the
training set with 11,000 essays (1,000 per L1), and a development set and test set with
each 1,100 essays (100 per L1). The results indicated that ensembling approaches based
on traditional classifiers, such as SVMs, with lexical and syntactic features were most
effective and could not be outperformed by deep learning approaches (Malmasi et al.,
2017).

While both the ICLE-NLI and TOEFL11 datasets consist of English student essays,
there is also a multitude of NLI datasets in other domains 1. Rabinovich et al. (2018)
created the Reddit-L2 dataset, which consists of English posts and comments written
by non-native speakers on Reddit, a social media platform. Brooke and Hirst (2013)
compiled the Lang-8 learner corpus consisting of journal entries posted by English
as a second language learners on the Lang-8 website. In addition, there have been
numerous studies exploring the NLI task in L1s other than English, such as Arabic
(Malmasi and Dras, 2014a), Chinese (Malmasi and Dras, 2014b), German (Malmasi
and Dras, 2015b), Russian (Remnev, 2019), and Turkish (Uluslu, 2023). Nevertheless,
the majority of previous research in NLI has focused on English learner corpora.

2.3 Traditional machine learning approaches to NLI

The NLI task has been commonly addressed using conventional machine learning tech-
niques, which rely on explicit feature engineering. Different lexical and syntactic fea-
tures have been explored for NLI. Popular lexical features include character, word,
and lemma n-grams, while (morpho-)syntactic features are based on constituent parse
trees, dependency parse features, and part-of-speech (POS) tags (Malmasi et al., 2017).
While this work does not explore explicit feature engineering due to our focus on large
language models, some of our baseline approaches are based on previous SOTA features,
feature representations, and systems. The following sections provide an overview of tra-
ditional machine learning approaches. We first outline a variety of features that have
been considered useful for the NLI task following different areas of linguistic analysis,
followed by a summary of feature representations. We then provide an overview of
classification systems that have been employed for the NLI task.

1See (Goswami et al., 2024) for a more detailed overview of available NLI datasets.
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2.3.1 Features for the NLI task
Orthography The field of NLI has a long history of investigating spelling error
features in L2 texts. This is based on the hypothesis that spelling errors are connected
to differences in spelling conventions or pronunciation between the L1 and L2, and
can thus be indicative of a L2 speaker’s L1. Koppel et al. (2005) were one of the
first to focus on spelling errors as features for NLI. The authors represent spelling
errors according to various orthographic error types, such as repeated letters, double
letters appearing only once, letter inversion, and frequency of types of spelling errors.
A linear SVM trained on these spelling error types and other common NLI features
like character n-grams, achieves an accuracy score of 80.2% on a subset of ICLEv1
covering 5 L1s (Bulgarian, Czech, French, Russian, Spanish). Similarly, Chen et al.
(2017) examine the representation of spelling errors with character n-grams up to size
3. Their results indicate that misspelled parts of the word are strongly indicative of L2
speakers’ L1. They found that using character n-grams extracted from spelling errors
as features produced better results than directly using misspelled words. Given this
previous research, it is clear that spelling features are highly useful for NLI and capture
interesting language transfer patterns.

Previous research has also explored variation in punctuation usage amongst L2
speakers. Markov et al. (2018) explored the impact of punctuation on NLI, in a series of
experiments comparing POS n-grams and word n-grams with and without punctuation
marks. Their results indicate that an author’s use of punctuation is a robust indicator
of their L1, even despite their proficiency in the L2.

Lexical choices Word frequencies and word type frequencies are commonly-used
features in NLI that capture lexical choices. The majority of the best-performing
classification systems in the 2013 NLI Shared Task used a range of word n-grams
(Tetreault et al., 2013). Jarvis et al. (2013), for example, trained the best-performing
classifier in the 2013 NLI Shared Task using a combination of features including word
1-4-grams. Word n-grams provide insight into L2 learners’ lexical choices and are
generally useful for the NLI task. One major point of criticism against the use of
lexical features is that these also inadvertently capture topical information (Brooke
and Hirst, 2012). A classifier could learn to distinguish between L1 classes based on
topical information, leading to topic bias.

Markov et al. (2019) analyze lexical choices with respect to variation in word spelling
in L2 learner texts that might be indicative of a specific L1. They investigate the use
of cognates, words that are derived from the same etymological ancestor, and L2-ed
(i.e., anglicized) words, words deriving from the L2 learner’s L1 that were adjusted to
seem like valid L2 words. For example, in the case of English L2 learners, that would
be by adding a typical English prefix or suffix to an existing word from their L1. Their
results showed an increase in accuracy using these features, demonstrating that these
features that capture spelling and lexical choice are highly useful for NLI.

(Morpho-)syntactic features Different types of syntactic features have also been
explored for NLI and shown to boost the performance of NLI models. Wong and Dras
(2011) investigated syntactic errors for NLI with the use of POS n-grams, Context-Free
Grammar (CFG) features, and parse tree cross-sections. Their results indicated that
including a binary representation of non-lexicalized parse rules boosted the performance
of their NLI system, showing that syntactic features are useful for NLI. (Brooke and
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Hirst, 2012) explored a range of different features, including syntactic features like the
use of CFG features and POS n-grams. The authors found that adding CFG features
generally boosts the performance of the system.

N-grams as features When used in isolation, surface form features like character
and word n-grams appear to be most informative for the NLI task (Malmasi et al.,
2017). The results of multiple participants in the 2017 NLI Shared Task indicate
that high-order character n-grams (up to n = 10) are very useful for NLI, likely due
to these features not only capturing sub-word or morphological information but also
dependencies between words (Malmasi et al., 2017). For example, Kulmizev et al.
(2017) trained a linear SVM using character n-grams of lengths ranging from 1-9, which
proved to be one of the best-performing models in the NLI shared task 2017, with an
F1-score of 87.56%. The authors found that 7-9 range character n-grams, a relatively
high number of characters, seem to capture the most information on a learner’s native
language. Similarly, Ionescu et al. (2014) found that a range of character n-grams
captured a large number of linguistic features, such as stems of content words, prefixes
and suffixes, and function words.

Feature representations The aforementioned features can be represented in differ-
ent ways. These could be binary vectors or count vectors, but Term Frequency-Inverse
Document Frequency (TF-IDF) is considered particularly useful in various NLP tasks,
such as text classification and authorship identification. TF-IDF weighting considers
the frequency of features in relation to the entire training corpus, which helps to iden-
tify features that might be highly discriminative (Goswami et al., 2024). For example,
Kulmizev et al. (2017), who achieved their best results using an SVM with 1-9 char-
acter n-grams as mentioned previously, used binary feature representation normalized
with TF-IDF weighting. Similarly to Kulmizev et al. (2017), we also use an SVM
with a range of 1-9 character n-grams normalized using TF-IDF weighting as one of
our baselines, combining the effectiveness of high-order character n-grams and TF-IDF
weighting.

2.3.2 Classification models for NLI
Traditional machine learning algorithms have previously produced impressive results
on NLI Malmasi et al. (2017). Specifically, SVMs have consistently produced the best
results for NLI due to their high performance on text classification tasks in general, and
their ability to handle large and sparse feature spaces (Jarvis et al., 2013; Kulmizev
et al., 2017; Tetreault et al., 2013; Markov et al., 2017). The majority of the participants
in the NLI Shared Tasks 2013 and 2017 used SVMs, including the top-ranked systems.

Besides traditional machine learning systems, ensemble approaches, where the strengths
of multiple algorithms are combined (by, e.g., majority voting or metaclassifiers), also
appear to be very effective for NLI. Multiple teams in the 2017 NLI Shared Task that
achieved a high performance used a combination of different approaches. For exam-
ple, Cimino and Dell’Orletta (2017) obtained the best result among all participants
in the essay track using a classifier stacking approach. The authors used a 2-stack
sentence-document classifier with a sentence-level classifier, of which its predictions are
used by a second document-level classifier. Their results indicate that including those
sentence-level features slightly improves the performance of the text classifier.
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While deep learning models like Bidirectional Encoder Representations from Trans-
formers (BERT) achieved state-of-the-art performance on numerous NLP tasks at the
time of its release, deep learning models were often found to not outperform traditional
machine learning models (e.g., feature-engineered SVMs) on the NLI task. For exam-
ple, Steinbakken and Gambäck (2020) implemented the transformer model BERT on
the TOEFL11 dataset and found that BERT is not able to compete with traditional
state-of-the-art models. Markov et al. (2022), similarly, compared convolutional neural
networks (CNN), long short-term memory networks (LSTM), and BERT to machine
learning models like SVM, and found that deep learning models delivered lower results
than a feature-engineered SVM.

There could be multiple reasons why deep learning models like LSTM, CNN, and
BERT yield poorer performance than traditional machine learning approaches. Ac-
cording to Markov et al. (2022), this could be due to the nature of the data used in
NLI, which contains very particular features pertaining to the L1 of authors that deep
learning models struggle to capture. Deep learning models pre-trained on thousands of
occurrences of words and character sequences from general corpora would have trouble
capturing these very specific features that are important for NLI. Another potential
reason for the poor performance of neural networks like CNN and LSTM, is the limited
size of widely used NLI benchmarks.

2.4 Large Language Models
Currently, interest in utilizing Large Language Models (LLMs) for NLI has been grow-
ing, with the growing popularity of LLMs in the field of NLP. LLMs are pre-trained
statistical language models trained on an enormous amount of data and have been
shown to perform remarkably well on numerous language tasks. For more details on
the architecture of LLMs, we refer to Section 3.3. In the following sections, we provide
an overview of previous research using LLMs for NLI and other text classification tasks.

2.4.1 Large Language Models & NLI
Lotfi et al. (2020) first introduced the novel approach of using generative deep learning
models for text classification and specifically on the task of NLI. They fine-tuned GPT-
2 (Radford et al., 2019) models on training data grouped by each native language
separately, with the intuition that each model learns distinctive characteristics of each
native language. A label is assigned to an unseen text based on the model with the
lowest language modeling (LM) loss. This method achieved an accuracy score of 89% on
TOEFL11 and 94.2% on ICLE-NLI, outperforming the baseline and all previous state-
of-the-art results on these datasets. This indicates that this approach using generative
models, which does not require extensive feature engineering, can achieve promising
results on the NLI task.

As mentioned in Chapter 1, Zhang and Salle (2023) conducted one of the first
experiments using GPT models for NLI in a zero-shot setting, achieving a new per-
formance record of 91.7% on the TOEFL11 test set. The authors experiment with
GPT-3.5 (ChatGPT) (Brown et al., 2020) and GPT-4 (OpenAI, 2023) in a closed-set
and open-set setting on the TOEFL11 benchmark. Their results indicated that GPT-4
performed significantly better than GPT-3.5 in both settings, with GPT-4 achieving
91.7% in a closed-set setting and 86.7% in an open-set setting, and GPT-3.5 74.0% and
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73.4%, respectively. Both experienced a slight drop-off in performance from closed-set
to open-set setting, with GPT-3.5 accuracy decreasing by 0.6% and GPT-4 by -4%.
Based on a manual analysis by Zhang and Salle (2023), GPT-4 also seemed to be capa-
ble of providing reasonable justifications for their NLI predictions, demonstrating the
utility of LLMs as tools for linguistic analysis. All in all, their experiments show the
strengths of employing GPT models for NLI, in the potential to perform NLI exper-
iments in an open-class setting, and for improved explainability of linguistic features,
with the ability to prompt generative LLMs to explain their classification choices. As
Zhang and Salle (2023) performed NLI using only closed-source LLMs, they express
the possibility of exploring open-source LLMs on the NLI task for future research. The
following sections outline the advantages and disadvantages of using closed-source mod-
els, and how open-source LLMs serve as a better alternative with respect to research
and environment while providing an innovative approach to NLI.

2.5 Closed-source vs. open-source LLMs
Recently, the success of LLMs like ChatGPT has ignited a race of LLMs, in which
research labs continue to train increasingly larger language models to surpass the per-
formance of the previous state-of-the-art LLMs. Regrettably, some research labs choose
to cease public disclosure of training data and methodology (Sun et al., 2023). Other
research labs have responded by releasing open-source LLMs that attempt to match or
surpass the results of closed-source LLMs, such as the LLaMA family by Meta (Tou-
vron et al., 2023), BLOOM (BigScience, 2023), and many others. While there has been
much discussion in the research community about how closed-source models perform
consistently better than open-source ones, Balloccu et al. (2024) comment that this is
sometimes merely driven by the hype surrounding these popular models.

2.5.1 Limitations of closed-source LLMs
While commercially available closed-source LLMs achieve high performance on many
NLP tasks, they are accompanied by immense limitations for research and society.
First, the lack of access to the model details, particularly the training data, has raised
great concerns about data contamination among researchers (Balloccu et al., 2024). As
the training data of closed-source LLMs is undisclosed, it is challenging to determine
whether a model’s high performance on a benchmark dataset can be attributed to
effective generalization or potential data leakage (Yu et al., 2023).

Not only can data contamination originate from the model’s training data in the pre-
training stage, but also from user interactions with the model. Researchers commonly
assume that using benchmarks available only to authorized parties guarantees that this
data has not been leaked. However, as Balloccu et al. (2024) comment, this ignores
the fact that models using reinforcement learning from human feedback (RLHF) can
learn from user interactions. If user interactions with the models include benchmark
data, the models would be contaminated even if the initial training data was free of
such data. Balloccu et al. (2024) define this issue as ‘indirect data leaking’, where new
data can leak to the model by feeding benchmarks that are not publicly available into
closed-source LLMs, e.g., through the web interface of ChatGPT. They performed an
analysis of 255 papers experimenting with GPT-3.5 and GPT-4, and they report that
4.7M samples coming from 263 different datasets have been exposed to the OpenAI
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models in such a way that they could be used for training. Their results also indicate
worrying trends concerning research practices regarding unfair comparisons of models
(e.g., a lack of baselines, the practice of sampling test data for one model but not the
other), and the low level of reproducibility. Their study shows the concerning direction
in which the research area of LLMs is heading.

In addition to issues surrounding data leakage, closed-source models are typically
accessed through application programming interfaces (API), which restricts how these
LLMs can be used (Balloccu et al., 2024). APIs allow a user to use software with-
out gaining access to the internal system details; in that way, the provider maintains
control over the software. The limited access through APIs causes a lack of control
over model versioning or model updates (Yu et al., 2023). The use of different model
versions can significantly change the results of NLP experiments. (Chen et al., 2024)
found that on various typical LLM tasks, like question-answering, solving mathemat-
ical problems, and code generation, the performance of GPT-3.5 and GPT-4 varies
greatly over time. The variation in model performance in turn negatively impacts the
reproducibility of experiments using closed-source models. While disclosing the specific
model version when performing experiments using closed-source LLMs helps, in reality,
updates in closed-source models are often poorly communicated or not communicated
at all to users (Pozzobon et al., 2023). This makes it difficult to compare new results
to previously reported results with an older version of the API. The dependence on
access through API hinders fair comparisons of different techniques over time, possibly
leading to biased conclusions (Pozzobon et al., 2023).

Moreover, the environmental and financial costs associated with training and run-
ning closed-source LLMs raise concerns within the field of NLP about the use of these
models. The computing and financial resources required to run these models stifles
creativity, as researchers might not have access to large-scale compute to execute their
ideas (Strubell et al., 2019). This affects resource-poor research groups in particular,
negatively impacting the accessibility of NLP research. The high financial costs asso-
ciated with accessing closed-source models also negatively impact the reproducibility
of experiments, as reproducing experiments using closed-source LLMs is costly, and by
extension the progress within the research community (Pozzobon et al., 2023). The
significant energy consumption needed to train and run these ever-larger LLMs also
has a large environmental impact (Bender et al., 2021).

2.5.2 Advantages of open-source LLMs

Considering the multitude of downsides of closed-source models, the use of open-source
LLMs promotes a more sustainable way of conducting research, with its relative trans-
parency in model details and reduced environmental impact compared to closed-source
models. According to Touvron et al. (2023), the open-release strategy means that other
organizations will not need to make the same pretraining costs. By openly releasing
the model weights, others in the NLP research community can make use of the model
and fine-tune it for specific use cases. In this way, the open release of LLM weights
potentially prevents the depletion of more global resources. Moreover, open-source
LLMs provide the opportunity to fine-tune LLMs for specific downstream tasks, which
is often either not supported or a highly costly process for closed-source commercial
LLMs.
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2.5.3 Comparative evaluations of closed- and open-source LLMs
Previous research has reported large drops in performance on text classification tasks
between smaller open-source and closed-source LLMs when used out-of-the-box. Yu
et al. (2023), for example, compare open-source, closed-source, and small language
models on various text classification tasks like misinformation detection and political
party prediction. In addition, they test the effects of different prompts and zero-shot vs.
few-shot vs. fine-tuning setups. Their findings showed that large closed-source LLMs
generally perform better on classification tasks than smaller open-source LLMs out-
of-the-box, with a drop in accuracy of around 20% on different zero-shot classification
tasks like implicit political ideology prediction between GPT-4 and the smaller LLaMA-
2 (13B). This indicates that open-source LLMs out-of-the-box, especially when they are
much smaller in size, do not yet match the performance of closed-source LLMs on text
classification tasks.

While research suggests that, on text classification tasks, open-source LLMs when
used out-of-the-box do not perform as well as closed-source LLMs, current research has
presented some conflicting evidence when comparing closed-source generative LLMs to
smaller LLMs after fine-tuning. Some studies have noted a gap in performance on clas-
sification tasks between closed-source LLMs and fine-tuned smaller LLMs, suggesting
that closed-source prompt-based LLMs like ChatGPT have caught up with fine-tuned
models. Zhang et al. (2024b) report a drop in accuracy of 16% on sentiment classifica-
tion tasks and 24% on more complex sentiment analysis tasks such as irony detection
between fine-tuned open-source smaller language model Flan-T5 (770M parameters)
and ChatGPT out-of-the-box. Similarly, Qiu and Jin (2024) found that ChatGPT
exhibits comparable performance to a fine-tuned BERT model on sentence-level classi-
fication tasks.

Other studies present evidence that suggests the opposite. Yu et al. (2023), for
example, demonstrate that open-source LLMs like LLaMA-2 after fine-tuning can still
outperform closed-source LLMs like GPT-3.5 on various text classification tasks, such
as political party detection. Edwards and Camacho-Collados (2024) compare the per-
formance of LLMs like GPT-3.5 in zero- and few-shot settings with that of fine-tuned
smaller language models like Flan-T5 on classification tasks like topic analysis and
sentiment analysis. Their results indicated that fine-tuned smaller language models
outperform zero- and few-shot approaches of LLMs.

As there is no previous research, to our knowledge, on fine-tuning LLMs for the NLI
task, a significant gap remains concerning fine-tuning LLMs for a text classification task
like NLI. For this reason, we employ efficient fine-tuning techniques like Quantized Low-
Rank Adaptation (QLoRA) in our experiments to observe to what extent fine-tuning
open-source LLMs can boost performance. In addition, there is generally a lack of
comparative studies of LLMs on classification tasks, as comparative evaluations often
focus on other text comprehension tasks like natural language understanding, reason-
ing, or question-answering (Yu et al., 2023; Bucher and Martini, 2024). This further
emphasizes the importance of analyzing the gap between open-source and closed-source
LLMs on text classification tasks like Native Language Identification.

This background forms the basis of our approach to NLI. Traditional feature-
engineered machine learning models have demonstrated impressive performance on the
NLI task, as described previously. We draw upon previous approaches using traditional
machine learning methods by implementing these as a baseline approach, e.g., a range
of 1-9 character n-grams with an SVM model, similarly to Kulmizev et al. (2017). We
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also implement BERT to better situate our findings and confirm previous findings on
older deep learning models being less suitable for NLI than traditional machine learning
approaches (Steinbakken and Gambäck, 2020; Markov et al., 2022). Current research
demonstrates the impressive performance of closed-source LLMs like GPT-4 on the NLI
task, leaving open-source LLMs unexplored for this task. Considering the negative im-
pact of closed-source LLMs on the research community, it is worthwhile to investigate
the performance of open-source LLMs and explore the possibility of fine-tuning LLMs
for the NLI task. For this reason, we present a comparative study of closed-source and
open-source LLMs for Native Language Identification.
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Chapter 3

Methodology

This thesis aims to implement open-source generative large language models (LLMs) for
Native Language Identification (NLI), the task of automatically predicting an author’s
native language (L1) based on texts written in their second language (L2), to examine
the difference in performance between open-source and closed-source LLMs on this
task. While closed-source LLMs have shown remarkable results for the task of NLI, the
use of open-source LLMs like LLaMA (Touvron et al., 2023; Meta, 2024) and Gemma
(Mesnard et al., 2024) has not yet been explored, despite the advantages of using open-
source LLMs in NLP over closed-source models as discussed in Section 2.5.2. For this
purpose, we conducted a series of experiments in which we compare the performance
of various open-source LLMs with that of several baseline approaches and with the
state-of-the-art performance of closed-source LLMs on two NLI benchmarks. Moreover,
we evaluated the performance of open-source and closed-source LLMs in a closed-set
setting with a predefined set of L1s in the prompt, and an open-set setting, without
the set of L1s. The methodology used in this work closely follows that of Zhang and
Salle (2023) to allow for a direct comparison with their results using GPT-3.5 and
GPT-4 on TOEFL11. The following sections describe the selected datasets, models,
and experimental setup for the conducted experiments.

3.1 Datasets
The experiments were carried out using two benchmark NLI datasets, namely TOEFL11
(Blanchard et al., 2013; Tetreault et al., 2012) and ICLE-NLI, a subset of ICLEv2
(Granger et al., 2009). These two datasets are commonly used in NLI, and both con-
sist of English learner essays written by non-native English speakers. The sections
below describe the main characteristics of each dataset.

3.1.1 TOEFL11
The TOEFL11 corpus (Blanchard et al., 2013) consists of essays written by English
learners during a TOEFL (Test of English as a Foreign Language) iBT test that mea-
sures academic English proficiency. In the TOEFL11 test, the authors were asked to
write an essay in response to a writing topic. TOEFL11 was created using the responses
on this task. The following 11 native languages are represented in TOEFL11: Arabic
(ARA), Chinese (CHI), French (FRE), German (GER), Hindi (HIN), Italian (ITA),
Japanese (JPN), Korean (KOR), Spanish (SPA), Telugu (TEL), and Turkish (TUR).
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Corpus Languages Topics Avg. tokens
/essay

No. essays
per L1

TOEFL11 ARA, CHI, FRE, GER, HIN,
ITA, JPN, KOR, SPA, TEL,
TUR

8 348 Train: 1,000
Test: 100

ICLE-NLI BUL, CHI, CZE, FRE, JPN,
RUS, SPA

76 747 110

Table 3.1: The statistics of the datasets used.

The corpus covers low, medium, and high proficiency levels. In terms of distribution,
it contains 1,100 texts per L1 that have been relatively evenly distributed per writing
topic, totaling in 12,100 essays. On average, there are 343 tokens per essay in the test
set. An overview of the dataset statistics is provided in Table 3.1. Due to its even
distribution across native languages and topics, the corpus serves as a high-quality
benchmark for NLI. TOEFL11 was also used for NLI Shared Task 2013 (Tetreault
et al., 2013).

For our experiments, we concatenated the training set and development set used
in the 2013 Shared Task (Tetreault et al., 2013) for training for all supervised ap-
proaches (i.e., Support Vector Machine (SVM), Bidirectional Encoder Representations
from Transformers (BERT), and fine-tuned LLMs). The resulting training set contains
1,000 essays per L1, totaling 11,000 essays. We evaluated all systems on the test set
from the 2013 Shared Task (Tetreault et al., 2013), to allow for comparison with pre-
vious research on NLI using LLMs, such as Lotfi et al. (2020) and Zhang and Salle
(2023). The test set contains 100 essays per L1, totaling 1,100 essays.

3.1.2 ICLE-NLI

The International Corpus of Learner English (ICLEv2) (Granger et al., 2009) is another
commonly used dataset for the NLI task, that consists of essays written by university
undergraduates. Unlike TOEFL11 which covers different proficiency levels, the ICLE
dataset only covers L2 learners with a high level of English proficiency. As mentioned in
Chapter 2.2, because the corpus was not initially intended for computational modeling,
there were some idiosyncrasies in the data concerning topic bias and encoding errors.
Tetreault et al. (2012) attempted to resolve these by sampling a subset of which the
topics and native languages were more balanced, and removing the instances with
encoding errors. This resulted in a subset called ICLE-NLI. This subset consists of
110 essays, with an average of 747 words per essay, for each of the following 7 native
languages: Bulgarian (BUL), Chinese (CHI), Czech (CZE), French (FRE), Japanese
(JPN), Russian (RUS), and Spanish (SPA). For our experiments, we evaluated on the
full ICLE-NLI subset using 5-fold cross-validation.

3.2 Baseline approaches
To better situate our results using LLMs, we implemented several baseline approaches.
The following sections describe these baseline approaches.
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SVM with BoW We implemented a simple linear Support Vector Machine (SVM)
model with Bag-of-Words (BoW) features using Term Frequency (TF) representation.
In other words, these features simply represent the counts of words in texts. We used
the CountVectorizer and Linear Support Vector Machine (SVM) from the scikit-learn
library1. Lotfi et al. (2020) also used this baseline approach in their experiments, which
achieved 71.1% accuracy on TOEFL11 and 80.6% on ICLE-NLI.

1-9 TF-IDF SVM We also implemented a simple linear SVM with 1-9 character n-
grams with Term Frequency-Inverse Document Frequency (TF-IDF) representation. As
described in Section 2.3.1, an SVM with high-order character n-grams has demonstrated
impressive performance in previous research, such as Kulmizev et al. (2017) who trained
one of the best-performing systems in the 2017 NLI Shared Task using an SVM with
1-9 character n-grams and TF-IDF representation, which achieved 87.56% on the 2017
version of the TOEFL11 test set. For this reason, we selected this relatively simple
approach as one of our baselines. We implemented LinearSVM and TfidfVectorizer
using the scikit-learn library.

BERT In addition to our SVM baselines, we implemented fine-tuned BERT models
(Devlin et al., 2019) for the NLI task. As outlined in Section 2.3.2, previous research
has not achieved as much success on the NLI task with BERT as traditional machine
learning approaches. Nonetheless, it would be interesting to compare our results using
LLMs to a fine-tuned BERT to better situate our results. We fine-tuned BERT, a
standard bert-base-uncased, for 12 epochs with a batch size of 12 using the Hugging
Face transformers library2 for the two NLI benchmarks, similarly to Lotfi et al. (2020).
Their implementation of BERT achieved 80.8% on TOEFL11, and 76.8% on ICLE-NLI,
which was lower than their approach using GPT-2.

3.3 Large language models
In the following paragraphs, we provide an overview of popular architectures and train-
ing methods used for LLMs. While there are different definitions for LLMs, we specifi-
cally focus on LLMs as pre-trained auto-regressive or generative language models that
are relatively large in size3. We then describe the LLMs used in our experiments and
available details regarding their training procedure and data.

3.3.1 Architecture
Generative LLMs are auto-regressive transformer-based language models, meaning they
are generally trained to predict the next most probable token in the sequence (Wan
et al., 2024). They have been trained on large amounts of data and contain billions of
parameters, making them much larger than previous transformer models like BERT.
Generative LLMs are considered general-purpose and versatile, i.e. can be applied
to a variety of use cases, and they demonstrate better language understanding and
generation abilities (Bucher and Martini, 2024; Minaee et al., 2024). While previous

1https://scikit-learn.org/stable/
2https://huggingface.co
3For more details on the training process of transformers in general, see (Wan et al., 2024).
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models required further fine-tuning on a downstream task, generative LLMs can be
prompted using textual input without additional fine-tuning on labeled data.

The training process of an LLM involves various major steps. Figure 3.1 provides
an overview of common steps in the LLM training pipeline.

Data cleaning First, data cleaning techniques are applied, as they have been shown
to have a big impact on model performance. This involves steps like removing false
information from the data, standard text preprocessing, addressing biases in the data,
and removing duplicate data, which all impact the quality of the training data (Minaee
et al., 2024). Phi-3-mini (Microsoft, 2024) is an example of a language model which
results indicate that heavily filtering the training data can significantly boost perfor-
mance. The developers demonstrated that Phi-3-mini, a relatively small LLM with
3.8B parameters, can achieve performance on language understanding tasks rivaling
that of GPT-3.5 and Mixtral 8x7B, despite the large difference in size. They argue
that the innovation lies in the training data, which is composed of heavily filtered web
data.

Tokenization Popular tokenizers for LLMs are usually based on sub-word tokeniza-
tion as it can account better for words not seen in the training data. This includes
tokenizers like BytePairEncoding (BPE), WordPieceEncoding (WPE), and Sentence-
PieceEncoding (SPE) (Minaee et al., 2024). BPE is the tokenizer used for many LLMs,
such as the GPT family and LLaMA family. BPE makes use of frequent patterns of
subwords at the byte level. In this way, frequent words are kept in their original form,
while uncommon ones are broken down into subwords. WPE is the tokenizer used for
BERT and, similarly to BPE, builds the vocabulary based on frequent subword units.
Both BPE and WPE assume that words are separated by white space, which is not true
for some languages like Chinese and Japanese. Consequently, input sentences to BPE
and WPE have to be pre-tokenized using language-dependent tokenizers. SPE tries to
address this issue by taking white space as a normal symbol (Kudo and Richardson,
2018). SPE implements sub-word tokenization like BPE and extends it with direct
training from raw sentences.

Positional encoding There are also several ways to encode positional information
of tokens. Absolute Positional Embeddings (APE) were first used in the original trans-
former model (Vaswani et al., 2017). It encodes the absolute positional information
in the input vectors but fails to account for relative distance between tokens. Shaw
et al. (2018) therefore developed Relative Positional Encoding (RPE), which involves
extending the self-attention mechanism to consider the links between elements in a se-
quence. Finally, many LLMs make use of Rotary Position Embeddings (RoPE), which
use a rotation matrix to encode the absolute position of tokens as well as explicit rel-
ative position details through self-attention. LLaMA is an example of a model that
implements RoPE.

Training and fine-tuning During pre-training, an LLM is trained on a large
amount of typically unlabeled texts in a self-supervised manner. Here, auto-regressive
language models train on the next token prediction task. After pre-training, the model
goes through a process called supervised fine-tuning (SFT) to align their output with
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Figure 3.1: Overview of common steps in training and utilizing an LLM, such as tok-
enization, model pre-training, and instruction-tuning. Source: (Minaee et al., 2024)
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humans’ expectations. Instruction tuning is a form of fine-tuning, where LLMs are fine-
tuned to generate output based on instructions that are provided in an input prompt.
The instructions in these often not only include the specific task description and what
the LLM should accomplish but also elements like examples of positive/negative output
(Minaee et al., 2024). Instruction tuning serves to constrain the model output to align
with desired model behavior, i.e., to follow humans’ instructions and provide safer and
more coherent answers (Zhang et al., 2024a).

While instruction-tuning greatly improves LLM behavior by steering it towards hu-
man preferences, LLMs often undergo more processes for better AI alignment, such as
Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Opti-
mization (DPO). To learn alignment from human feedback, RLHF (Christiano et al.,
2017) involves training a reward model that rates different model outputs and scores
them according to human preferences. The LLM is further fine-tuned using the feed-
back from this reward model. Proximal Policy Optimization (PPO) (Schulman et al.,
2017), a reinforcement learning algorithm, is often used in this process to optimize the
reward signal (Xu et al., 2024). As RLHF involves separately training a reward model,
followed by fine-tuning a large unsupervised model, the process can be quite complex
and unstable. DPO (Rafailov et al., 2023) is another approach to alignment that ad-
dresses these issues of RLHF by identifying a mapping between optimal policies, i.e.
model decision-making, and reward functions. In this way, DPO removes the reliance
on separately training a reward model and simplifies the alignment process.

Cost-effective training and usage: quantization and LoRA Due to the size of
LLMs, researchers have proposed different methods to run LLMs more cost-effectively.
One popular method is quantization, which involves reducing the precision of the model
weights. Dettmers et al. (2022) introduced 8-bit quantization, a method to perform
8-bit matrix multiplication by which we can convert large models with 16/32-bit rep-
resentation to 8-bit, which significantly reduces the size of the parameters and speeds
up the inference time. Similarly, Dettmers et al. (2023) introduced 4-bit quantization,
which reduces the size of model weights even further while maintaining the same level
of performance. In our experiments, we make use of 4-bit quantized open-source LLMs.

Models can also be efficiently fine-tuned for a specific task using training techniques
like Low-Rank Adaptation (LoRA) and Quantized Low-Rank Adaptation (QLoRA).
LoRA (Hu et al., 2021) is an efficient, lightweight fine-tuning approach that involves
freezing the initial pre-trained weights, injecting low-rank matrices (adapters) into every
layer over the model architecture, and fine-tuning. This reduces the number of train-
able parameters, making training with LoRA significantly faster and memory-efficient.
Similarly, QLoRA (Dettmers et al., 2023) involves fine-tuning low-rank matrices into
pre-trained LLMs that have quantized to a 4-bit representation.

3.4 Open-source LLMs
For our experiments, we compare the performance of five state-of-the-art open-source
generative decoder-only LLMs on the task of NLI. All of the models are hosted on
Hugging Face4.

The definition of what is truly ‘open-source’ is becoming increasingly more complex
4https://huggingface.co
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Table 3.2: Overview of the open-source models used in our experiments and available
details regarding the training dataset, number of parameters, training tokens, and type
of architecture. The specific model sizes we used in our experiments are in bold.

Model Release date Cut-off date Parameters Tokens Training data

LLaMA-2 18 Jul. 2023 Base: Sep. 2022
Instruct: Jul. 2023 7B, 13B, 70B 2.0T A mix of publicly available on-

line data
LLaMA-3 18 Apr. 2024 Mar. 2023 8B, 70B 15.0T A mix of publicly available on-

line data, of which 5% non-
English data covering over 30
languages

Gemma 20 Feb. 2024 Unknown 2B, 7B 6.0T Primilarily English data
containing web documents,
mathematics, and code

Mistral 27 Sep. 2023 Unknown 7B Unknown Unknown
Phi-3-mini 23 Apr. 2024 Oct. 2023 3.8B 3.3T Heavily filtered web data from

various open sources and syn-
thetic LLM-generated data

with the rise in proclaimed open-source generative LLMs. There is currently a rise in
LLMs that claim to be open-source but are actually open in weights only. Under the
current license-based definition of open-source AI, developers can refrain from disclosing
other aspects of the training of the system, even though there are arguably various
degrees of openness, ranging from the full release of training datasets to scientific and
technical documentation to licensing and access methods (Liesenfeld and Dingemanse,
2024). LLaMA-2 and LLaMA-3, for example, two proclaimed open-source LLMs, do
not release their training data openly, merely releasing minimal details regarding the
training procedure and data.

For the purpose of our experiments, we considered open-source models that are
open in weights to have a wider selection of models that have demonstrated impressive
performance on natural language understanding and generation tasks. In the following
sections, we provide an overview of each open-source LLM selected for our study. Table
3.2 contains a summary of available information regarding their training procedures and
data.

LLaMA-2 LLaMA-2 is a family of open-source LLMs that was released in July 2023
by Touvron et al. (2023), ranging in size from 7B to 70B parameters and trained on 2
trillion tokens. The training data of LLaMA-2 consists of a mix of data from publicly
available sources, of which data containing personal information has been explicitly
filtered out. LLaMA-2 uses a SentencePiece tokenizer with BPE. Like other generative
LLMs, LLaMA-2 is based on the standard transformer architecture (Vaswani et al.,
2017), with pre-normalization using Root Mean Squared Normalization (RMSNorm),
Swish Gated Linear Unit (SwiGLU) activation function, and RoPE embeddings. The
post-training included supervised fine-tuning, iterative reward modeling, and RLHF to
reduce the level of harmful language and steer the model into producing more desired
output. At the time of its release, it outperformed other open-source LLMs like MPT
and Falcon on most standard benchmarks for LLMs (Touvron et al., 2023). For our ex-
periments on LLMs out-of-the-box, we used LLaMA-2 with 7B parameters, specifically
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meta-llama/Llama-2-7b-chat-hf.

LLaMA-3 After the release of LLaMA-2, Meta (2024) released the next generation
of Llama, called LLaMA-3 in April 2024. Similarly to LLaMA-2, LLaMA-3 is based
on a standard decoder-only transformer (Vaswani et al., 2017) architecture. The key
difference between LLaMA-2 and LLaMA-3 is that the latter uses a tokenizer with a
vocabulary size of 128K tokens, which is much larger than that of LLaMA-2 (Meta,
2024). The number of tokens LLaMA-3 has been trained on is also seven times larger
than that of LLaMA-2. LLaMA-3 also uses Grouped Query-Attention (GQA) instead
of multi-head attention, used in the original transformer architecture. GQA greatly
speeds up inference similarly to Multi-Query Attention, while achieving quality close
to Multi-Head Attention (Ainslie et al., 2023).

The training data consists of publicly available online data, of which most are in
English. Over 5% of the training dataset consists of non-English data covering over
30 languages to support multilingual tasks better. The data was then filtered using
NSFW filters, heuristic filters, and text classifiers that predict data quality, trained on
LLaMA-2-generated data. Post-training to align the model better with human prefer-
ences included a combination of supervised fine-tuning (SFT), rejection sampling, prox-
imal policy optimization (PPO), and direct policy optimization (DPO) (Meta, 2024).
For our experiments on LLMs out-of-the-box, we used LLaMA-3 with 8B parameters,
specifically meta-llama/Meta-Llama-3-8B-Instruct.

Mistral Mistral 7B was released by Jiang et al. (2023) in September 2023. While
the model is free to use, little to no details regarding the training data and the train-
ing procedure were released. In terms of attention mechanisms, Mistral 7B leverages
grouped-query attention (GQA) and sliding window attention (SWA), which makes it
able to process longer sequences at reduced computational cost and contributes to the
enhanced performance and efficiency of the model (Jiang et al., 2023). At the time of
its release, Mistral 7B outperforms the previous best LLaMA-2 13B model on several
standard LLM benchmarks for common-sense reasoning, natural language understand-
ing, and reading comprehension (Jiang et al., 2023). For our experiments on LLMs
out-of-the-box, we implemented mistralai/Mistral-7B-Instruct-v0.2.

Gemma Gemma (Mesnard et al., 2024) is an open-source LLM released in February
2024, trained on 6 trillion tokens, and released in two sizes with 2B and 7B parameters.
Gemma is a transformer-based model that makes use of Multi-Query Attention, and
Generalized Gated Linear Unit (GeGLU) activation. It also includes RoPE embeddings
and normalization with RMSNorm, similar to models from the LLaMA family.

The training data consists of primarily English web data, and data on topics such
as code and mathematics, that have been filtered to remove undesired or harmful
language, personal information, and low-quality data (Mesnard et al., 2024). Gemma
was then fine-tuned for human alignment using two techniques: 1) SFT on a mix of
English synthetic and human-generated prompts and responses, and 2) RLHF to align
the model with English-only preference data. For our experiments on LLMs out-of-the-
box, we implemented Gemma with 7B parameters, specifically google/gemma-7b-it.

Phi-3 Phi-3 is a novel open-source LLM, published by Microsoft (2024) in April 2024,
that focuses on utilizing high-quality training data to improve the performance of small
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language models. Phi-3-mini, the model used in our thesis experiments, has roughly
3.8B parameters and is trained on 3.3 trillion tokens, making it a relatively small LLM.
The training data consists of heavily filtered, mostly English, web data, focusing on
sources aimed at feeding the model language understanding, general knowledge, and
logical reasoning (Microsoft, 2024). They then use two techniques post-training: 1)
SFT to leverage highly curated data across various domains, and 2) direct preference
optimization (DPO) to steer the model to be more aligned with a desired behavior.
According to Microsoft (2024), the training method using high-quality data allows
Phi-3 to achieve results that are similar to those of much larger closed-source LLMs
like GPT-3.5 or Mixtral (8x7B) on standard LLM benchmarks for, e.g., common-sense
reasoning and natural language understanding. In our experiments on LLMs out-of-
the-box, we implemented microsoft/Phi-3-mini-4k-instruct.

3.5 Closed-source LLMs
This thesis aims to compare the results of open-source LLMs as described above to those
of closed-source LLMs on NLI. Specifically, we examine the performance of GPT-3.5
and GPT-4 on NLI. We rely on the results by Zhang and Salle (2023) of GPT-3.5 and
GPT-4 on TOEFL11 and implement their approach on ICLE-NLI. Below, we provide
a brief overview of available information on GPT-3.5 and GPT-4.

GPT-3.5 GPT-3.5 is a series of language models with 175B parameters, released
by OpenAI in November 2022, and an updated version of GPT-3 (Brown et al., 2020).
At the time of its release, it received a lot of attention, especially with the release
of ChatGPT (based on GPT-3.5). Not much is known about the training procedure
or size, due to its closed-source nature. GPT-3.5 was trained using supervised fine-
tuning and PPO to enhance instruction-following capabilities (OpenAI, 2022). In our
experiments, we compared our results to those of Zhang and Salle (2023) who ran
GPT-3.5, specifically gpt-3.5-turbo, on TOEFL11, and performed additional runs using
GPT-3.5 on the ICLE-NLI dataset. We accessed the model through the OpenAI API.

GPT-4 GPT-4 is another closed-source model released by OpenAI in March 2023.
GPT-4 is generally considered the state-of-the-art LLM on many NLP tasks, such
as natural language understanding and common-sense reasoning, and even claimed
to exhibit ‘human-level performance’ (OpenAI, 2023). As the use of GPT-4 has not
yet been explored for the ICLE-NLI dataset, we ran GPT-4, specifically gpt-4-0613
provided by the OpenAI API, on the entire ICLE-NLI dataset. We compared the
results to those by Zhang and Salle (2023) of the same GPT-4 model on TOEFL11.

3.6 Experimental setup
We performed a series of open-set vs. closed-set, and out-of-the-box vs. fine-tuned
experiments on five open-source LLMs to investigate the performance of open-source
LLMs on Native Language Identification in various settings. All the models were eval-
uated on the TOEFL11 and ICLE-NLI datasets. We compared these to Zhang and
Salle (2023)’s previous results of GPT-3.5 and GPT-4 (state-of-the-art closed-source
LLMs) on the TOEFL11 test set, and our own results using GPT-4 on ICLE. In line
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with prior work and because our datasets are balanced, we used accuracy score as our
evaluation metric. Below, we discuss how the various experiments were conducted.

All experiments using LLMs were conducted in Google Colaboratory, using a 1xA100
GPU with 40GB RAM. The total computation time was roughly 120 hours. Total emis-
sions are estimated to be 17.1 kgCO2eq of which 100 percent were directly offset by the
cloud provider5.

3.6.1 Experiments using LLMs out-of-the-box
Open-source LLMs are often released in their base form and an instruction-tuned or
chat form, which is better aligned with humans’ expectations of model behavior, as
described in Section 3.3.1. Instruction-tuned versions of LLMs are better at following
instructions and do not necessarily require further fine-tuning on specific tasks (Minaee
et al., 2024). When running inference on open-source LLMs in our experiments, we
used the instruction-tuned versions, as these models are more adapted to follow the
instructions in prompts, i.e., provide an L1 classification for a given text.

Moreover, instruction-tuned models are trained in a specific chat format or prompt
template, so the model is able to complete chat sequences. The prompt template serves
two purposes, which are indicating the roles in a conversation, as well as delineating
the turns in a conversation (Mesnard et al., 2024). Figure 3.2 illustrates the structure
of prompt templates for different models. Not using the same prompt template as
the one used in training will likely make parts of the input out-of-distribution and,
consequently, lead to less coherent output (Mesnard et al., 2024). Therefore, we used
the apply_chat_template() function provided by Hugging Face to adapt each prompt
to the prompt template accompanying each model tokenizer to align the prompt better
with each model’s expected structure of the input.

The prompt formatter typically includes roles like a system role, which allows the
user to determine the behavior of the model, and the user role, which is mainly used
for the instruction prompt. All our prompts are provided in Appendix A and include
our inputs for these particular roles.

Not all open-source LLMs were instruction-tuned including a system role. For this
reason, we adapted our prompts for some of the models of which its prompt formatter
did not support a system role. For the LLaMA and GPT models, we entered the system
and user prompts accordingly. For Gemma, Phi-3, and Mistral, we simply concatenated
our system and user prompts and entered it as a user prompt.

All models when used out-of-the-box are loaded and 4-bit quantized using the Bit-
sAndBytes library, supported by Hugging Face. We conducted three runs for each
open-source LLM to account for stochasticity in model inference and training. The
results of the closed-source models were all reported based on one run, taking into
account the high financial costs.

When running the models out of the box, there are several hyperparameters that can
be defined that could impact model behavior and output. Temperature, for example, is
a key hyperparameter ranging between 0 and 1 that determines the level of randomness,
or ‘creativity’ of the model output (Minaee et al., 2024). Setting the temperature to 0
leads to deterministic predictions, which can be useful for classification tasks (Zhang
et al., 2024b). As preliminary experiments with the temperate set to 0 generally led to

5Estimations were conducted using the MachineLearning Impact calculator presented by Lacoste
et al. (2019)

https://mlco2.github.io/
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Figure 3.2: Examples of different prompt templates for Gemma (left) and LLaMA-
3 (right). The special tokens used to delineate the different turns and roles in the
sequence are highlighted to illustrate their purposes and differences per model. Orange:
tokens that signify the beginning/end of the sequence. Blue: tokens signifying the
beginning/end of the turns. Other colors: tokens corresponding to the different roles
in the chat, e.g., user or system.

slightly worse performance compared to the model’s default values, we did not set the
hyperparameters to specific values when running LLMs out-of-the-box.

Experiment 1: Closed-set classification using LLMs out-of-the-box

In our first experiment, we ran inference in a zero-shot manner on the TOEFL11 test
set and full ICLE-NLI dataset using open-source LLMs. We perform this as a closed-
set task, in which the model’s predictions are constrained to the predefined set of L1
classes of each dataset, mimicking traditional NLI classification approaches.

The prompts used for the closed-set experiments include a list of the possible 11 L1s
for TOEFL11 and 7 L1s for ICLE-NLI (see Table 3.1). They are highly comparable to
the ones used by Zhang and Salle (2023), which have yielded impressive performance for
GPT-3.5 and GPT-4 on TOEFL11. After initial tests with running open-source LLMs
using the exact same prompts as Zhang and Salle (2023) for different open-source LLMs,
we found that these prompts caused a lot of variety in the LLM responses, particularly
for LLaMA-2, which made it difficult to extract the predicted L1. In some cases, the
generated response became very long as the LLMs would include a detailed analysis of
the text, which negatively impacted the inference time. We attempted to resolve this by
defining the maximum number of output tokens, but this sometimes led to truncating
the predicted label from the output. For this reason, we instructed each model to only
respond using JSON dictionaries, which generally helped to restrict the model output
to one L1 classification. The exact prompts are provided in Appendix A.1. Using the
data validation library Pydantic 6, we parsed the output into the predicted label.

6https://pydantic.dev
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We experienced some difficulties parsing the model output to one prediction from
the defined set of classes. In some cases, the model does not classify a predicted L1
out of the provided set of classes. For example, the models would sometimes predict
English as the L1, despite the prompt specifically stating to not predict English, as it
is an invalid response. Moreover, in some cases, a predicted L1 could not be extracted
from the generated output, as the model would refuse to provide a prediction due to lack
of information. We resolved these issues using iterative prompting, i.e., prompting the
model again to provide an L1 prediction from the defined set of classes. We performed
iterative prompting up to 5 times. If the model was unable to provide a prediction that
corresponds with one of the possible classes after 5 attempts, the predicted label was
set to ‘other’. We ran the experiments using the five open-source LLMs as outlined in
Section 3.4 and compared it to previous results by Zhang and Salle (2023) of the closed-
source LLMs GPT-3.5 and GPT-4 on the TOEFL11 test set, baseline approaches, and
our own results of GPT-4 on ICLE.

Experiment 2: Open-set classification using LLMs out-of-the-box

In our second experiment, we experimented with the use of LLMs for NLI in an open-
set setting. The use of supervised models has been a persistent shortcoming of previous
research in NLI, since supervised models are limited to predicting the L1s present in
the training set (Zhang and Salle, 2023). In real-world applications, we have no a priori
knowledge of the possible L1 of an author and should consider any L1 as a possibility.
For this reason, our second experiment aims to assess the implementation of open-
source LLMs in an open-set setting. Similarly to the first experiment, we ran inference
on the TOEFL11 test set and full ICLE-NLI dataset in a zero-shot manner for the five
open-source LLMs, but now without providing the list of possible classes in the prompt.
This removes the output class restriction, allowing the LLM to predict any possible L1.
Unlike in the closed-set experiment, we did not implement iterative prompting in the
case that the model predicted English.

We implemented the prompt used by Zhang and Salle (2023) for the open-set ex-
periments and adapted it by including the instruction to only respond using JSON
dictionaries, similar to the closed-set experiment. This adaptation helped to restrict
the variation in generated output by the different models, which was sometimes very
long with irrelevant details about its observations. The exact prompts are provided
in Appendix A.2. We again extracted the predicted label using the data validation
library Pydantic based on the specified JSON output format. We then performed a
post-processing step to parse predictions referring to the same language, e.g., ‘FRA’
and ‘FRE’ indicating French. We compared these results to previous results by Zhang
and Salle (2023) of GPT-3.5 and GPT-4 in an open-set setting on TOEFL.

3.6.2 Experiment 3: Fine-tuning open-source LLMs
In addition to running inference on the open-source LLMs out-of-the-box, we fine-
tuned each open-source LLM to improve the performance of the models on the task.
For TOEFL11, we fine-tuned each model on the TOEFL11 training set, and evaluated
it, similarly to the previous experiments, on the TOEFL11 test set. For ICLE, we
fine-tuned each model under stratified 5-fold cross validation.

We used Unsloth7, a library hosted on Hugging Face that makes LLM fine-tuning
7https://unsloth.ai
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significantly faster and more efficient. We loaded pre-quantized versions of our five
models provided by Unsloth, which are as follows:

• LLaMA-2: unsloth/llama-2-7b-bnb-4bit
• LLaMA-3: unsloth/llama-3-8b-bnb-4bit
• Gemma: unsloth/gemma-7b-bnb-4bit
• Mistral: unsloth/mistral-7b-bnb-4bit
• Phi-3: unsloth/Phi-3-mini-4k-instruct

In terms of hyperparameter settings, we used the AdamW optimizer, a learning
rate of 1e-4, a batch size of 16, and 3 epochs for each model, similarly to Zhang et al.
(2024b). We used an input prompt that is similar to the closed-set prompt. The exact
prompt is provided in Appendix A.3). Similarly to our experiments on open-source
LLMs out-of-the-box, we conducted three runs for each open-source LLM to account
for stochasticity using a different random seed.

3.6.3 Experiment 4: Explainability
Gaining insights into model explainability is an important aspect of research in NLP
in general, but it is particularly important for the task of NLI from the perspective
of language learning and SLA research. Language learners benefit greatly from de-
tailed explanations that give insights into particular errors they have made (Zhang
et al., 2023). Explanations on how certain features, e.g., particular spelling mistakes or
syntactic patterns, relate to a language learner’s L1 could enhance awareness of these
patterns and ultimately aid L2 learning. In the context of SLA research, the focus also
lies more on insights into linguistic features that distinguish L1s rather than purely
classification accuracy (Zhang and Salle, 2023). The ability of generative LLMs to
provide explanations for their classification and provide insights on specific linguistic
features makes them particularly useful for NLI.

Similarly to Zhang and Salle (2023) and Zhang et al. (2023), we attempted to gain
insights into explainability by leveraging LLMs to generate explanations of classifica-
tions and provide cited examples in a zero-shot setting. A random sample of roughly 70
texts from the TOEFL11 test set and ICLE-NLI dataset was taken. We then prompted
LLaMA-3, the open-source LLM that performed best on TOEFL11 and ICLE-NLI out-
of-the-box, as well as GPT-4, in order to perform a comparative analysis between a
closed-source and open-source LLM. The prompt is provided in Appendix A.4, which
is the exact same as the one used by Zhang and Salle (2023). We then performed a
qualitative analysis of the generated explanations to the best of our ability. We focused
on the extent to which the explanations are targeted, i.e., they should highlight features
in the text that are indicative of the L1 prediction rather than general features, and
factually correct, i.e., presenting truthful information regarding the features, predicted
L1, and language transfer patterns.

Ideally, the open-source LLM that performed best after fine-tuning would have been
used for this experiment, as fine-tuning appeared to drastically boost the performance
for all LLMs. However, after some initial experimenting, we found that the fine-tuned
models failed to give any intelligible answer to the general reasoning prompt, only
providing the classification label. It appears that the LLMs after fine-tuning lost the
ability to answer general reasoning-related questions. Therefore, we selected LLaMA-3
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out-of-the-box for this experiment, which demonstrated the best performance in closed-
set and open-set experiments compared to other open-source models when used out-of-
the-box.

3.7 Follow-up experiment
During testing, we observed that the performance of all open-source models when used
out-of-the-box was extremely low compared to GPT-4’s out-of-the-box performance
on both NLI datasets. On the TOEFL11 test set, for example, we observed a drop
in performance ranging between 34.9% to 78.1%. This raised the question: why does
GPT-4 perform significantly better on the NLI task in comparison to open-source LLMs
out-of-the-box?

We hypothesized that one possible reason could be data contamination. As we
outlined in Section 2.5.1, data contamination is a considerable risk in using closed-
source LLMs, and can be introduced in various stages of the training process. It would
be plausible that OpenAI has at some point gained access to the TOEFL11 and ICLE-
NLI benchmarks during pre-training or alignment with RLHF, despite both not being
publicly available.

To verify whether GPT-4 has seen the data in training, we performed an additional
experiment to test whether GPT-4 can achieve similarly high performance on data that
it could not have seen in training. We selected a dataset with L2 learner texts that
was released after the cut-off date of GPT-4 (specifically gpt-4-0613), September 2021,
making it highly plausible that GPT-4 did not see this relatively novel dataset. Fur-
thermore, this follow-up experiment on an additional dataset could verify our previous
results that open-source LLMs achieve significantly poorer performance on the NLI
task out-of-the-box and that fine-tuning LLMs greatly boosts the performance. The
following sections describe the selected dataset and preprocessing steps, as well as the
experimental setup of this follow-up experiment.

3.7.1 Dataset
For our follow-up experiment, we selected the Varieties of English for Specific Purposes
dAtabase (VESPA) (Paquot et al., 2022). The VESPA corpus contains L2 learner texts
written by university students from five European universities. The texts were anno-
tated with the students’ L1, of which the majority were written by speakers who have
the same L1 as the official language of the country the university resides. The main
languages represented are Dutch, French, Spanish, Norwegian, and Swedish. It com-
prises 941 texts, with an average of 1809 words per text. In comparison to TOEFL11
and ICLE-NLI, the texts are on average notably longer.

As this corpus was not made specifically for NLI, we took several preprocessing
steps. First, because we only focus on speakers with one of the majority L1 classes,
we took a subset of the corpus by selecting the texts written by authors who only had
one of the five main languages as their L1. This entails removing the texts written by
speakers with a multilingual background, and speakers with a different L1 background
than the five main L1s. This subset consists of 697 texts and represents 5 L1 classes:
Dutch (DUT), French (FRE), Spanish (SPA), Norwegian (NOR), and Swedish (SWE).

Second, the plain text files contain XML-style annotations of main sections, block
quotes, and so-called “mentioned items” (Paquot et al., 2022, p. 8), which includes
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Table 3.3: Distribution of the VESPA training set, with statistics regarding the number
of texts, percentage of texts, and average number of words per essay for each L1 class.

Language No. texts Percentage Avg. tokens /text
Dutch 57 8.81% 2618
French 130 20.1% 3286
Norwegian 378 58.4% 1403
Spanish 33 5.1% 1397
Swedish 49 7.57% 4858
Total 647

citations, foreign words, and linguistic examples. We removed all XML tags and XML-
tagged items, as well as in-text citations, using regular expressions, as these introduce
more noise in the data when we are only interested in language produced by L2 learners.

We then randomly sampled a set of 10 texts per L1 to serve as a small test set,
resulting in a test set of 50 texts in total, and a training set with the remaining 647
texts. The average length of the essays in the test set is 2672 words. We chose this
size for the test set due to the limited number of samples for Spanish and to minimize
the financial cost of running GPT-4 on this additional dataset. While the test set is
balanced in terms of L1 classes, the training set is quite imbalanced, with over half
of the training set consisting of texts written by Norwegian speakers. An overview of
statistics for the training set can be found in Table 3.3.

3.7.2 Experimental setup
We followed the same experimental setup as some of our previous experiments, only
substituting the dataset.

As a baseline, we implemented a LinearSVM with BoW using TF representation.
We then conducted several classification experiments using LLMs. We selected three
LLMs for this experiment: 1) Gemma, an open-source LLM that demonstrated SOTA
performance on ICLE-NLI and near-SOTA performance on TOEFL11 after fine-tuning,
2) LLaMA-3, an open-source LLM that demonstrated best performance out-of-the-box
compared to other open-source LLMs, and 3) GPT-4, the best-performing closed-source
LLM. We first experimented with closed-set classification in a zero-shot setting using
each LLM. We followed the same iterative prompting procedure as outlined in Section
3.6.1 to extract the predicted L1 class. As the set of L1s is different for this dataset,
we slightly adapted the prompts. The exact prompts are provided in Appendix A.5.

Finally, we fine-tuned open-source LLMs, Gemma and LLaMA-3, on the training
set to compare the performance of open-source LLMs out-of-the-box and after fine-
tuning. We followed the same fine-tuning procedure as outlined in Section 3.6.2 using
the Unsloth library. As the training set is unbalanced, we also fine-tuned open-source
LLMs on a down-sampled version of the training set. We performed random down-
sampling to 33 texts per L1 (the number of texts of the minority class in the VESPA
dataset, Spanish), using the imbalanced-learn package (Lemaître et al., 2017).

For all experiments using LLMs, we truncated the input text from the right to a
maximum of 8K tokens, to ensure that the input does not surpass the maximum context
length of each model (8,192 tokens). We only evaluated the results based on one run,
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as the standard deviation was generally relatively low in previous results.



Chapter 4

Results

In this thesis, we investigate the gap in performance between open-source and closed-
source LLMs on Native Language Identification. This chapter contains the results of the
experiments as described in Chapter 3. We first report and discuss the results of several
baseline approaches in Section 4.1. These are as follows: a random guess baseline, SVM
with Bag-of-Words using TF representation, SVM with character 1-9-grams using TF-
IDF representation, and BERT. In Section 4.2 and 4.3, we report the performance of
open- and closed-source LLMs in a zero-shot setting and out-of-the-box on the two
NLI benchmarks, TOEFL11 and ICLE. We compare the difference in performance
between a closed-set and open-set setting, i.e., with and without providing the set of
possible L1s in the prompt. In Section 4.4, we compare the results of open-source
LLMs that of closed-source LLMs, to observe whether smaller fine-tuned open-source
LLMs can match the performance of closed-source LLMs out-of-the-box. Lastly, this
chapter reports the use of open-source LLMs to generate explanations for particular
classifications in comparison to those of closed-source LLMs. We attempt to closely
analyze whether the linguistic features described in these explanations are sensible and
correct, to the best of our ability.

All results are presented in Table 4.1. For the baseline approaches and closed-
source LLMs, we report the accuracy score of one run. For the open-source LLM
experiments, we report the average accuracy score and standard deviation across three
runs to account for stochasticity when running and fine-tuning LLMs. Additional
confusion matrices can be found in Appendix B.

4.1 Baseline approaches
We implemented several baseline approaches as outlined in Section 3.2 to better situate
the results of the LLMs in the context of other machine learning and deep learning
approaches, and directly compare the results of open-source LLMs to previous SOTA
results, namely those achieved by Lotfi et al. (2020) who fine-tuned GPT-2 models
representing each L1 for both TOEFL11 and ICLE-NLI and Zhang and Salle (2023),
who evaluated GPT-3.5 and GPT-4 on the TOEFL11 benchmark.

The results indicate that the approaches using SVM generally outperform older
transformer models like BERT. For both TOEFL11 and ICLE-NLI, a fine-tuned BERT
model alone generally performs worse than SVM models in most cases. For TOEFL11,
BERT achieves 75.3% accuracy, which is notably lower than SVM with 1-9-grams using
TF-IDF representation that achieves 81.0% accuracy. On ICLE-NLI, SVM with 1-9-

33



34 CHAPTER 4. RESULTS

Model
TOEFL11
(test set)

ICLE-NLI
(5FCV/entire)

Closed-set Open-set Closed-set Open-set
Baselines
Random guess 9.1 – 14.3 –
BoW SVM 67.7 – 79.4 –
1-9 TF-IDF SVM 81.0 – 78.3 –
BERT 75.3 – 78.3 –
GPT-2 (Lotfi et al., 2020) 89.0 – 94.2 –
Closed-source LLMs
GPT-3.5 (Zhang and Salle, 2023) 74.0 73.4 81.2 84.2
GPT-4 (Zhang and Salle, 2023) 91.7 86.7 95.5 89.1
Open-source LLMs
LLaMA-2 (zero-shot) 29.2 ±0.9 22.1 ±0.7 29.2 ±1.0 15.5 ±0.3
LLaMA-2 (zero-shot, fine-tuned) 78.7 ±1.0 – 42.9 ±2.0 –
LLaMA-3 (zero-shot) 56.8 ±1.1 56.4 ±0.7 75.8 ±0.4 71.0 ±0.9
LLaMA-3 (zero-shot, fine-tuned) 85.3 ±0.1 – 78.5 ±2.5 –
Gemma (zero-shot) 13.6 ±0.0 7.0 ±0.0 28.2 ±0.1 13.1 ±0.0
Gemma (zero-shot, fine-tuned) 90.3 ±1.2 – 96.6 ±0.2 –
Mistral (zero-shot) 35.6 ±1.6 24.2 ±0.1 53.1 ±1.1 41.5 ±0.1
Mistral (zero-shot, fine-tuned) 89.8 ±0.8 – 83.2 ±9.4 –
Phi-3 (zero-shot) 18.2 ±0.3 21.6 ±1.6 33.6 ±0.4 40.9 ±2.1
Phi-3 (zero-shot, fine-tuned) 65.6 ±0.4 – 51.4 ±1.7 –

Table 4.1: Results of open-source and closed-source LLMs on NLI, evaluated against
conventional ML models. Evaluated on the TOEFL11 test set, as well as the full ICLE-
NLI dataset for out-of-the-box models, and 5-fold CV for fine-tuned models. Reported
in average accuracy (%) and standard deviation across 3 runs.

grams using TF-IDF representation and BERT both achieve 78.3% accuracy. A simple
approach using SVM with BoW features, on the other hand, is able to achieve a higher
accuracy score (79.4%) than a fine-tuned BERT. These observations are in line with
previous results using BERT for NLI, such as those presented by Lotfi et al. (2020) and
Steinbakken and Gambäck (2020), who found that BERT provides lower results than
SOTA traditional machine learning approaches using SVM.

The 1-9-grams TF-IDF SVM approach provides good results for TOEFL11. On
the TOEFL11 test set, SVM with 1-9 character n-grams using TF-IDF representation
achieved an accuracy score of 81.0%. The high performance of a large range of character
n-grams as features for NLI was also observed by Kulmizev et al. (2017). The authors
achieved their highest results (F1 score of 87.56) with an SVM using only 1-9 character
n-grams as features on the 2017 version of the TOEFL11 test set. A large range of
character n-grams is capable of capturing morphological features, misspellings, and
information about the writing style of an author, which are key features for the NLI
task (Kulmizev et al., 2017).

While an SVM with 1-9 character n-grams and TF-IDF feature representation
demonstrates a high performance on TOEFL11, an SVM with these features does not
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achieve the same level of performance on the ICLE-NLI dataset. For the ICLE-NLI
dataset, the SVM using TF-IDF 1-9-grams performs worse than the one with BoW
count features, with the first achieving an accuracy score of 78.3% compared to the
latter’s accuracy of 79.4%. This relatively low accuracy score might be an indication of
overfitting and supports the findings by Markov et al. (2022), who observed that when
using character n-grams as features for NLI, the optimal length of character n-grams
varies from corpus to corpus.

4.2 LLMs in closed-set setting
We first replicated Zhang and Salle (2023)’s approach using GPT-3.5 and GPT-4 on
ICLE-NLI to solidify the high performance of closed-source LLMs on the NLI task.
Our results using GPT-3.5 and GPT-4 on ICLE-NLI confirm the findings by Zhang
and Salle (2023). GPT-4 out-of-the-box achieves a remarkably high accuracy score of
95.5% on ICLE-NLI in a closed-set setting.

The results as shown in Table 4.1 indicate that open-source LLMs out-of-the-box
perform considerably worse than closed-source LLMs out-of-the-box. While GPT-4
achieves an accuracy of 91.7%, the five open-source models achieve an accuracy ranging
between 13.64% and 56.76%. All open-source LLMs do perform better than the random
guess baseline of 9.09%, but perform worse than all other baseline approaches, including
the simple SVM model with BoW representation.

The following sections discuss the results of open-source and closed-source LLMs
when used out-of-the-box in a closed-set setting in more detail. We examine the per-
formance of these LLMs through the accuracy scores as well as confusion matrices.

4.2.1 TOEFL11 & ICLE-NLI
Out of the open-source models, LLaMA-3 is best out of the five in a closed-set setting
when used out-of-the-box on the NLI task. In this setting, LLaMA-3 achieves an
accuracy score of 56.76% on the TOEFL11 test set, which is still relatively low compared
to our baseline approaches. Based on the confusion matrix as presented in Figure 4.1,
French and German appear to be the easiest L1 to identify for LLaMA-3, while it often
fails to correctly identify Turkish and Telugu as L1s. Similarly, GPT-4 also presents
relatively many misclassifications when classifying texts with Hindi as the L1 when the
actual L1 is Telugu. The high degree of confusion between Hindi and Telugu as L1s
has been observed in previous research and the results of the 2013 and 2017 editions of
the NLI shared task (Tetreault et al., 2013; Malmasi et al., 2017; Markov et al., 2022).
LLaMA-3 also has a tendency to wrongly classify texts as French, particularly for texts
written by speakers with L1s from the same language family, Italian and Spanish.

Similarly to the results on TOEFL11 in the closed-set setting, LLaMA-3 achieves
the highest accuracy score compared to the five open-source models when used out-
of-the-box on ICLE-NLI. While all models achieve accuracy scores ranging between
28.2% and 53.1%, LLaMA-3 achieves an accuracy score of 75.8%. When observing
the confusion matrices of the best-performing closed-source and open-source LLM in
Figure 4.3, we can observe that LLaMA-3 frequently confuses the L1s Bulgarian and
Czech with Russian. LLaMA-3 also tends to wrongly classify Spanish as French but is
able to accurately identify Chinese, French, and Russian as L1s.

Compared to results achieved by closed-source models, however, LLaMA-3’s score
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(a) GPT-4 (Zhang and Salle, 2023) (b) LLaMA-3

Figure 4.1: Confusion matrix of GPT-4 and LLaMA-3 when used out-of-the-box on
the TOEFL11 test set and in a closed-set setting.

is significantly lower. GPT-4 performs remarkably better than all other models when
used out-of-the-box, as it achieves a near-perfect accuracy score of 95.5%, beating even
previous SOTA results achieved by Lotfi et al. (2020) using GPT-2 models. GPT-3.5
performs considerably worse than GPT-4, achieving an accuracy score of 81.2%. This
is however still higher than all five tested open-source LLMs.

Gemma demonstrates the worst performance for the NLI task when used out-of-the-
box, achieving an accuracy score of 13.6% which is close to the random guess baseline.
When examining the confusion matrix (Figure 4.2), we observe that Gemma when
used out-of-the-box predicts French as the L1 for almost every text. Interestingly, of
all samples for which the model predicts the L1 to be Italian, Japanese, and Korean,
it is correct between 93.8% and 100% of the time. These results indicate that Gemma
out-of-the-box does not perform well on the NLI task, but might be more conservative
in making any predictions outside of French.

Similarly, Phi-3 when used out-of-the-box demonstrates particularly low perfor-
mance on the NLI task, obtaining only 18.2% accuracy on the TOEFL11 test set.
Observing the confusion matrix (Figure 4.2), Phi-3 has a tendency to predict almost
every author’s L1 as Spanish, German, or French.

In terms of the worst-performing models on the ICLE-NLI dataset, both Gemma
and LLaMA-2 demonstrate performance that is close to the random baseline, achiev-
ing an accuracy score of 28.2% and 29.2% on ICLE-NLI, respectively. When closely
examining the confusion matrix (Figure 4.4), we observe that Gemma classifies nearly
every L1 as French, only correctly predicting roughly 5-20 samples for all other L1s.
LLaMA-2 similarly predicts the majority as having one L1, Chinese.

Taking the above into account, it appears that similar patterns of performance
can be observed across the two datasets in a closed-set setting. For both TOEFL11
and ICLE, GPT-4 when used out-of-the-box performs extraordinarily well compared to
baseline approaches, previous SOTA approaches, and all five open-source LLMs. The
following section will report the results of LLMs when used in an open-set setting to
compare the difference in performance in the two settings across different LLMs.
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(a) Gemma (b) Phi-3

Figure 4.2: Confusion matrix of Gemma and Phi-3 when used out-of-the-box on
TOEFL11 test set in a closed-set setting.

4.3 LLMs in open-set setting
As LLMs can be used in a zero-shot setting, the L1 predictions do not have to be lim-
ited to a predefined set of L1s in a given dataset. In this experiment, we evaluate the
performance of open-source LLMs in an open-set setting, analyzing the likely decrease
in performance when removing this restriction. We first focus on comparing the perfor-
mance of the different LLMs in an open-set setting compared to a closed-set setting in
terms of accuracy score. To better understand the differences in performance, we then
examine the out-of-set L1 predictions of various LLMs, directly comparing our results
to Zhang and Salle (2023)’s previous results for GPT-3.5 and GPT-4 on TOEFL11.

For most open-source models, a drop in performance from closed-set to open-set
setting can be observed. Surprisingly, some models perform better in an open-set setting
compared to a closed-set setting. The following sections describe the performance of
the LLMs on each of the benchmark datasets.

4.3.1 TOEFL11 & ICLE-NLI
When examining the results on TOEFL11 in terms of accuracy score (Table 4.1), a drop
in accuracy between 5-11 percentage points (p.p.) from a closed-set to open-set setting
can be observed for LLaMA-2, Gemma, and Mistral. A drop in accuracy can also be
observed for most open-source LLMs when evaluated on the ICLE-NLI dataset. When
removing the predefined set of L1s from the prompt, the accuracy decreases roughly
with 12-15 p.p. for Gemma, Mistral, and LLaMA-2 compared to a closed-set setting.
This drop in performance is expected: when removing the restriction of a predefined
set of L1s in the prompt, the pool of possible L1s becomes significantly larger.

The level of performance decrease is similar to one that the closed-source LLMs
GPT-3.5 and GPT-4 generally experience, as reported by Zhang and Salle (2023).
GPT-4 demonstrates a drop in accuracy of 5 p.p. on TOEFL11 and 6 p.p. on
ICLE-NLI. This is a greater relative drop than the one demonstrated by GPT-3.5
on TOEFL11, which is 0.6 p.p.
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(a) GPT-4 (b) LLaMA-3

Figure 4.3: Confusion matrix of GPT-4 and LLaMA-3 out-of-the-box on the ICLE-NLI
dataset in a closed-set setting.

In general, GPT-4 showcases the best performance in an open-set setting out of all
other LLMs, achieving the highest accuracy score of 89.1% on the ICLE-NLI dataset
and 86.7% on TOEFL11. GPT-4 again drastically outperforms all five open-source
LLMs in an open-set setting. This indicates that GPT-4 is able to perform NLI without
specifying the specific set of L1 classes.

Similarly to the results on the closed-set setting, LLaMA-3 demonstrates the best
performance out of the five open-source LLMs in an open-set setting on the TOEFL11
test set. The performance of LLaMA-3 drops 0.4% compared to a closed-set set-
ting. Out of the five open-source LLMs, LLaMA-3’s drop in performance is the most
marginal. On ICLE-NLI, LLaMA-3 also shows more promising results, as LLaMA-3
achieves an accuracy score of 71.0% in an open-set setting. This is significantly higher
than the second-best performance of the open-source LLMs on ICLE-NLI, which is
41.5% accuracy achieved by Mistral. Again, the drop in performance of LLaMA-3 in
an open-set setting is most marginal (4.8% on ICLE-NLI) relative to the other four
models. These results indicate that similar patterns appear across the two benchmark
datasets.

Surprisingly, not all models experience a decrease in performance going from a
closed-set setting to an open-set setting. While one would expect that model perfor-
mance drops in a set-up in which the pool of possible L1 classes is much larger, this is
not the case for all models. Phi-3 demonstrates an improvement in performance com-
pared to the closed-set setting, as the accuracy increases with 3.4% for the TOEFL11
dataset and 7.3% for the ICLE-NLI dataset. GPT-3.5’s accuracy score also increases
by 3% on the ICLE-NLI dataset.

To better understand the differences in L1 predictions between a closed-set and
open-set setting for the different models, we must examine the out-of-set predictions,
i.e., predictions that are outside of the training labels, for several LLMs. We specifically
examine the out-of-set predictions for LLaMA-3, the open-source LLM that showcased
the best performance in a closed-set and open-set setting compared to the other four
LLMs, and compare these to the out-of-set predictions of GPT-3.5 and GPT-4 as
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(a) Gemma (b) LLaMA-2

Figure 4.4: Confusion matrix of Gemma and LLaMA-2 when used out-of-the-box on
the full ICLE-NLI dataset in a closed-set setting.

Table 4.2: Counts of out-of-set L1 classes (rows) predicted by LLaMA-3 (out-of-the-
box) on the TOEFL11 test set, compared to the true L1s (columns).

LLaMA-3 Predicted L1 ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Total
English 32 11 5 5 65 3 8 16 13 41 20 219
Portuguese 0 0 1 0 0 6 1 0 24 0 2 34
Russian 1 0 0 0 0 0 1 1 0 0 10 13
Indonesian 0 1 0 1 0 0 3 3 0 0 4 12
Persian (Farsi) 1 0 0 0 0 0 0 0 0 0 7 8
Indian 1 0 0 0 2 0 0 0 0 4 0 7
Urdu 0 0 0 0 1 0 0 0 0 1 1 3
Malay 0 2 0 0 0 0 0 0 0 0 0 2
Vietnamese 0 1 0 0 0 0 1 0 0 0 0 2
Thai 0 1 0 0 0 0 0 0 0 0 0 1

reported by Zhang and Salle (2023).
As shown in Table 4.2, LLaMA-3 incorrectly predicted English as the L1 for 219

samples, particularly for L2 texts with Hindi or Telugu as the L1 for the TOEFL11
dataset. Table 4.3 shows that LLaMA-3 also predicted the majority of out-of-set pre-
dictions as English for the ICLE-NLI dataset. The relatively large amount of English as
the L1 predictions demonstrates LLaMA-3’s failure to recognize non-native texts. The
other out-of-set predictions are mostly related to the actual L1 through geographical
location or due to being in the same language family. For example, LLaMA-3 misclas-
sified 24 texts with the L1 Spanish as Portuguese. As Spanish and Portuguese are both
Romance languages, there are many similarities between the two that likely caused this
type of misclassification in an open-set setting.

When comparing LLaMA-3’s out-of-set predictions to those of GPT-3.5 (Table 4.4),
we observe a similar pattern in which GPT-3.5 wrongly classified relatively many texts,
126 texts in total, as English being the L1, which indicates a failure to identify non-
native texts. The actual L1 for the majority of the texts classified as English being
the L1 is Hindi and Telugu, similarly to LLaMA-3’s out-of-set predictions. Moreover,
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Table 4.3: Counts of out-of-set L1 classes (rows) predicted by LLaMA-3 on the ICLE-
NLI dataset, compared to the true L1s (columns).

LLaMA-3 Predicted L1 BUL CHI CZE FRE JPN RUS SPA Total
English 19 3 1 1 4 7 0 35
Polish 2 0 19 0 0 1 0 22
German 5 0 4 8 0 0 0 17
Italian 2 0 0 1 0 11 0 14
Portuguese 0 0 0 0 0 0 9 9
Dutch 1 0 1 3 0 0 0 5
Serbo-Croatian 2 0 2 0 0 0 0 4
Korean 0 0 0 0 4 0 0 4
Slovak 0 0 2 0 0 0 0 2
Arabic 1 0 0 0 0 0 0 1
Croatian 0 0 1 0 0 0 0 1
Greek 1 0 0 0 0 0 0 1
Romanian 1 0 0 0 0 0 0 1
Serbian 0 0 1 0 0 0 0 1
Turkish 1 0 0 0 0 0 0 1

Table 4.4: Counts of out-of-set L1 classes (rows) predicted by GPT-3.5 on the TOEFL11
test set, compared to the true L1s (columns). (Zhang and Salle, 2023)

GPT-3.5 Predicted L1 ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Total
English 6 2 1 2 53 1 2 3 4 44 8 126
Tamil 0 0 0 0 0 0 0 0 0 12 1 13
Portuguese 0 0 0 0 1 0 0 0 3 0 1 5
Bengali 0 0 0 0 0 0 0 0 0 3 0 3
Persian 0 0 0 0 0 0 0 0 0 0 2 2
Dutch 0 0 1 0 0 0 0 0 0 0 0 1
Indeterminable 0 0 0 0 1 0 0 0 0 0 0 1
Malay 0 1 0 0 0 0 0 0 0 0 0 1
Vietnamese 0 0 0 0 0 0 0 1 0 0 0 1
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Table 4.5: Counts of out-of-set L1 classes (rows) predicted by GPT-4 on the TOEFL11
test set, compared to the true L1s (columns). (Zhang and Salle, 2023)

GPT-4 Predicted L1 CHI FRE HIN ITA KOR SPA TEL TUR Total
Russian 0 1 0 0 1 0 0 5 7
Persian (Farsi) 0 0 0 0 0 0 0 4 4
Dutch 0 0 0 0 1 1 1 0 3
Indian language 0 0 0 0 0 0 2 0 2
Amharic 0 0 0 0 1 0 0 0 1
Bengali 0 0 1 0 0 0 0 0 1
Malay (Malaysian) 1 0 0 0 0 0 0 0 1
Portuguese 0 0 0 0 0 1 0 0 1
Romanian 0 0 0 1 0 0 0 0 1
Tamil 0 0 1 0 0 0 0 0 1

Table 4.6: Counts of out-of-set L1 classes (rows) predicted by GPT-4 on the ICLE-NLI
dataset, compared to the true L1s (columns).

GPT-4 Predicted L1 BUL CHI CZE FRE JPN Total
German 0 0 1 7 0 8
Slavic 2 0 5 0 0 7
Dutch 0 0 0 3 0 3
Korean 0 0 0 0 3 3
Cantonese 0 1 0 0 0 1
English 0 0 0 0 1 1
Italian 0 0 0 1 0 1
Romanian 1 0 0 0 0 1
Slovak 0 0 2 0 0 2

the other out-of-set L1 predictions are all related to the actual L1s either linguistically
or geographically. These patterns in the out-of-set predictions indicate that LLaMA-
3 makes similar misclassifications to GPT-3.5 when performing the NLI task in an
open-set setting.

GPT-4, on the other hand, does not predict English as the L1 for any of the samples
on the TOEFL11 dataset, and only once on the ICLE-NLI dataset. This suggests that
GPT-4 is more sensitive to the prompt and As Zhang and Salle (2023) observe regarding
the out-of-set predictions of GPT-4 on TOEFL11, while some of the out-of-set predicted
L1s are related to the actual L1s either linguistically or geographically, others are not.
On the ICLE-NLI dataset, most of the out-of-set L1 predictions do seem to be related
to the ground truth labels, e.g., Chinese being identified as Cantonese and Japanese
misclassified as Korean.

4.4 Fine-tuning LLMs for NLI
Compared to closed-source LLMs, open-source LLMs when used out-of-the-box on the
NLI task appear to achieve significantly poorer performance in both closed-set and
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open-set settings. For this reason, we examined to what extent the results of open-
source LLMs could improve after fine-tuning it on the NLI task. We fine-tuned the
same five open-source LLMs on the TOEFL11 training set and under 5-fold cross-
validation on the ICLE-NLI dataset. The following section reports the results of fine-
tuned open-source LLMs and compares these to the performance of closed-source LLMs
used out-of-the-box (Table 4.1).

The results indicate that the performance of open-source LLMs improves drastically
after fine-tuning for the NLI task. For both datasets, Gemma after fine-tuning achieves
the best performance out of the five open-source LLMs. Fine-tuned Gemma achieves an
accuracy score of 90.3% on the TOEFL11 dataset, nearly matching the results of GPT-4
as reported by Zhang and Salle (2023), and a near-perfect accuracy score of 96.6% on the
ICLE-NLI dataset, outperforming GPT-4 by 1.1%. Mistral after fine-tuning achieves
the second-best performance of the five open-source LLMs, with an accuracy score of
89.8% on the TOEFL11 test set, and 83.2% on the ICLE-NLI dataset. On TOEFL11,
fine-tuned Mistral outperforms the previous SOTA achieved by Lotfi et al. (2020) using
GPT-2. Phi-3, on the other hand, demonstrates relatively poor performance when used
out-of-the-box, and also achieved the lowest accuracy score on both datasets after fine-
tuning relative to the other fine-tuned models. Fine-tuned Phi-3 achieved an accuracy
score of 65.6% on the TOEFL11 test set, and 51.4% on the ICLE-NLI dataset. All in all,
these results show that open-source LLMs, particularly Gemma, can get (near-)SOTA
results on the NLI task after fine-tuning.

When comparing the confusion matrices of the best-performing fine-tuned open-
source LLM and the best-performing closed-source LLM, Gemma and GPT-4 (Fig.
4.5 and Fig. 4.6), we observe slightly different error patterns. On the TOEFL11 test
set, as previously described, GPT-4 tends to misclassify texts with Hindi as the L1
when the actual L1 is Telugu. While fine-tuned Gemma also showcases some degree of
confusion between Hindi and Telugu, it also has a tendency to misclassify samples with
the L1 Japanese as Korean. On the ICLE-NLI dataset, GPT-4 has made some errors in
classifying Bulgarian as Russian. Gemma only misclassifies roughly 6-8 samples with
the L1s Czech and Russian as Bulgarian. The L1s that are confused by both models
are either related through geographical location or language family.

Interestingly, the open-source LLMs that perform best out-of-the-box do not nec-
essarily perform best after fine-tuning. In fact, the model that demonstrated the worst
performance when used out-of-the-box, Gemma, shows the best performance out of the
five open-source LLMs after fine-tuning. LLaMA-3, on the other hand, showed the best
performance when used out-of-the-box, but the relative increase in performance is the
smallest for LLaMA-3 out of the five models.

4.5 LLMs for explainability
In addition to measuring the performance of LLMs on the NLI task in terms of clas-
sification accuracy, we explored the usage of open-source LLMs for the explainabil-
ity of linguistic features that distinguish L1s. As shown by Zhang and Salle (2023),
sufficiently-large LLMs like GPT-4 can provide useful explanations that can aid lin-
guistic analysis of learner language. Our experiment aims to examine whether an
open-source LLM is able to provide viable explanations similarly to GPT-4. We se-
lected LLaMA-3, as this open-source LLM demonstrated the best performance on NLI
out-of-the-box based on our previous experiments. Following Zhang and Salle (2023)’s
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(a) GPT-4 (Zhang and Salle, 2023) (b) Gemma (FT)

Figure 4.5: Confusion matrix of GPT-4 and fine-tuned Gemma in zero-shot setting on
the TOEFL11 test set.

(a) GPT-4 (b) Gemma (FT)

Figure 4.6: Confusion matrix of GPT-4 and fine-tuned Gemma in zero-shot setting on
the ICLE-NLI dataset.

approach, we leveraged LLaMA-3 in a zero-shot fashion on a small random sample from
ICLE-NLI and TOEFL11. In the following sections, we perform a qualitative analy-
sis, highlighting some common patterns in the explanations generated by LLaMA-3 in
comparison to those generated by GPT-4.

4.5.1 Comparison between LLaMA-3 and GPT-4

We found that LLaMA-3’s explanations were more general and ambiguous compared
to GPT-4’s explanations. LLaMA-3 often repeats the same phrases for different expla-
nations. Below is one example of a part of an explanation generated by LLaMA-3:
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Grammar and sentence structure: The text features a mix of simple and complex
sentences, but with a tendency towards shorter sentences and a lack of varied
sentence structures. This is a common trait of non-native English writers who
may not be as comfortable with sentence-level syntax and cohesion.
Vocabulary: The text uses a limited range of vocabulary, with many words
repeated throughout the essay. This is not unusual for non-native writers who
may not have a strong command of English vocabulary.

While the explanation addresses some general features in the text that are indicative
of L2 learner writing, the explanation is quite coarse-grained and provides little to
no examples from the given text. The analysis includes observations like ‘a mix of
simple and complex sentences’, a phrase that is repeated in multiple other generated
explanations, and ‘a limited range of vocabulary’, which are features that are not
specific to the predicted L1. In this way, the LLM fails to provide an explanation that
gives insights into L1-indicative features. These results are in line with Zhang et al.
(2023), who also prompted LLMs in a zero-shot setting for explanations, and found that
LLMs like GPT-3.5 and LLaMA-2 used in a zero-shot setting produce explanations that
lack informative and meaningful content.

Below is another example of a Llama-3-generated explanation, in which the model
describes features that might be indicative of non-native writing, but not necessarily
indicative of the specific L1 prediction.

Spelling errors: “it it” instead of “it is”, “easier” instead of “easier”, “dificult”
instead of “difficult”, “rebeemeber” instead of “remember”, “rememeber” in-
stead of “remember”, and “usderstand” instead of “understand”. These errors
are characteristic of non-native speakers who are still learning to navigate the
nuances of English spelling.

While the explanations contains features indicative of non-native writing and men-
tions examples from the given text, LLaMA-3 fails to address why these errors are
particular to their L1 prediction.

GPT-4, on the other hand, generally generates seemingly viable explanations that
relate the observations of certain linguistic patterns to a likely source, e.g., direct trans-
lations from the L1 or spelling conventions in the L1. Below is an example of an
explanation generated using GPT-4:

Overuse of the word “have” is one common mistake made by Chinese speakers
learning English as they often directly translate “有” into English as “have”.
In the sentences “There also have some countries have capital punishment”
and “There are many for and against argument in this particular topic”, the
redundant use of “have” is evident.

In this explanation, GPT-4 highlights a specific linguistic feature, namely the
overuse of the word ‘have’, and relates this to a possible direct translation from Chi-
nese. It also quotes several examples from the text where the verb ‘have’ is used in
an unconventional manner. This demonstrates that GPT-4 can provide targeted ex-
planations with interesting L1-indicative features, including direct examples from the
text. This is in line with Zhang and Salle (2023)’s findings, who observed that GPT-4
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is able to provide sound reasoning for the NLI task. Note that the explanation con-
tains a hallucination, as it includes a quotation from the text that does not contain
the linguistic feature in question. Section 4.5.2 addresses more hallucinations found in
LLM-generated explanations.

The following example further highlights the ability of GPT-4 to provide seemingly
viable linguistic analyses.

The main clue that led to this conclusion is the author’s use of the preposition
“to” in the phrase “addressing to him”. In French, the verb for addressing
someone (“s’adresser à”) is reflexive and requires a preposition before the object,
which appears to be the source of this mistake; English would typically use either
“addressing him” or “speaking to him”. The author’s phrasing “condamn the
acts”, which mimics the French verb “condamner”, is another clue, as been
the correct English word would be “condemn”. Lastly, the phrase “a kind of
anthithesis” shows the author’s tendency to use more literal translation from
French (anti-thèse). These clues collectively point toward French being the
author’s native language.

GPT-4 again provides an explanation that is targeted to the specific L1 prediction
and provides several examples of errors in the text. GPT-4 also outlines possible sources
of errors, such as literal translations from French.

In this way, GPT-4 generally makes more targeted and contextualized linguistic
analyses based on the text and the predicted L1 in comparison to LLaMA-3. These
results further confirm the gap between closed-source and open-source LLMs when used
out-of-the-box on the NLI task, and further confirm Zhang and Salle (2023)’s finding
that large-enough LLMs can be used as tools for linguistic analysis.

4.5.2 Accuracy and hallucinations
Despite the generally positive results of GPT-4, a manual examination also revealed
hallucinations, “generated content that is nonsensical or unfaithful to the provided
source content” (Ji et al., 2023), made by both LLaMA-3 and GPT-4. The occurrence
of hallucinations puts into question the accuracy of the generated explanations. These
hallucinations include factual errors and misquotations.

The explanations generated by LLaMA-3 in particular contain many hallucinations.
The following example highlights a hallucination in which the model presents factual
errors.

The text includes characteristic Japanese sentence endings, such as the use of
the copula “desu” and the polite language particles “wa” and “ga”. For instance,
the sentence “I am against their opinion, but granted that Japanese today is
somewhat corrupted” features the polite language particle “wa”.

The explanation identifies linguistic features that are not present in the text, such
as the text including ‘characteristic Japanese sentence endings’ when a manual exami-
nation of the given text shows that this is not the case. The explanation also features
several quotes from the text as examples of certain errors, which do not actually contain
the given error.
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Similarly, the following example illustrates how LLaMA-3’s explanations can con-
tain factual errors.

Word order: The author tends to use a subject-verb-object word order, which
is typical in Russian but less common in English.

The factual statement that subject-verb-object (SVO) word order is less common
in English is incorrect. As English is one of the many languages that follows SVO
word order, the use of SVO word order in this L2 text cannot be an insightful L1-
distinguishing feature.

Some explanations generated by GPT-4 also present several hallucinations. Below
is an example of such an explanation:

The text has a strong fluent nature indicating good proficiency in writing in
English. There are no spelling or punctuation errors. However, certain word
choices and sentence structure seem to be influenced by Spanish language. For
example, using ‘the’ before proper nouns like ‘the European Union’ would be
typical in Spanish but not in English. The extensive use of commas and long
sentence construction often reflect a Spanish language style, as Spanish sen-
tences are often longer and more complex compared to English ones. The use
of ‘both...together’such as ‘both concepts, sovereignty and nation, forcefully
should go together’, seems to be a direct translation from Spanish structure.
Also the construction ‘I do n’t believe Europe 1993 carries’ conveys a Spanish-
like syntax. It indicates the usage of the verb ‘carry’ in a similar way to the
Spanish verb ‘llevar’ which can mean ‘carry’ as well as ‘imply’. Therefore, even
though the author has an advanced level of English writing, these elements
suggest that the author is a native Spanish speaker.

A manual analysis of this sample carried out with a native speaker of Spanish1,
revealed several factual errors regarding Spanish linguistic features. First, the Spanish
verb ‘llevar’ carries various meanings, but it does not carry the meaning ‘imply’. In
addition, the use of ‘both...together’ does not seem to be a direct translation from
Spanish, nor is it a construction that is used particularly more in Spanish than in other
languages. Moreover, the explanation also includes factual errors regarding linguistic
features of English. The explanation addresses the use of the article ‘the’ before a proper
noun as an influence of Spanish as their L1, implying that this feature is incorrect in
English. However, the example of ‘the European Union’ is grammatically correct in
English, and thus cannot be considered as an L1-distinguishing feature. This example
showcases GPT-4’s capacity to present factually incorrect information in a rhetorically
sound manner.

4.6 Follow-up experiment
Lastly, as the performance of GPT-4 on the other benchmarks raised concerns about
data contamination, we performed a follow-up experiment to verify whether GPT-4 has
seen the NLI benchmarks in training. We selected a dataset that was compiled after

1Thank you to Marina Munuera Esteller for contributing to this analysis.
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GPT-4’s cut-off date, namely a subset of the VESPA dataset, and performed several
experiments using open-source LLMs and closed-source LLMs. Table 4.7 contains the
results of our experiment on the VESPA dataset.

4.6.1 VESPA
The results indicate that GPT-4 can achieve relatively high performance on VESPA.
On the VESPA test set, GPT-4 achieves an accuracy score of 82%, the highest ac-
curacy score out of all approaches using LLMs. Compared to its performance on the
TOEFL11 and ICLE-NLI benchmark, the accuracy drops roughly 10%. Chapter 5
provides possible interpretations of these results.

While GPT-4 achieves high performance, the performance of the baseline approach
using SVM with BoW is also notably high. With an accuracy score of 82.0%, the BoW
SVM approach achieves an accuracy score that is identical to GPT-4’s score. The high
performance of BoW SVM suggests that there might be idiosyncratic properties in the
training dataset that are captured by this baseline. The result is 2 accuracy points
higher than the BoW SVM results for ICLE-NLI, despite the fewer number of classes.
The high performance of this baseline highlights that the VESPA dataset is not an NLI
benchmark and has not yet been tested extensively for NLI.

Furthermore, open-source LLMs still perform drastically worse than GPT-4 on this
dataset, emulating the performance patterns of these LLMs on TOEFL11 and ICLE-
NLI. When used out-of-the-box, LLaMA-3 achieves an accuracy score of 50.0% while
Gemma achieves 20.0% accuracy.

While fine-tuning boosts the performance significantly on both TOEFL11 and
ICLE-NLI, fine-tuning on the VESPA training set does not necessarily improve the
results. For LLaMA-3, fine-tuning degrades the performance, as the accuracy score
drops from 50.0% to 22.0%. For Gemma, fine-tuning slightly improves the performance
to 52.0%, which does not match GPT-4’s results (as it does for the other datasets).
As the training set is imbalanced, we performed additional experiments with an under-
sampled training set for the three datasets. All models fine-tuned on the under-sampled
training sets demonstrate poorer performance than when fine-tuned on the entire train-
ing set. Surprisingly, Gemma demonstrates a marginal decrease of 3.6% and 5.6% on
under-sampled TOEFL11 and ICLE-NLI, compared to LLaMA-3 and Mistral, which
experience drops in accuracy ranging between 28.5%-73.4%. This indicates that only
some of the models require a sufficient number of instances per L1 for some datasets.
All in all, the results indicate that fine-tuning can boost the performance of open-source
LLMs on the NLI task, but only with a sufficient number of training samples per L1,
depending on the model and dataset.

4.7 Summary
First, our results indicate that the performance of GPT-4 is consistently high across
ICLE-NLI and TOEFL11, and with that, in line with Zhang and Salle (2023)’s previ-
ous results. GPT-4 out-of-the-box demonstrates remarkably high performance on both
NLI benchmarks. Compared to GPT-4, Open-source LLMs when used out-of-the-box
exhibited drastically poorer performance on the NLI datasets, with accuracy scores
that were all lower than a simple baseline approach using an SVM model with Bag-
of-Word features. After fine-tuning, however, the performance of most open-source
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Table 4.7: Results of open-source and closed-source LLMs on the VESPA test set (50
samples) in a closed-set setting, presented alongside results of these models on the
TOEFL11 and ICLE-NLI dataset. Additional results of fine-tuned open-source LLMs
on the three datasets under-sampled to 33 texts (the number of samples of the minority
class in the VESPA training set) are presented. All results are reported in accuracy
score (%) based on one run, except for previously reported results of LLaMA-3, Mistral,
and Gemma (both zero-shot & fine-tuned), for which we report the average accuracy
score across three runs.

Model VESPA
(test set)

TOEFL11
(test set)

ICLE-NLI
(5CV/entire)

BoW SVM 82.0 67.7 79.4
GPT-4 82.0 91.7 95.5
LLaMA-3 (zero-shot) 50.0 56.8±1.1 75.8±0.4
LLaMA-3 (fine-tuned) 30.0 85.3±0.1 78.5±2.5
LLaMA-3 (fine-tuned, under-sampled) 20.0 11.9 15.3
Gemma (zero-shot) 20.0 13.6±0.0 28.2±0.1
Gemma (fine-tuned) 60.0 90.3±1.2 96.6±0.2
Gemma (fine-tuned, under-sampled) 42.0 86.7 91.0
Mistral (zero-shot) 30.0 35.6±1.6 53.1±1.1
Mistral (fine-tuned) 52.0 89.8±0.8 83.2±9.4
Mistral (fine-tuned, under-sampled) 24.0 61.3 14.2

models improved significantly. While Gemma when used out-of-the-box achieved the
lowest accuracy score on both datasets in comparison to the other four open-source
models, after fine-tuning, Gemma achieved (near-)SOTA performance, even outper-
forming GPT-4 on ICLE-NLI. In contrast, LLaMA-3 out-of-the-box achieved the best
results on TOEFL11 and ICLE-NLI compared to other open-source LLMs out-of-the-
box, but LLaMA-3’s performance displayed minimal improvement after fine-tuning.
This indicates that the open-source models that perform best out of the box do not
necessarily achieve the best performance after fine-tuning. We observed all of these
patterns of performance across both datasets, which further strengthens the general-
izability of our findings. The results of the follow-up experiment on another dataset
indicate that fine-tuning requires a sufficient number of samples per L1 depending on
the model and dataset.

In addition, we surprisingly found that some models out-of-the-box perform better
in an open-set setting, but overall, performance decreases slightly for most LLMs in an
open-set setting. Finally, open-source LLMs out-of-the-box demonstrate less promising
results regarding prompting for explainability in comparison to closed-source LLMs.
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Discussion

This thesis aimed to investigate how smaller open-source LLMs compare to closed-
source LLMs on the NLI task and to further investigate the use of LLMs for prompting
for explainability and open-set classification. We directly compared the results of five
open-source LLMs to the results achieved by Zhang and Salle (2023) using GPT-3.5
and GPT-4 on the TOEFL11 test set and expanded the results by running GPT-3.5
and GPT-4 on the ICLE-NLI benchmark.

The results reveal a large gap in performance between closed-source and open-
source LLMs when used out-of-the-box on the NLI task, with GPT-4 outperforming
previous SOTA approaches and open-source LLMs on two NLI benchmarks. After
fine-tuning, the performance of open-source LLMs on the NLI task improves drasti-
cally. Our results indicate that fine-tuned open-source LLMs can match, and in some
cases even outperform, GPT-4 on the NLI benchmarks, with fine-tuned Gemma set-
ting a new performance record of 96.6% on ICLE-NLI. These patterns were found for
both datasets, further strengthening the generalizability of our findings. This chapter
discusses these findings, the limitations, and possible directions for future research in
NLI.

5.1 Performance gap between closed- and open-source LLMs
As mentioned previously, our results indicated that GPT-4 outperformed open-source
LLMs when used out-of-the-box on the NLI task by a large margin. We hypothesize a
few possible reasons for this performance gap, which we discuss in the sections below.

5.1.1 Potential data contamination
We hypothesize that a possible reason for this performance gap could be data leakage.
While the TOEFL11 and ICLE-NLI datasets are both inaccessible to the public, as
OpenAI models appear to have been exposed to hundreds of other benchmarks (Bal-
loccu et al., 2024), data leakage is not improbable. TOEFL11 and ICLE-NLI are both
de facto NLI benchmarks released before the cut-off date of GPT-4 training data, which
raises the concern that these might have been seen in training.

For this reason, we performed a follow-up experiment implementing GPT-4, LLaMA-
3, and Gemma on VESPA, an English L2 learner corpus that was released after the
cut-off date of GPT-4 (September 2021), which makes it highly plausible that this data
was not seen in training. The results from this follow-up experiment indicate that GPT-
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4 still outperforms open-source LLMs when used out-of-the-box on an NLI dataset that
most likely could not have been seen in training. However, the accuracy drops roughly
10 percentage points (p.p.) in comparison to GPT-4’s performance on TOEFL11 and
ICLE-NLI. The substantial drop on this novel dataset could be interpreted as signif-
icant enough to suggest possible data contamination of TOEFL11 and ICLE-NLI in
GPT-4. On the other hand, GPT-4’s high accuracy score relative to other LLMs could
also indicate that GPT-4 maintains a high level of performance on the NLI task, sug-
gesting that GPT-4 has not seen any of the NLI benchmarks. Additional research is
required to test the possibility of data leakage of these NLI benchmarks, i.e., by ex-
amining whether a model has memorized a given text using perplexity measurements
(Carlini et al., 2021).

Our follow-up experiment also raised possible doubts surrounding data contamina-
tion of ICLE-NLI in LLaMA-3. While LLaMA-3 when used out-of-the-box achieves 50%
and 56.6% accuracy on VESPA and TOEFL11 respectively, the model achieves a much
higher score on ICLE-NLI, with 75.8% accuracy. Moreover, while all other open-source
LLMs after fine-tuning gain a large boost in performance for both datasets, LLaMA-
3’s accuracy after fine-tuning on ICLE-NLI increases by 2.7 p.p. only. LLaMA-3’s
relatively high performance out-of-the-box and marginal performance boost after fine-
tuning are inconsistent with the results of other open-source LLMs. This could indicate
possible data leakage of ICLE-NLI in LLaMA-3. As suggested previously, additional
research is required to test the possibility of leakage of NLI benchmarks in LLMs.

5.1.2 Model size
A possible reason for the gap in performance between closed-source and open-source
LLMs out-of-the-box could also be the differences in model size. GPT-3.5 has roughly
175B parameters (Brown et al., 2020), and GPT-4’s size is unknown, but likely much
larger than that of GPT-3.5. On the other hand, the open-source LLMs used in our
experiments are quantized and significantly smaller than the closed-source LLMs, with
sizes ranging between 3.8B and 8B parameters. Phi-3, the smallest LLM used in this
study with 3.8B parameters (Microsoft, 2024), demonstrates relatively low performance
on NLI when used out-of-the-box and the lowest performance of all open-source LLMs
after fine-tuning. This indicates that the size of the model could impact the performance
of LLMs on the NLI task.

5.1.3 Training data
Another possible reason for the performance gap could be the difference in training
data: perhaps the training data of closed-source models include more L2 learner data
than open-source models that allows the first to achieve better performance on the NLI
task. Smaller open-source LLMs trained on less data often rely on heavy filtering to
obtain the same level of performance as much larger LLMs (Microsoft, 2024). Phi-3,
for example, relies on heavily filtering web data to obtain data of “high quality” or
“textbook quality” (Microsoft, 2024; Gunasekar et al., 2023). This process of filtering
would likely negatively impact the performance on a task that is based on L2 learner
data which typically contains errors. The difference in the type of data the models are
trained on could have increased the performance gap between the two types of models.
With the lack of insights into the training data of both open-source and closed-source
LLMs, this hypothesis cannot be verified.
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5.2 LLMs for open-set classification
Most open-source and closed-source LLMs demonstrated poorer performance in an
open-set setting compared to a closed-set one, as expected. With the relatively poor
performance of open-source LLMs on both NLI benchmarks in an open-set setting, it
appears that open-source LLMs cannot yet be implemented in an open-set manner for
real-world applications of NLI, unlike closed-source LLMs.

Surprisingly, Phi-3 and GPT-3.5 demonstrated an increase in performance in an
open-set setting. This might be because the prompt used in the closed-set experiments
is relatively longer than the one used in open-set experiments, and includes many
restrictions, such as “DO NOT USE ANY OTHER CLASS” and “Do not classify any
input as “ENG” (English)”. While Zhang and Salle (2023) achieved SOTA results with
GPT-4 using a nearly identical prompt, this might not be the case for other LLMs,
as models appear to display different levels of sensitivity to the prompt, depending
on the prompts used (Lu et al., 2024). Future research can experiment with different
prompts or prompt engineering methods, such as few-shot learning or Chain-of-Thought
prompting, to improve the current results of open-source LLMs on the NLI task.

5.3 Fine-tuning LLMs for NLI
We found that smaller open-source LLMs after fine-tuning can match the performance
of, and in some cases even outperform, closed-source LLMs. Gemma after fine-tuning
achieved an accuracy score of 90.3% on TOEFL11 and 96.6% on ICLE-NLI, while
GPT-4 achieved 91.7% on TOEFL11 and 95.5% on ICLE-NLI. This shows promising
results for fine-tuning smaller open-source LLMs for other classification tasks in the fu-
ture, in particular with the recent development of more efficient fine-tuning techniques,
like LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2023). Using these novel
techniques to adapt open-source LLMs to specific tasks can drastically improve the
performance of open-source LLMs.

While fine-tuning open-source LLMs improves the performance of these models in
terms of classification accuracy, we found that LLMs after fine-tuning could not be used
for generating natural language explanations. The ‘general-purpose’ property is often
framed as one of the main strength of LLMs (Minaee et al., 2024), which allows us
to prompt LLMs for reasoning, such as natural language explanations for NLI. When
prompting the fine-tuned LLMs for NLI explanations, however, the fine-tuned LLMs
had a tendency to only generate an L1 prediction. This behavior might be a sign of
overfitting on this task and suggests that LLMs that are fine-tuned for a specific task
cease to perform well on other language tasks. For this reason, we could not implement
fine-tuned LLMs for our experiments on explainability.

5.4 Using LLMs for explainability
Our results confirm Zhang and Salle (2023)’s findings in that GPT-4 can provide in-
sightful analyses regarding L1-indicative features, albeit with occasional hallucinations.
Open-source LLMs like LLaMA-3 seem to not have reached the level of closed-source
LLMs yet with regard to generating L2 feature explanations. A qualitative analysis
of explanations generated by LLaMA-3 revealed that LLaMA-3 often generates expla-
nations that are rather vague and coarse-grained. The open-source LLM often identi-
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fies specific features as indicators of non-native English writing, rather than providing
possible sources of particular errors in relation the predicted L1. It is expected that
LLaMA-3 can generate less targeted and coherent explanations compared to GPT-4,
as it has only 7B parameters and is trained on less data.

Both models present hallucinations in their generated explanations, which raises
some doubts about the accuracy of some of the LLM-generated explanations. Our
analysis showed that LLaMA-3- and GPT-4-generated explanations can contain mis-
quotations or factual errors, often formulated in a convincing manner. The occurrence
of these errors put into question the argument put forward by Zhang and Salle (2023)
that LLMs can potentially be used as tools for linguistic analysis by educators and
linguists. If a user implements LLMs for linguistic analysis while being unaware of
the risk of hallucinations, they risk relying on rhetorically convincing but false or bi-
ased explanations (Kunz and Kuhlmann, 2024). This could lead to false conclusions
about what differentiates language produced by native speakers and L2 learners. With
hallucinations presented by both models, it is important to analyze LLM-generated ex-
planations critically and be aware of the risks when applying it as a method for feature
explainability.

5.5 Limitations
Several limitations to our study should be addressed. In what follows, we discuss the
limitations concerning our focus on English L2 speakers, our experimental setup, and
our definition of open-source and closed-source. These limitations then point toward
avenues for future research.

Our study focuses purely on native language identification in English, which is
the most well-studied L2 in the NLI task (Goswami et al., 2024). We do not take
into account speakers with a multi-L1 background, or NLI in other languages. It
would be interesting to study NLI for other L2s, as it is unclear whether the high
performance of LLMs on NLI can hold for L2s other than English. In addition, we
limit ourselves to investigating language produced by L2 speakers with one L1. It
would be interesting to investigate NLI identification using texts written by speakers
with multi-L1 backgrounds.

We also focus on datasets comprised of texts written by (under)graduate university
students. As Goswami et al. (2024) note, most datasets used for NLI were collected
in educational settings. Future experiments can explore the use of LLMs on NLI data
from other domains, such as social media, blogs, or online reviews, where L2 learner
texts are also prevalent.

Additionally, our study investigated a small sample of generated explanations to
gain insights into explainability to the best of our ability. Verifying the validity of the
claims presented in the explanations remains difficult, as this requires expert knowledge
of linguistic features of the L1s in the dataset. Future research could include a more
detailed analysis of LLM-generated NLI explanations with expert knowledge of the
different L1s in the dataset.

As previously described, model size seems to impact the performance of LLMs on the
NLI task. We were unable to implement larger open-source LLMs (>70B parameters)
to fully test the impact of model size on performance due to computational limitations.
All experiments were conducted on Google Colaboratory, where we made use of the
most powerful GPU (A100) available. However, testing bigger open-source models, such
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as LLaMA-3 with 70B parameters (Meta, 2024), requires much larger GPU memory.
Future research with access to more computational resources could explore the use of
larger open-source LLMs on the NLI task.

In fine-tuning, we used the same hyperparameters for each model and the different
datasets. Hyperparameter optimization was not explored for our experiments to mini-
mize the computational costs. Future research could study the effect of hyperparameter
optimization on the performance when fine-tuning LLMs for the NLI task.

Moreover, while fine-tuning improves the performance of open-source LLMs dras-
tically, the prerequisite of fine-tuning for optimal performance is a disadvantage to
implementing open-source LLMs compared to closed-source LLMs. For high perfor-
mance, the model has to be fine-tuned on large amounts of labeled domain-specific
data. Previous research has found that NLI models suffer from performance degra-
dation in a cross-corpus or cross-domain setting, and thus cannot be applied directly
to different corpora (Markov et al., 2022; Malmasi and Dras, 2015a). Future research
could explore the use of fine-tuned open-source LLMs for NLI in a cross-corpus setting
to evaluate whether these models demonstrate performance loss in this setting.

More broadly, in our study, we define open-source and closed-source relatively
loosely, treating the terms open and closed as a binary feature to perform a compara-
tive analysis between open-source and closed-source LLMs for NLI. However, there are
various dimensions of openness, as a model release involves different components rang-
ing from the release of training datasets to model access (Solaiman, 2023; Liesenfeld
and Dingemanse, 2024). There is currently an alarming trend within the area of LLM
development in which companies take credit for releasing open-source LLMs, without
actually disclosing crucial information regarding the training procedure, also referred
to as ‘open-washing’ (Liesenfeld and Dingemanse, 2024). LLMs are often released by
blog post rather than through a peer-reviewed scientific article, lacking fine-grained
analyses of the performance. In turn, this makes it hard to determine whether an
open-source model’s performance can be attributed to the model’s learning or possible
data contamination. The lack of insights into the training data of proclaimed open-
source LLMs also hindered our evaluation of LlaMA-3 on ICLE-NLI. In the future,
researchers working with large language models should be aware of the complexities of
defining the ‘open-source’-ness of large language models.
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Chapter 6

Conclusion

In this thesis, we presented, to the best of our knowledge, the first results using open-
source LLMs on the Native Language Identification task, comparing these to the per-
formance of closed-source LLMs like GPT-4. We implemented a variety of open-source
LLMs, namely LLaMA-2, LLaMA-3, Mistral, Gemma, and Phi-3, running them out-
of-the-box as well as fine-tuning for the NLI task. In addition, we tested the ability of
open-source LLMs to predict authors’ L1s in an open-set setting, without specifying the
list of possible L1s, and explored the use of open-source LLMs to provide explanations
regarding their L1 classification.

The results showed that open-source LLMs when used out-of-the-box demonstrate
considerably poorer performance than closed-source LLMs like GPT-4 on two NLI
benchmarks. They also generally showcased a decrease in performance in an open-set
setting and demonstrated lesser performance with respect to generating explanations.
This indicates that small open-source LLMs when used out-of-the-box cannot achieve
the same level of performance as much larger closed-source LLMs on the NLI task.

When fine-tuned for the NLI task, however, open-source LLMs generally demon-
strate a significant boost in performance. Our results indicated that fine-tuned open-
source LLMs can achieve (near-)state-of-the-art performance on two NLI benchmarks,
with fine-tuned Gemma setting a new performance record of 96.6% on ICLE-NLI.
Taking into account the negative impact of closed-source LLMs like GPT-4 on re-
search, small fine-tuned open-source LLMs present an alternative that shows consider-
able promise for text classification tasks like NLI.

Future research can explore the multilingual capabilities of LLMs for the NLI task
by examining the use of LLMs for languages other than English, or explore NLI datasets
from different domains, such as data collected from social media. Current results
could also be improved by implementing prompt engineering methods, such as few-
shot learning or exploring different prompt formats.
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Appendix A

Prompts

A.1 Closed-set prompts
For the closed-set experiments for the TOEFL11 dataset, we used the prompt below.

You are a forensic linguistics expert that reads English texts written by
non-native authors to classify the native language of the author as one of:

“ARA”: Arabic
“CHI”: Chinese
“FRE”: French
“GER”: German
“HIN”: Hindi
“ITA”: Italian
“JPN”: Japanese
“KOR”: Korean
“SPA”: Spanish
“TEL”: Telugu
“TUR”: Turkish
Use clues such as spelling errors, word choice, syntactic patterns, and grammat-
ical errors to decide on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG” (English). English is an
invalid choice.
Valid output formats:
Class: “ARA”
Class: “CHI”
Class: “FRE”
Class: “GER”

You ONLY respond in JSON files. The expected output from you is: json
{“native_lang”: The chosen class, ARA, CHI, FRE, GER, HIN, ITA, JPN,
KOR, SPA, TEL, or TUR}

If possible, this was entered as a System prompt. If the system role not supported
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by the prompt formatter, this was entered as part of the User prompt.
We then input the given text and used the prompt below as a User prompt:

<TOEFL11 ESSAY TEXT>
Classify the text above as one of ARA, CHI, FRE, GER, HIN, ITA, JPN, KOR,
SPA, TEL, or TUR. Do not output any other class - do NOT choose ”ENG”
(English). What is the closest native language of the author of this English text
from the given list?

For the ICLE-NLI dataset, as the set of labels are different from TOEFL11, we used
the following prompt as system prompt if possible:

You are a forensic linguistics expert that reads English texts written by
non-native authors to classify the native language of the author as one of:

“BUL”: Bulgarian
“CHI”: Chinese
“CZE”: Czech
“FRE”: French
“JPN”: Japanese
“RUS”: Russian
“SPA”: Spanish
Use clues such as spelling errors, word choice, syntactic patterns, and grammat-
ical errors to decide on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG” (English). English is an
invalid choice.

Valid output formats: Class: “BUL”
Class: “CHI”
Class: “CZE”
Class: “SPA”

You ONLY respond in JSON files. The expected output from you has to be:“json
{”native_lang”: The chosen class, BUL, CHI, CZE, FRE, JPN, RUS, or SPA}”

We then used the following prompt as input prompt:

<ICLE-NLI ESSAY TEXT>
Classify the text above as one of BUL, CHI, CZE, FRE, JPN, RUS, or SPA.
Do not output any other class - do NOT choose “ENG” (English). What is the
closest native language of the author of this English text from the given list?

In the closed-set experiments, if the L1 was incorrectly predicted as English, we
prompted the model below again using the prompt below:
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You previously mistakenly predicted this text as ”ENG” (English). The class is
NOT English. Please classify the native language of the author of the text again.

If we were unable to parse the prediction or the predicted L1 was not in the set
of possible classes, we prompted the model again. For the TOEFL11 experiments we
used the prompt below:

Your classification is not in the list of possible languages.
Please try again and choose only one of the following classes: ARA, CHI, FRE,
GER, HIN, ITA, JPN, KOR, SPA, TEL, or TUR

For out-of-set predictions on the ICLE-NLI dataset, we prompted the model again
using the prompt below:

Your classification is not in the list of possible languages.
Please try again and choose only one of the following classes: BUL, CHI, CZE,
FRE, JPN, RUS, or SPA

A.2 Open-set prompts
For the open-set experiments, we used the prompt below as input prompt for all models:

You are a forensic linguistics expert that reads texts written by non-native
authors in order to identify their native language.
Analyze each text and identify the native language of the author.
Use clues such as spelling errors, word choice, syntactic patterns, and grammat-
ical errors to decide.

You ONLY respond in JSON files. The expected output from you has to
be: “json {“native_lang”: “”}”

When the predicted L1 could not be extracted from the generated output, we used
the prompt below to apply iterative prompting to get a valid prediction:

Your previous classification was not in the correct format. Please only respond
in the following JSON format:
“json {”native_lang”: “”}”

A.3 Fine-tuning prompts
We used prompts for our fine-tuning experiments that are very similar to the one used
in closed-set classification.

For the TOEFL11 dataset, we implemented the following prompt:



60 APPENDIX A. PROMPTS

### Instruction:
You are a forensic linguistics expert that reads English texts written by
non-native authors to classify the native language of the author as one of:

“ARA”: Arabic
“CHI”: Chinese
“FRE”: French
“GER”: German
“HIN”: Hindi
“ITA”: Italian
“JPN”: Japanese
“KOR”: Korean
“SPA”: Spanish
“TEL”: Telugu
“TUR”: Turkish
Use clues such as spelling errors, word choice, syntactic patterns, and grammat-
ical errors to decide on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG” (English). English is an
invalid choice.

Valid output formats:
Class: “ARA”
Class: “CHI”
Class: “FRE”
Class: “GER”

Classify the text above as one of ARA, CHI, FRE, GER, HIN, ITA, JPN, KOR,
SPA, TEL, or TUR. Do not output any other class - do NOT choose ”ENG”
(English). What is the closest native language of the author of this English text
from the given list?

### Input:
<TOEFL11 ESSAY TEXT>

### Response:
<L1 LABEL>

For the ICLE-NLI dataset, we implemented the prompt below:
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### Instruction:
You are a forensic linguistics expert that reads English texts written by
non-native authors to classify the native language of the author as one of:

“BUL”: Bulgarian
“CHI”: Chinese
“CZE”: Czech
“FRE”: French
“JPN”: Japanese
“RUS”: Russian
“SPA”: Spanish
Use clues such as spelling errors, word choice, syntactic patterns, and grammat-
ical errors to decide on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG” (English). English is an
invalid choice.

Valid output formats: Class: “BUL”
Class: “CHI”
Class: “CZE”
Class: “SPA”

Classify the text above as one of BUL, CHI, CZE, FRE, JPN, RUS, or SPA.
Do not output any other class - do NOT choose ”ENG” (English). What is the
closest native language of the author of this English text from the given list?

### Input:
<ICLE-NLI ESSAY TEXT>

### Response:
<L1 LABEL>

A.4 Explainability prompts

For the explainability experiments, we used the system prompt as previously described
in Appendix A.1 in accordance with the dataset, and the following prompt as input
prompt:

You must provide a guess. Output two named sections: (1) “Native Language”
with the name of the language, and (2) “Reasoning” with a detailed explanation
of your judgement with examples from the text.
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A.5 Follow-up experiment prompts

For the follow-up experiments, we used prompts that are very similar to previous ex-
periments, adapting only the L1s in the dataset.

We used the system prompt below:

You are a forensic linguistics expert that reads English texts written by
non-native authors to classify the native language of the author as one of:

“DUT”: Dutch
“FRE”: French
“NOR”: Norwegian
“SPA”: Spanish
“SWE”: Swedish
Use clues such as spelling errors, word choice, syntactic patterns, and grammat-
ical errors to decide on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG” (English). English is an
invalid choice.

Valid output formats: Class: “DUT”
Class: “SWE”
Class: “NOR”
Class: “SPA”

You ONLY respond in JSON files. The expected output from you has to be:“json
{”native_lang”: The chosen class, DUT, FRE, NOR, SPA, or SWE}”

We entered the following prompt as User prompt:

<VESPA ESSAY TEXT>
Classify the text above as one of DUT, FRE, NOR, SPA, or SWE. Do not output
any other class - do NOT choose “ENG” (English). What is the closest native
language of the author of this English text from the given list?

If the L1 was English, we prompted again using the same prompt as implemented
in previous experiments (Appendix A.1). If the L1 was not present in the set of labels,
we applied iterative prompting using the following prompt:

Your classification is not in the list of possible languages.
Please try again and choose only one of the following classes: DUT, FRE, NOR,
SPA, or SWE

We used the following prompt for the fine-tuning experiments:
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### Instruction:
You are a forensic linguistics expert that reads English texts written by
non-native authors to classify the native language of the author as one of:

“DUT”: Dutch
“FRE”: French
“NOR”: Norwegian
“SPA”: Spanish
“SWE”: Swedish
Use clues such as spelling errors, word choice, syntactic patterns, and grammat-
ical errors to decide on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG” (English). English is an
invalid choice.

Valid output formats:
Class: “DUT”
Class: “SWE”
Class: “NOR”
Class: “SPA”

Classify the text above as one of DUT, FRE, NOR, SPA, or SWE. Do not
output any other class - do NOT choose ”ENG” (English). What is the closest
native language of the author of this English text from the given list?

### Input:
<VESPA ESSAY TEXT>

### Response:
<L1 LABEL>
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Appendix B

Confusion matrices

This appendix contains additional relevant confusion matrices.

(a) GPT-3.5 (closed) (b) GPT-3.5 (open)

Figure B.1: Confusion matrix of GPT-3.5 evaluated on the entire ICLE-NLI dataset in
a closed-set and open-set setting.
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(a) Mistral (FT TOEFL11) (b) Mistral (FT ICLE-NLI)

Figure B.2: Confusion matrix of Mistral fine-tuned on the TOEFL11 training set,
evaluated on the TOEFL11 test set, and Mistral fine-tuned on the ICLE-NLI dataset
using 5-fold CV.

(a) LLaMA-3 (FT TOEFL11) (b) LLaMA-3 (FT ICLE-NLI)

Figure B.3: Confusion matrix of LLaMA-3 fine-tuned on the TOEFL11 training set,
evaluated on the TOEFL11 test set, and fine-tuned on the ICLE-NLI dataset using
5-fold CV.
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(a) Phi-3 (closed) (b) Phi-3 (open)

Figure B.4: Confusion matrix of Phi-3 used out-of-the-box on the TOEFL11 test set
in a closed-set and open-set setting.

(a) Phi-3 (closed) (b) Phi-3 (open)

Figure B.5: Confusion matrix of Phi-3 used out-of-the-box on the ICLE-NLI dataset
in a closed-set and open-set setting.
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