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Abstract

This project explores the development of an automated method for generating effective
follow-up questions aimed at monitoring patients’ physical and mental conditions using the
Llama3 generative model. Two primary optimization strategies were evaluated: prompt en-
gineering (employing zero-shot and few-shot prompting) and model fine-tuning. The study
contrasted fine-tuned models, without prompt engineering, with non-fine-tuned models that
applied prompt engineering techniques. The primary finding is that fine-tuned LLaMA3
models significantly outperform non-fine-tuned models, demonstrating its superior effective-
ness of task-specific adaptation over prompting methods. This highlights the advantage of
fine-tuning in generating more accurate and relevant follow-up questions for patient moni-
toring.
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Chapter 1

Introduction

Monitoring people’s health and well-being before and after the treatment is important, which
helps the prevention of severe illness. Such monitoring necessitates the continual collection
of long-term data on individuals’ daily activities and emotions, extending beyond direct
medical care. However, the geographical and temporal barriers may stop people from getting
monitoring and receiving treatment in time.

One approach to overcoming these challenges is the development of automated monitor-
ing systems using conversational agents (CAs), such as chatbots, to conduct daily online
conversations with users, thereby bypassing geographical and temporal obstacles and to col-
lect information, where CAs can ask questions, interpret responses and probe answers (Xiao
et al., 2020b). CAs have demonstrated their ability to gather information and perform in-
formation elicitation tasks in various fields, including public service Makasi et al. (2020);
Stamatis et al. (2020); Shum et al. (2018), education Hiremath et al. (2018); Heilman and
Smith (2010); Su et al. (2018); Clarizia et al. (2018), and healthcare Athota et al. (2020);
Xu et al. (2021); Lee et al. (2020).

In the healthcare domain, Vossen et al. (2024) proposed a project utilizing a Hybrid
Intelligence Agent to create a personal diary through conversations with patients, contex-
tualizing their physical, social, and mental functioning and well-being for medical research
and monitoring. This monitoring primarily involves detecting Activities of Daily Life (ADL)
within conversations, with a communicative agent regularly engaging stakeholders to gather
more detailed information through follow-up questions (FQs). They argue that such a CA-
based approach can effectively provide context for monitoring both physical functioning and
mental well-being.

Inspired by this project, a similar process can be employed to monitor individuals’ health.
This process can be divided into two steps: First, caretakers initiate conversations with
patients about their daily activities, focusing on attributes such as timing, location, and
participants. Second, caretakers ask follow-up questions related to these activities to elicit
responses that provide functional information and insights into the patients’ emotions, which
can be categorized as positive or negative sentiment. In other word, there are two types of
follow-up questions. The first is FQs on function-level information. This type of question
can ask for information on more specific questions related to the target activity and evoke
answers reflecting the function level. The second is FQs on emotional feedback. This type
of question is asked from the perspective of the users about their positive or negative feeling
of the activity.

For example, consider a conversation about the activity of ”dressing” between a caretaker
(C) and a patient (P), generated by medical experts to closely resemble natural and real
interactions:

C: Good morning! How did dressing go for you this morning?

1



2 CHAPTER 1. INTRODUCTION

P: Oh, it took a bit longer than usual today, but I managed to get my favorite
outfit on.

To monitor the function level, the following follow-up questions might be asked:

C: Oh, so you managed it without help?

P: Yes, I did.

C: Why did it take more time than usual?

P: Because I wanted to wear a blouse with buttons.

C: What’s tricky about that?

P: I have trouble getting the buttons to close.

For assessing emotional perspectives, the follow-up questions might include:

C: How do you feel about dressing for a bit longer than usual today?

P: Well, I have trouble wearing a blouse with buttons, but it’s part of age. Fine
motor skills are not what they used to be.

C: So it doesn’t really bother you?

P: No, I just take more time for it and don’t wear a blouse with buttons every
day.

By asking whether the patient managed dressing without help and why it took longer
than usual, the caretaker may detect changes in the patient’s self-care abilities for function
level monitoring. Additionally, by inquiring about the patient’s emotional response to the
activity, the caretaker can monitor the patient’s mental state.

This approach allows caretakers to track potential changes in physical and mental condi-
tions through rich, regular, and continuous conversational data, which can trigger alerts for
further attention. Automating this process also has the potential to reduce the burden on
the healthcare system.

To construct such a system, it is crucial to obtain the necessary information for mon-
itoring. Therefore, CAs must ask the ”right” follow-up questions about daily activities,
probing and prompting more information based on conversation history and people’s re-
sponses. Specifically, the FQs should be relevant to ask functional levels and mental states,
such as the difficulty of performing activities and emotional responses to them. Although re-
searchers have developed various techniques to enhance CAs’ information elicitation abilities
Lee et al. (2020); Motalebi et al. (2019), CAs still struggle to identify important concepts
or events in conversations that could be explored further, and they lack the skills to ask
pertinent follow-up questions Hu et al. (2024); Xiao et al. (2020a).

This project aims to explore an automatic method to generate ”right” follow-up questions
for monitoring patients’ physical and mental conditions by employing the generative model
of Llama3, with two optimization methods: prompt engineering with zero-shot and few-
shot prompting and fine-tuning the model. That is, there are primarily two systems in the
project to be compared: the fine-tuned (FT) systems without prompt engineering and the
non fine-tuned (non-FT) systems with prompt engineering.

The thesis is structured as follows: Chapter 2 introduces related work on ontology, ques-
tion generation, and prompt engineering. Chapter 3 of Methodology details the research
design, including data preparation methods, experimental setup, and evaluation. Chapter 4
presents the experimental results and provides an analysis of these results. Finally, Chapter
5 covers the discussion with error analysis and Chapter 6 concludes the whole project.



Chapter 2

Related Work

This section introduces the related work of background and methodology used in the project.
The first part is about ontology which can be used to determine the scope of conversations
and FQs interpretation. The second part gives a related work of natural language generation
(NLG), specifically question generation (QG). The third part provides related work of prompt
engineering.

2.1 ADL and Ontology

Ontology is needed in the current project to represent a structured framework of daily ac-
tivities with their definitions and give the reference to the corresponding function.

According to the Stanford Encyclopedia of Philosophy, activities are defined as inten-
tionally performed events aimed at achieving specific purposes. These activities can be
categorized into various types, such as educational or communicative, depending on their
objectives. This task focuses on Activities of Daily Living (ADLs), which include the essen-
tial skills required for independent living and serve as indicators of an individual’s functional
status, such as eating, bathing, and mobility (Edemekong et al., 2019). The inability to
perform these essential ADLs can lead to unsafe conditions and a reduced quality of life.
Therefore, assessing an individual’s ability to manage ADLs is crucial, as it can indicate
the need for assistance and further evaluation (Edemekong et al., 2019). ADLs are generally
classified into basic (BADLs) and instrumental categories, with the current task emphasizing
BADLs due to their fundamental importance.

• Basic Activities of Daily Living (BADLs): These are fundamental self-care tasks
necessary for maintaining independence and physical well-being, For examples:

– Bathing: Washing oneself, including the whole body or specific parts.

– Dressing: Selecting appropriate clothing and putting it on.

– Eating: The ability to feed oneself.

– Mobility: Moving around, including walking and transferring (e.g. from a bed to
a chair).

– Toileting: Managing personal hygiene and using the toilet.

– Continence: Controlling bladder and bowel functions.

• Instrumental Activities of Daily Living (IADLs): These are more complex ac-
tivities that are necessary for living independently but are not essential for basic func-
tioning. For examples:

– Managing Finances: Handling money, paying bills.

3



4 CHAPTER 2. RELATED WORK

– Medication Management: Taking medications as prescribed.

– Cooking: Preparing meals.

– Shopping: Purchasing groceries or other necessities.

– Housekeeping: Cleaning and maintaining the home.

– Using Transportation: Driving or using public transportation.

To effectively measure functional status through activities, a common and universally
accepted framework and classification system is necessary. The WHO International Classifi-
cation of Functioning, Disability, and Health (ICF) provides such a framework. It is designed
to measure health and disability at both individual and population levels, offering a stan-
dardized language and reference model for describing health and related states (Cozzi et al.,
2021).

According to Stucki et al. (2008), the International Classification of Functioning, Disabil-
ity, and Health (ICF) defines ”mutually exclusive and cumulatively exhaustive” categories,
which can serve as a reference for various medical purposes, including the development of
clinical and self-reported measurement instruments. The ICF is closely linked to functional
levels that reflect health conditions, which can be quantified using the Linkage Methodology.

The Linkage Methodology is a systematic approach used to map health-related infor-
mation—such as data from clinical assessments, patient-reported outcomes, or qualitative
studies—to the ICF framework. This methodology plays a crucial role in standardizing and
interpreting diverse health-related data within the universal framework provided by the ICF.
The methodology involves two main steps: first, identifying meaningful concepts within the
health-related information that needs to be translated to the ICF; second, linking these iden-
tified concepts to the most appropriate ICF categories according to established linking rules.
These rules ensure that concepts are accurately mapped to ICF categories that best represent
them, whether they pertain to body functions, activities and participation, environmental
factors, or personal factors.

The Linkage Methodology facilitates the integration of various health-related data into
a standardized language, allowing for the comparison of functioning across different mea-
sures, conditions, and contexts. It also supports the development of ICF-based measurement
instruments, such as the ICF Checklist and ICF Core Sets. Additionally, it enables the
transformation of information from clinical tests or patient-oriented instruments into the
ICF qualifier scale, which is a rating scale for assessing the extent of problems in function-
ing.

Based on this methodology, the ICF serves as a reference framework for quantifying func-
tional levels (Kelvin, 2008). The ICF is divided into two main components: ICF Categories
and ICF Qualifiers.

ICF Category has four main categories: Body function, Activities and participation,
Environmental factors, and Body structure. Daily activities (BADLs) concerning the current
task mainly are included in Activities and Participation. Therefore, only Activities and
Participation will be considered in the current task (referred as ”main category”).

Within Activities and participation, there are 9 categories of Learning and applying
knowledge, Learning and applying knowledge, General Task and demands, communication,
Mobility, Self-care, Domestic Life, Interpersonal interactions and relationships, Major life
areas, Community, social and civic life (Organization, 2001). Under each category, there are
two to three layers to show the sub-categories, examples shown as Figure 2.1. To be more
specific, taking one of the category series for example, indicted by red cells in Figure 2.1:
category: Mobility - 1st layer: Walking and Moving - 2nd layer: Moving around - 3rd layer:
Jumping.
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Figure 2.1: examples ICF layers
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ICF Qualifier is a generic scale to quantify a single ICF category in terms of five aspects:
Barrier or facilitator, Capacity, Extent or magnitude of impairment, Performance, Nature
of change in body structure. Each aspect can be quantified by mainly 5 levels, shown as the
Table 2.1,

ICF Qualifier Percentage of Problem

0-NO difficulty (none, absent, negligible) 0-4%

1-MILD difficulty (slight, low) 5-24%

2-MODERATE difficulty (medium, fair) 25-49%

3-SEVERE difficulty (high, extreme) 50-95%

4-COMPLETE difficulty (total) 96-100%

Table 2.1: ICF Qualifiers and their Corresponding Percentage of Problem

There are two methods for measuring functional levels using the ICF framework. The
first method employs a rating scale ranging from 0 to 4 as a quantifier. The second method
involves transforming clinical or medical information into these quantifiers, thereby allowing
the function level to be quantified on the rating scale.

This ontology links activities or events in conversations to functional levels and will be
utilized for generating conversation data and functional questionnaires (FQs) when preparing
the training data (see Chapter 3: Methodology).

2.2 Question Generation and LLMs

Research on questions has been a significant focus in Natural Language Generation, primar-
ily aiming at answering questions as an intermediate step in the question-answering process.
However, Question Generation (QG) refers to the process of automatically generating ques-
tions from various types of input, including databases, deep semantic representations, and
raw text (Zhang et al., 2021; Rus et al., 2011, 2010). Unlike question-answering, QG is eval-
uated based on the intrinsic quality of the generated questions (Heilman and Smith, 2010),
rather than the answers that follow.

There are two main approaches in the field of Question Generation (QG): rule-based
methods and neural network-based methods (Hu et al., 2024).

Rule-based methods rely on handcrafted rules to transform given texts into questions and
can be broadly classified into template-based, syntax-based, and semantics-based approaches
(Zhang et al., 2021). These methods are straightforward and offer greater control over the
output with minimal data requirements. However, they depend heavily on manually created
rules, which can limit the variety of generated questions and reduce adaptability to different
topics or domains.

In contrast, neural network-based methods have recently advanced significantly, driven
by data-driven algorithms and access to large-scale datasets. These methods provide an
end-to-end trainable QG framework, enabling joint optimization of content selection and
question generation, which is a common challenge in QG tasks. Compared to rule-based
methods, neural network-based approaches excel in generating questions with greater fluency,
flexibility, and diversity (Hu et al., 2024; Zhang et al., 2021). Among these, large-scale
pre-trained language models (LLMs) like GPT and LLaMA3 have achieved state-of-the-art
results across various natural language generation (NLG) tasks, including question generation
(Devlin et al., 2019; Zhang et al., 2021; Howard and Ruder, 2018).

LLMs are trained on vast and diverse datasets using self-supervised learning techniques.
They encode input text into high-dimensional vector spaces, preserving semantic relation-
ships between words and contexts, which allows them to learn statistical patterns and gen-
erate coherent, contextually relevant questions (Chen et al., 2024).
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The quality of text generated by large language models (LLMs) is influenced by several
factors, including the prompt provided, the model’s hyperparameters, and the diversity of
the training data (Chen et al., 2024). For the current task, the primary focus is on the
prompt used to guide the model, as LLMs are typically trained with well-tuned hyperparam-
eters that have been optimized through extensive research and experimentation (Goodfellow
et al., 2016). Additionally, models like GPT are trained on large, diverse datasets compiled
from various sources across the internet, making them particularly well-suited for generating
general conversations rather than domain-specific content.(Radford et al., 2019).

2.3 Prompt Learning and Engineering

Fine-tuning pretrained models is often costly and time-consuming, requiring substantial
amounts of annotated data and computing resources. To mitigate these challenges, re-
searchers have increasingly relied on prompts to guide model learning (Liu et al., 2021). A
prompt serves as the model’s input, and variations in its syntax (e.g., the ordering of ex-
amples) and semantics (e.g., example selection, instructions) can significantly influence the
model’s performance.(Arora et al., 2022; Chen et al., 2024; Kaddour et al., 2023; Lu et al.,
2022).

Prompt learning is an emerging paradigm in natural language processing (NLP) that
enables models to perform few-shot or even zero-shot learning, allowing them to adapt to
new scenarios with minimal labeled data (Liu et al., 2021). This approach leverages language
modeling techniques to directly model the probability of text sequences. The key to successful
prompt engineering lies in designing prompts that effectively guide pretrained models to
perform specific tasks.

Modifying the syntax and semantics of a prompt is crucial for steering LLM responses in
the desired direction. This process, known as ”prompt engineering”, involves designing natu-
ral language queries that guide the model’s outputs toward specific outcomes (Kaddour et al.,
2023). Current popular prompting methods range from foundational approaches like role-
prompting (Shanahan et al., 2023) to more advanced techniques such as ”chain-of-thought”
prompting (Wei et al., 2023).

Building on insights from Liu et al. (2021) and Wang et al. (2024), the following section
outlines the three key steps in prompt learning:

1. Pretrained Models: Select an appropriate pre-trained model.

2. Prompt Engineering: Design prompts tailored to the specific requirements of each
downstream task.

3. Task-Specific Response Design: Allow models to produce the desired output based on
the task at hand.

These steps provide a guideline for creating prompts used in generating training datasets.
The following section outlines two important methods used in prompt engineering: zero-shot
prompting and few-shot-prompting.

2.3.1 Zero-shot and Few-shot prompting

Zero-shot prompting is a technique in natural language processing (NLP) where a model,
such as a large language model (LLM), performs a task without any specific examples or prior
training related to that task. In zero-shot prompting, the model is given only an instruction or
prompt describing the task and generates responses based solely on its extensive pre-trained
knowledge. LLMs like GPT or LLaMA, which are trained on vast and diverse datasets, are
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capable of generalizing across various tasks and domains. This approach can yield impressive
results when the prompt is well-designed, leveraging the model’s broad understanding and
capability to infer task requirements (Wang et al., 2024).

However, zero-shot prompting has its limitations. The absence of specific examples can
result in less accurate outputs, as the model relies heavily on its general knowledge and may
struggle with ambiguities or specific nuances of the task. Without examples, the model’s
responses might lack precision or relevance, especially for complex or domain-specific tasks.

To overcome these limitations, few-shot prompting has been introduced as a comple-
mentary approach. Few-shot prompting involves providing the model with a small number
of example input-output pairs within the prompt. This additional context helps guide the
model’s responses, enhancing its performance by illustrating the desired task behavior (Zhao
et al., 2021).

In few-shot prompting, the model receives a prompt that includes a task description
and several examples demonstrating how to handle specific inputs. For instance, if the
task is text classification, the prompt may include a few labeled examples showing different
types of inputs and their corresponding categories. These examples help the model better
understand the task and generate more accurate responses for new, unseen inputs by building
on the patterns learned from the provided examples. One of the primary benefits of few-
shot prompting is its efficiency. By using only a few examples, this technique enables rapid
adaptation to new tasks without extensive retraining or fine-tuning. The model leverages
its pre-existing knowledge, acquired during its initial training, to perform well with minimal
additional data. Few-shot prompting also helps reduce computational costs. Since it does
not require updating the model’s parameters or conducting full-scale retraining, it minimizes
the computational resources and time typically associated with fine-tuning. This makes few-
shot prompting particularly suitable for scenarios where data is limited or quick deployment
is essential.



Chapter 3

Methodology

This research mainly compares zero-shot prompting, few-shot prompting and fine-tuning
approaches in generating relevant follow-up questions for monitoring the function level of
users and their mental conditions via their daily activities.

The primary system comparison is between the fine-tuned (FT) systems and non fine-
tuned (non-FT) systems. Fine-tuned systems include fine-tuning llama3 on datasets gen-
erated by GPT-3.5 using zero-shot prompting and few-shot prompting. After fine-tuning,
llama models were tested using simple instructions, without employing additional few-shot
or zero-shot prompts during the inference. On the other hand, the non fine-tuned (non-FT)
models were tested using few-shot or zero-shot prompts during the inference.

This chapter first introduces the Data section, which covers Data Collection, including
the use of data ontology and prompt engineering, as well as Data Statistics and Preparation.
Next, it details the Experimental Set-up, which includes Data Statistics, Model Training,
and Methodological Approaches. Finally, the chapter addresses Evaluation.

3.1 Data Collection

Fine-tuning large language models (LLMs) requires a substantial amount of data, including
(1) conversations between caregivers and patients about an activity, and (2) two types of
follow-up questions based on these conversations. Due to privacy concerns for medical data,
it is impractical to use real conversations between caregivers and patients. Additionally, the
extensive data requirements combined with time constraints make manual dataset creation
challenging.

To address this issue, recent research has explored the potential of LLMs to generate
synthetic data tailored for specific tasks, which has proven effective in various scenarios (Ye
et al., 2022). Consequently, the current approach employs LLMs to generate training data,
guided by carefully designed, task-specific prompts.

The Data section focuses on two key aspects of this process: prompt design and the
selection of LLMs for data generation.

3.1.1 Data Ontology

The training data consists of two components: conversations and follow-up questions. Con-
versations are used for training, validation, and testing, while follow-up questions are used
exclusively during the training phase. Both types of data will be generated based on ICF
categories.

The International Classification of Functioning, Disability, and Health (ICF) is used in
this task as an ontology for defining activities related to function levels and for quantifying
functional levels (Stucki et al., 2008). As detailed in Chapter 2: Related Work, the ICF

9
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framework is divided into ICF Categories and ICF Qualifiers. The process of generating
conversations and follow-up questions is inspired by the Linkage Methodology (Stucki et al.,
2008), which involves creating a list of ICF categories that mirrors the content of the original
health-related information (such as clinical conversations). According to (Stucki et al., 2008),
Linkage Methodology involves two main steps: first, identifying concepts within the health-
related information for translation into ICF categories; and second, linking these concepts
to the ICF.

In contrast, my approach reverses this process. Rather than starting with health-related
concepts and mapping them to ICF categories, I begin with predefined ICF categories and
their definitions. Using these categories as a guide, the model is tasked with generating
associated concepts or events and creating conversations around these concepts.

The following is an example of linkage procedure 3.1,

Partial Medical Conversations Identified Concepts ICF Categories

My nails break more. I used to
have long, strong nails, but now they
break easily.

Breaking nails Caring for finger-
nails

Table 3.1: Linkage Procedure

I use the method reversely to generate the conversations. This reverse approach involves
the following steps:

1. Provide ICF Categories and Definitions: I supply the model with specific ICF categories
along with their definitions. This provides a clear framework and context for the types
of concepts and events that should be generated.

2. Generate Related Concepts and Events: The model then produces concepts or events
that are relevant to the given ICF categories. This step ensures that the generated
content is aligned with the categories and reflects their scope and intent.

3. Create Conversations: The model generates conversations centered around the concepts
or events derived from the ICF categories. These conversations are designed to be
realistic and contextually relevant, simulating real-world interactions.

This process can also be illustrated by Table 3.2

ICF Categories Generated Concepts Generated Conversations

Caring for finger-
nails

Breaking nails My nails break more. I used to
have long, strong nails, but now they
break easily.

Table 3.2: Conversation generation process

By applying the Linkage Methodology in reverse, the generated conversations are health-
related and align with ICF categories in content. This approach ensures that the conversa-
tions are relevant and can be used effectively for quantifying functional levels.

3.1.2 Prompt Engineering

Due to time constraints, the task focuses on three ICF categories: ”communication”, ”mo-
bility”, and ”self-care”.

For LLM generation, the second layer of ICF categories is used. This layer is preferred
over the first layer because it provides more specific details for generating conversations with
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targeted events. Although the third layer offers even greater specificity, it can be overly
detailed for daily conversation generation purposes and not all categories, such as ”self-
care”, have a third layer. Thus, the second layer is chosen for its balance of specificity and
manageability. Descriptions corresponding to these second-layer categories can be used as
activity descriptions and examples to supplement the generation process.

The prompt content used for conversation generation is thus written as,

”Generate one small and natural online conversation about one activity. The
conversation has around 4 to 6 utterances in total and each utterance should
be completed and has less than 20 tokens.”, ”The care taker asks about the
{activity}, which means {activity description},{example str}”

{activity}, {activity description} and {example str} are placeholders. The first will be
filled in with second layer of ICF categories, {activity description} will be filled in with the
definition, {example str} will be filled in with joined third layer. Table 3.3 provide example
fillers for prompt content.

Category
(Function)

1st
Layer

2nd Layer
(Activity)

Description

Mobility Walking
and
Moving

Walking Definition: Moving along a surface
on foot, step by step, so that one foot
is always on the ground.
Examples: Strolling, sauntering,
walking forwards, backwards, or side-
ways.

Table 3.3: Conversation prompt content

The prompt is then generated as,

”Generate one small and natural online conversation about one activity. The
conversation has around 4 to 6 utterances in total and each utterance should
be completed and has less than 20 tokens.”, ”The care taker asks about the
’Walking’, which means ’Moving along a surface on foot, step by step, so that one
foot is always on the ground’, The activities can be about 1 ’Strolling, sauntering,
walking forwards, backwards, or sideways’ ”

After generating the conversations, these will serve as conversation history for LLMs to
generate follow-up questions (FQs).

ICF functioning categories can be quantified using five levels. To better align the data
with training models to ask function level-related questions, the ”No difficulty” situation
has been excluded. Consequently, the rating scale is revised into four levels: Mild diffi-
culty (slight, low), Moderate difficulty (medium, fair), Severe difficulty (high, extreme), and
Complete difficulty. Additionally, since follow-up questions typically seek more detailed infor-
mation about activities to gain insights into function levels, the third layer of ICF categories,
along with their descriptions, is included as supplementary details. Therefore, the prompts
for generating FQs related to function levels are formatted as follows and {sub activity} will
be filled in with third layer of ICF categories along with the description. :

”Follow-up questions can ask more details about {sub activity}, which must be
able to evoke answers informing about the function level, such as questions evok-
ing answers about mild, moderate, severe, or complete performance difficulty.”
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2nd Layer
(Activity)

3rd layer
(Sub-
activity

Description

Walking Walking
short dis-
tances

Walking for less than a kilometre, such as walking
around rooms or hallways, within a building or for short
distances outside.

Walking on
different sur-
faces

Walking on sloping, uneven, or moving surfaces, such
as on grass, gravel or ice and snow, or walking aboard
a ship, train or other vehicle.

Table 3.4: FQs prompt content

Table 3.4 provide examples to fill in the prompt.
And the resulting prompt is,

”Follow-up questions can ask more in details about ’Walking for less than a
kilometre, such as walking around rooms or hallways, within a building or for
short distances outside’, which must be able to evoke answers informing about the
function level, such as questions evoking answers about mild, moderate, severe,
or complete performance difficulty.”

Another type of FQs on emotional feedback is not based on the ontology. It can be texted
as the example below,

”Follow-up questions evoke answers informing about emotional feedback, such as
questions evoking answers about positive or negative feelings about the activity”.

Role-prompting is a fundamental method in prompt engineering(OpenAI), where the
model is given a role to comprehend the input and generate the output (Zhang et al., 2023;
Chen et al., 2024), such as a care taker or a patient. This method can be particularly effective
in guiding the model’s responses and ensuring that they align with the desired output. For
instance, if the prompt requires the model to play the role as a medical expert, LLMs have
the potential to act more like an expected agent, providing a more precise and detailed
response when asked about a medical condition or treatment (Xu et al., 2023).

In the current task, the model will be instructed to play the roles of care-takers, starting
conversations and asking questions, and the roles of patients responding. The instruction of
playing roles will also be given to the LLMs. Taking the prompt of generation conversation
as an example,

query = [

{”role”: ”system”, ”content”: ”You need to play the roles of a care taker (C)
and an elderly patient (P)”},
{”role”: ”system”, ”content”: ”Generate one small and natural online conversa-
tion about one activity. The conversation has around 4 to 6 utterances in total
and each utterance should be completed and has less than 20 tokens.”},
{”role”: ”system”, ”content”: f”””The care taker asks about the activity of
{activity}, which means {definition},{example}.
The format is as below,

C: starting conversation (start the conversation around the activity)

1”The activities can be about” is used for coherent prompt when examples of this activity exists
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P: utterance (respond naturally)

C: starting conversation (start the conversation around the activity)

P: utterance (respond naturally) ...””” },
{”role”: ”user”, ”content”: f”The topic of the conversation is about {activity}
and the patients can describe their daily activities and answer questions natu-
rally.”} ]

Cloze prompts and prefix prompts are two types of prompt formats (Wang et al.,
2024). Cloze prompts contain placeholders to be filled in the middle of the template, whereas
prefix prompts refer to the input text being entirely situated before the generated output.
For example, in the current prompt, part of can be formatted as,

query = [ {”role”: ”system”, ”content”: f”””When the given conversation history
is: ”{conversation}”, follow-up questions {sub activity} must be able to evoke
answers informing about the function level, such as questions evoking answers
about mild, moderate, severe, or complete performance difficulty.”””},
{”role”: ”user”, ”content”: f”The patients can answer naturally and describe the
performance difficulty of performing {activity}. The performance difficulty can
be slight, fair, severe, or complete.”},
{”role”: ”system”, ”content”:f””” the following up questions on monitoring func-
tion level can be”””}]

or

query = [ {”role”: ”system”, ”content”: f”””Follow-up questions {sub activity}
must be able to evoke answers informing about the function level, such as ques-
tions evoking answers about mild, moderate, severe, or complete performance
difficulty.””” },
{”role”: ”user”, ”content”: f”The patients can answer naturally and describe the
performance difficulty of performing {activity}. The performance difficulty can
be slight, fair, severe, or complete.”},
{”role”: ”system”, ”content”:f”””When the given conversation history is: ”{conversation}”,
the following up questions on monitoring function level can be:”””} ]

In order to make the input conversation more stand out and thus make the output FQs
more relevant to the input, the current approach opts for the prefix format where the input
is followed by the output immediately.

3.1.3 Zero-shot and Few-shot prompting

As mentioned in Related Work, Zero-shot prompting is tasking the model with something
without any examples. Few-shot prompting is providing a few examples to guide the model
in completing a task.

In the current task, both zero-shot and few-shot prompting methods are utilized. While
traditional zero-shot prompting typically involves providing the model with only an instruc-
tion or prompt that describes the task, our approach slightly deviates from this standard
definition. In our implementation of zero-shot prompting, we not only include the basic
task instructions but also integrate background knowledge related to ICF. This additional
context helps the model better understand and address the specific nuances of the task by
using relevant domain information.
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For the few-shot approach, two examples of input-output pairs are included in the prompt.
This choice is driven by the need to balance between having sufficient examples and the avail-
ability of human-created examples. These examples are crafted by medical experts familiar
with ICF categories and skilled in formulating natural questions for function monitoring
and mental condition assessment. The examples remain consistent across different activities
(second layer of ICF categories) and only vary by function (e.g., ”mobility”, ”self-care” or
”communication”). For instance, regardless of whether the conversation is about ”Walk-
ing” or ”Going up and down stairs”, both belonging to the ”mobility”, the examples in the
prompt are the same and may relate to different activities such as ”Moving around using
equipment” or ”Moving around in different locations”, also belonging to mobility. This ap-
proach is justified because the evaluation focuses on functions rather than specific activities,
and also due to the limited number of human-created follow-up questions.

There are trade-offs between few-shot and zero-shot methods. More examples do not
always lead to better conversation quality. For example, when experimenting with various
shot numbers—five-shot, two-shot, and zero-shot—the conversations generated showed little
difference between the two-shot and zero-shot methods. However, with five-shot prompting,
there was a noticeable increase in off-topic responses. This may be due to the confusion
introduced by having too many examples, which can result in less focused and more divergent
outputs.

Additionally, for fine-tuned models, a basic instruction is used alongside zero-shot and
few-shot prompts. The three types of instructions are classified based on the extent of
information provided in the prompt:

1. Basic Instruction: Directs the model to play a role and ask follow-up questions about
function-level or emotional feedback.

2. Zero-Shot Prompt: Includes the basic instruction and additional background knowl-
edge from the ontology.

3. Few-Shot Prompt: Builds on the zero-shot prompt by including two specific exam-
ples.

Basic instructions are used for prompting baseline models (non-fine-tuned models) and
fine-tuned models when no additional zero-shot or few-shot prompts are applied.

3.1.4 Experimental Set-up

This section introduces the experimental set-up for data generation, including data statistics,
model introduction, parameter settings and evaluation.

Data Distribution In the current task, there are three primary categories: ”mobility”,
”self-care”, and ”communication”. For each activity (the second layer) within these cate-
gories, the model is tasked with generating 30-40 conversations, and for each conversation,
the model is required to generate 6 Following-up questions of one type. That is, there are
12 FQs for each conversation. The distribution of activities across these categories is: Com-
munication: 13 types; Self-care: 7 types; Mobility: 16 types. This data statistics is shown in
3.5 and the data distribution is illustrated in 3.1.

Num of Conversations Activity Types

Communication 390 13
Self-care 280 7
Mobility 640 16

Table 3.5: Total Number of Generated Conversations by GPT-3.5
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Figure 3.1: Number of Activity Types for Each Category

Model Introduction According to (Wang et al., 2021), GPT-3 leverages its advanced
language generation capabilities to reduce both the time and cost associated with creating
datasets, while maintaining quality comparable to human-generated data.

According to OpenAI (2024), GPT-3.5, an advancement over its predecessor GPT-3,
incorporates several improvements that enhance its performance and versatility. It is built
upon the same foundational architecture as GPT-3, utilizing a transformer-based model
designed to process and generate human-like text (Ye et al., 2023). However, GPT-3.5
has been further refined through reinforcement learning with human feedback (RLHF), a
technique that allows the model to learn from human evaluators who provide guidance on
the quality and relevance of its outputs (Ye et al., 2023; Höglund and Khedri, 2023). This
reinforcement learning process helps GPT-3.5 generate text that is not only more coherent
and contextually accurate but also more nuanced and creative.

The model’s architecture involves processing input text by converting it into tokens,
which are then analyzed through multiple transformer layers (Radford et al., 2019). These
layers use attention mechanisms to determine the importance of each token in relation to
others, allowing GPT-3.5 to generate responses that reflect a deep understanding of context
and relevance. The attention mechanism assigns different weights to tokens based on their
contextual significance, ensuring that the generated text is coherent and contextually aligned
with the input prompt (Vaswani et al., 2023).

GPT-4, as the successor of GPT-3.5, offers even greater performance but is more ex-
pensive and not available for free (OpenAI, 2024). Compared to GPT-4, GPT-3.5 is a
cost-effective option, which balancing cost and performance effectively. Therefore, GPT-3.5
is a practical choice for generating high-quality text across various applications and is applied
in the current task.

Temperature Setting: The randomness of the generated output is controlled by the
temperature parameter. In practice, adjusting the temperature allows for fine-tuning the
model’s output to meet specific needs. Lower temperatures are preferred for tasks requiring
precision and reliability, such as technical explanations or factual responses. Higher temper-
atures are suited for creative tasks, such as brainstorming or generating imaginative content.
By carefully selecting the temperature setting, users can influence the style and quality of
the generated text to align with their goals.

I experimented with three temperature settings: 0.5 (low), 1.0 (medium), and 1.5 (high).
The results indicated that a temperature of 0.5 produced predictable and consistent conver-
sations, 1.0 introduced some variety but remained somewhat repetitive, and 1.5 yielded the
most creative and relevant responses. Consequently, I opted for a temperature setting of 1.5.
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3.1.5 Prompt Evaluation

Prompt engineering is an iterative and often ad-hoc process, as there is no definitive the-
oretical framework explaining why certain prompt styles perform better with LLMs than
others (Kaddour et al., 2023). Consequently, it is advantageous to experiment with various
prompts and assess their effectiveness through multiple iterations. The evaluation of text
generation typically involves two primary components: automatic evaluation and human
evaluation (Chang et al., 2023).

In the context of prompt evaluation, human evaluation is crucial. It assesses whether
the generated conversations are relevant, sensible, and creative. This approach allows for
a nuanced understanding of the quality of outputs, which is essential for refining prompt
strategies and ensuring that the generated text meets desired standards. Further details on
evaluation methodologies will be discussed in the Evaluation Section.

3.2 Data Statics and Preprocess

The data statistics for the generated raw conversations are presented in Table 3.5. Upon
inspection, two main issues were identified with the generated conversation data:

1. Many conversations contain nonsensical words or are irrelevant to the topic.

2. Some conversations exceed the maximum token limit.

Additionally, there are specific formatting requirements for preparing the training data
for fine-tuning.

To address these issues, the generated data will undergo a two-step processing procedure:

1. Filtering: Conversations containing nonsensical words or irrelevant content will be
removed. This filtering process will also be applied to the generated raw FQs based on
the filtered conversation data.

2. Formatting: The remaining data will be formatted into a prompt structure suitable for
fine-tuning the model.

3.2.1 Data Preprocess and Statics

In the first step of data processing, I validate the words within each conversation by assess-
ing their validity based on various criteria, including recognition as English words, named
entities, or specific suffixes. Libraries are leveraged such as spaCy for Named Entity Recog-
nition (NER) and natural language processing, and NLTK for tokenization, lemmatization,
and Part-of-Speech (POS) tagging. Additionally, a custom word list is predefined to address
tokens that may be erroneously considered non-words but are, in fact, legitimate words.

To be more specific, the invalid words can be grouped into two types: non-English words
such as Chinese or Korean, and words generated with random characters like ”ampledapi”,
”pomelli”, and ”distintch”. Both types are filtered based on the validity criteria mentioned
above. However, some valid words like ”sunscreen” and ”smiley” may also be mistakenly
considered as invalid. To handle this, I created a list of invalid words that occur more than
once. This approach assumes that repeated invalid words are likely to be legitimate since
real invalid words tend to be randomly produced. Although this method cannot identify
valid words that appear only once in the conversations, it effectively captures most valid
words that occur multiple times. The custom word list currently contains 31 entries.

To ensure coherence and relevance, I assess the semantic similarity between consecu-
tive sentences and remove those with low coherence. Specifically, I use SpaCy with the
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”en core web md” model, which provides word and sentence embeddings for calculating sim-
ilarity scores. If the similarity score between two consecutive sentences is below 0.5, they are
deemed to lack coherence. In practice, most sentence pairs fall below this threshold, indicat-
ing that none are considered sufficiently similar to be coherent. Although a lower threshold
might allow for some level of coherence, the method proved ineffective. In some cases, pairs
of sentences that seemed more semantically related received lower similarity scores than pairs
that appeared less related. As a result, I decided not to rely on this method for coherence
evaluation.

If any token in a conversation is identified as a non-word, the entire conversation or
follow-up questions are discarded. Furthermore, to prepare the data for FQs, I delete the
last utterance in conversations if spoken by caretakers. For each activity, I requested a
total of 30-40 conversations, resulting in varying numbers of conversations across categories.
The filtered data is summarized in Table 3.6, where 64 conversations have been filtered for
Communication, 96 for Mobility and 38 for Self-care.

For the follow-up questions (FQs), the same filtering pipeline was applied to eliminate
invalid texts. Initially, six raw FQs were generated for each conversation, one for each FQ
type, resulting in a total of 12 FQs per conversation. After the filtering process, only the first
FQ from each type was retained, as the quality of the first FQ was found to be more consistent
upon inspection. Consequently, each conversation is now paired with two FQs—one focusing
on the functional level and the other on emotional feedback. Thus, for each conversation,
only two FQs are retained, one from each FQ type.

Category Activity types Conversation Num Filtered Conversation Num

Communication 13 326 64
Mobility 16 544 96
Self-Care 7 242 38

Table 3.6: Filtered Conversation Statistics

After the data preprocessing, the conversations are split into training data, validation
data and test data almost as 0.7, 0.125, 0.125, shown as Table 3.7.

Category Train Validation Test

Communication 222 41 63
Mobility 375 72 97
Self-Care 166 33 43

Table 3.7: Number of Conversation over Train, Validation and Test for Three Categories

3.2.2 Training Data Statics and Format

A total of 222 conversations and 444 corresponding follow-up questions (FQs) were used
for training. The distribution of conversations across categories is illustrated in Figure 3.2.
Mobility has the highest proportion of training conversations at 44.4%, followed by commu-
nication at 36.1%, and self-care at 19.4%. For a more detailed breakdown of conversations by
activity, refer to Figures 3.3 (Communication), Figure 3.4 (Self-care), Figure 3.5 (Mobility).
These figures demonstrate that conversations are evenly distributed across activities within
each category. The specific number of conversations for each activity is detailed in Table 3.8.
FQs for training share the same distribution with conversation distribution.
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Figure 3.2: Distribution of Activities across Categories

Figure 3.3: Activity Distribution in Communication

Figure 3.4: Activity Distribution in Self-care
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Figure 3.5: Activity Distribution in Mobility

After generating the training data, it must be prepared in a format suitable for fine-
tuning. The prompt format used for fine-tuning Llama3 differs from the format used during
data generation.

Llama3’s prompt format is a template containing placeholders for task descriptions and
example data (Zhao et al., 2021). Specifically, it consists of four key fields (Honovich et al.,
2022):

1. Instruction: A description of the task, typically generated as a generic template.

2. Input Argument: This instantiates the instruction, providing a specific example of the
task.

3. Output Space Constraints: Details to restrict the output space. This field is primarily
relevant to classification tasks and will not be used for the current task.

4. Textual Output: A reflection of a correct execution of the instruction based on the
given input arguments and output constraints.

For Llama3, the prompt format is structured as follows:

prompt = ”””Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately completes the
request.

### Instruction: {}
### Input: {}
### Response: {}”””

The Instruction will be filled in with the basic instruction, requiring the model to play
roles and ask follow-up questions about function-level or emotional feedback with the format
requirement. The Input will be filled in with the conversation history and the Response will
be filled in with the FQs. Taking the activity of ”Communicating with receiving spoken
messages” with the FQs on function level as an example,

prompt = ”””Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately completes the
request.

### Instruction:
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You will be given a conversation history between a caretaker and a
patient about one activity. You need to ask follow-up questions to
evoke answers informing about the function level. The questions you
ask should have around 2 to 6 utterances, and each utterance should
be completed and have less than 20 tokens.

The format is as follows:

C: utterance (asking follow-up questions)

P: utterance (respond naturally)

C: utterance (asking follow-up questions)

P: utterance (respond naturally)

### Input:

{C: How was your day? Did you enjoy any interesting conversations
today?

P: Yes, I had a lovely chat with one of the nurses this morning.

C: That’s great to hear! What did you two talk about?

P: Oh, we talked about gardening and the beautiful flowers in the
garden here.

C: It sounds like a pleasant conversation. I’m glad you had a nice chat.

P: Thank you. It’s nice to have friendly conversations to brighten up
the day.}

### Response:

{C: It’s wonderful to hear about your conversation. How do you gen-
erally feel about communicating and understanding spoken messages?
Any particular difficulties?

P: Well, communicating and understanding spoken words is slightly
challenging, but I manage to grasp most of what’s being said with
some effort.

C: I see. Has it always been a mild challenge or is it something that has
worsened over time when it comes to following spoken conversations?

P: It’s been a slight difficulty for a while now, especially when there’s
too much background noise, making it a bit harder to comprehend
sometimes. }”””

The joined instruction and input-out training pairs will be used for the prompt of Llama3.
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Category Activity
Num of

Conversa-
tions

Communication
Communicating with receiving spoken
messages

13

Communicating with receiving nonverbal
messages

19

Communicating with receiving formal
sign language messages

18

Communicating with receiving written
messages

18

Speaking 19
Non-speech vocal expression 17
Singing 17
Producing nonverbal messages 16
Producing messages in formal sign
language

18

Writing messages 16
Conversation 16
Discussion 17
Using communication devices and
techniques

18

Self-Care Washing oneself 22
Caring for body parts 24
Toileting 24
Dressing 25
Eating 23
Drinking 25
Looking after one’s health 23

Mobility Changing basic body position 23
Maintaining body position 22
Transferring oneself 24
Lifting and carrying objects 25
Moving objects with lower extremities 26
Fine hand use 26
Hand and arm use 21
Fine foot use 23
Walking 24
Going up and down stairs 23
Moving around 21
Moving around in different locations 23
Moving around using equipment 24
Using transportation 23
Driving 23
Riding animals for transportation 24

Table 3.8: Num of training conversations of each Activity
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3.2.3 Validation and Test Data

Human conversations along with the FQs are required for the project for validation and test.
However, due to privacy protection of medical data, these kinds of user conversations are
not available along with the following-up questions. We therefore asked three experts with
experience in healthcare from the A-PROOF team to create those data, who are all familiar
with the ICF framework. Considering the time limitation and the primary purpose of the
current task, they will be given the generated conversations and required to create the FQs
with their professions determining how to ask the following-up questions for monitoring the
function level and emotional conditions.

They will also given a guideline for the data creation, which is similar to the prompt,

1. You will be provided with a conversation about an activity between a care-taker (C) and
an elderly patient (P). The topics of each conversation should fall under one subcategory
of ICF activities and participation.

2. Your task is to continue this conversation by asking follow-up questions, playing the
roles of both the care-taker and the elderly patient.

3. Your goal is to ask two types of follow-up questions (FQ). The first one is FQs on
function level, aiming to evoke answers that reflect the patient’s functional abilities.
The second one is FQs on emotional feedback, seeking emotional feedback regarding
the target activities in the conversation (positive or negative feelings).

4. Two types of questions are independent form each other. Emotional feedback questions
should be based on the given conversation, not on the function level questions.

Both the Validation data and Test data of conversations were provided to medical experts
for the creation of natural follow-up questions (FQs). However, due to time constraints, the
validation dataset is not filled and the test dataset is partially complete. Also, some of the
provided conversations are regarded as exotic and thus be removed from the test dataset.
The remaining data statistics is shown in Table 3.9. This table also includes the statistics
for both types of FQs: those focused on the functional level and those addressing emotional
feedback.

Category Total Conversations Total FQ on Function Level Total FQ on Feedback

Communication 36 36 35
Mobility 52 52 32
Self-Care 25 25 25

Table 3.9: Reference amount of Conversations and FQs

The data distribution is similar to training data. shown as figures 3.6 and 3.7.
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Figure 3.6: Conversation Distribution of Test

Figure 3.7: FQs Distribution of Test

Also, more detailed activity-based reference statistics is provides in Table 3.10, showing
the statistics of conversations, FQ on function level (Func-FQ), and FQ on emotional feedback
(Emo-FQ) used in test data.
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Category Subcategory Convers Func-FQ Emo-FQ

Communication Communicating with receiving spoken
messages

4 4 4

Communicating with receiving nonver-
bal messages

3 3 2

Communicating with receiving formal
sign language messages

2 2 2

Communicating with receiving written
messages

3 3 3

Speaking 3 3 3
Non-speech vocal expression 2 2 2
Singing 3 3 3
Producing nonverbal messages 3 3 3
Producing messages in formal sign lan-
guage

2 2 2

Writing messages 2 2 2
Conversation 3 3 3
Discussion 3 3 3
Using communication devices and
techniques

3 3 3

Mobility Changing basic body position 6 6 6
Maintaining body position 6 6 3
Transferring oneself 5 5 2
Lifting and carrying objects 4 4 2
Moving objects with lower extremities 4 4 2
Fine hand use 4 4 2
Hand and arm use 4 4 2
Fine foot use 2 2 0
Walking 4 4 2
Going up and down stairs 2 2 2
Moving around 2 2 2
Moving around in different locations 2 2 2
Moving around using equipment 3 3 1
Using transportation 2 2 2
Driving 2 2 2

Self-Care Washing oneself 6 6 6
Caring for body parts 6 6 6
Toileting 5 5 5
Dressing 2 2 2
Eating 2 2 2
Drinking 2 2 2
Looking after one’s health 2 2 2

Table 3.10: Detailed Breakdown of Conversations, Function Level, and Feedback Quality
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3.3 Experimental Set-up

This section first introduces the generative model chosen for the project and then the hyper-
parameter tuning. The last sub-section introduces the fine-tuning approach for optimizing
the models.

3.3.1 Model Introduction: LLaMA3

According to Touvron et al. (2023), LLaMA (Large Language Model Meta AI) is a series of
foundational language models developed by Meta AI, with versions ranging from 7 billion
to 65 billion parameters. These models are trained on publicly available datasets and have
achieved state-of-the-art performance in various benchmarks. Notably, LLaMA-13B has
outperformed GPT-3 on many benchmarks, despite being significantly smaller. Meta AI
has released these models to the research community to promote accessibility and encourage
further study of large language models (LLMs).

Several factors influenced the choice of LLaMA-3 for this task. First, LLaMA-3 strikes
a favorable balance between size and performance, making it a practical choice for various
applications. Additionally, LLaMA-3 is designed to be cost-effective at inference time. This
characteristic is crucial for deploying language models at scale, as it ensures that the model
is not only efficient to train but also economical and fast in generating text.

Moreover, LLaMA-3 benefits from minimal instruction fine-tuning, which can signifi-
cantly enhance its performance for specific tasks. This adaptability indicates that LLaMA-3
can be effectively customized to meet particular requirements, making it a suitable choice
for optimizing performance on targeted tasks.

3.3.2 Model Parameter Tuning

The performance of models can be influenced by several hyperparameters, including learn-
ing rate and batch size. It is crucial to conduct multiple experiments to fine-tune these
parameters on the validation dataset to optimize model performance.

• Learning Rate Learning Rate controls the size of steps that the optimization algo-
rithm takes when adjusting the model’s weight to minimize the loss function. When
the learning rate is set overly large, the model may take large steps in the direction
of gradient, resulting in overshooting the optimal point and leading to increased loss.
When it’s set too small, the model may take too small steps, resulting in extremely slow
process to converge. A well-chosen learning rate helps the model converge efficiently
to a good solution.

• Batch Size This is the number of training examples used in one forward and backward
pass. Larger batch sizes can stabilize training and make better use of computational
resources but require more memory. Smaller batch size can make the training process
less stable, but it may help the model escape local minima.

A common heuristic for selecting the learning rate is that the optimal value is often close
to the largest rate that does not cause divergence in the training process (Bengio, 2012a). To
tune this hyperparameter, one effective approach is to start with a relatively large learning
rate and, if divergence occurs, reduce the learning rate by a factor of three, and repeat this
process until the training stabilizes (Bengio, 2012b,a).

In practice, models are tested with a range of learning rates on the validation dataset to
monitor performance. Iterative adjustments are made based on validation results, aiming to
improve metrics such as accuracy or F1 score. The final set of hyperparameters, which yields
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the best performance on the validation dataset, is then used for the final test to generate
inferences.

However, due to time constraints, I ultimately opted for the default learning rate of 2e-4.
This decision was influenced by two key factors: Firstly, there was no available validation
dataset within the time limit. Secondly, default learning rates provided with pre-trained
models or specific frameworks (e.g., Transformers in Hugging Face) are typically based on
extensive experimentation and tuning by the original developers. These defaults are generally
well-optimized for a broad range of tasks, ensuring reliable and consistent performance.
Using these default settings allows for good performance while saving time and ensuring
more consistent results.

3.3.3 Optimization Approaches

Inspired by (Chen et al., 2024; Brown et al., 2020), there are three approaches for improving
the performance of LLMs: Fine-Tuning, Few-shot prompting, and Zero-shot prompting.

Fine-tuning is a method used to adapt a pre-trained language model to perform well on
a specific task or within a particular domain. This process involves taking a model that has
already been trained on a large, general dataset and further training it on a smaller, task-
specific dataset. The goal of fine-tuning is to leverage the broad knowledge the model has
acquired during its initial training while tailoring it to the nuances of the specific application.

Fine-tuning is highly effective and has been shown to achieve superior performance across
a range of benchmarks compared to training models from scratch. By starting with a pre-
trained model, fine-tuning can significantly reduce the amount of data and computational
resources required compared to training a model from the ground up. This approach allows
the model to benefit from the rich features learned from large-scale data, which can then be
refined with targeted, domain-specific data.

However, despite its advantages, fine-tuning comes with several drawbacks. It requires
a considerable amount of high-quality, task-specific data and substantial memory to handle
models with billions of parameters. Although the use of generated training data can help
reduce data requirements, fine-tuning still involves challenges related to computational effi-
ciency. Specifically, it necessitates storing and managing individual copies of the fine-tuned
models for each system or task, which can be both memory-intensive and computationally
inefficient (Kaddour et al., 2023).

This method, while powerful, underscores the need for efficient management strategies
to optimize resource use and maximize the benefits of fine-tuning in practical applications.

LoRA (Low-Rank Adaptation) adapters (Hu et al., 2021) are used to address the chal-
lenges associated with fine-tuning large language models. LoRA improves the fine-tuning
process by introducing low-rank matrices into specific layers, typically within the attention
mechanisms, instead of updating all the model parameters. These low-rank matrices, which
have significantly fewer parameters compared to the full model, greatly reduce computational
overhead.

By saving only the small adapter parameters rather than the entire fine-tuned model,
LoRA minimizes memory usage. The base model remains unchanged, and only the adapter
parameters are adjusted to fine-tune the model for different tasks. This approach allows
for the storage of multiple LoRA adapters without duplicating the entire model, thereby
optimizing scalability and reducing storage requirements. Additionally, LoRA enables quick
task switching by loading different adapter sets without the need to retrain or reload large
models. As a result, LoRA adapters offer a highly efficient and flexible solution for deploying
large language models. They reduce storage and memory needs, lower computational costs,
and maintain performance comparable to full fine-tuning. In the current task, the final fine-
tuned LLaMa3 model will be saved as LoRA adapters based on different datasets, which will
be loaded for inference as needed.
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Few-shot and Zero-shot prompting are techniques used in natural language process-
ing to leverage pre-trained models for performing specific tasks with minimal or no task-
specific training. They have been introduced in more details in Section. Data Collection for
prompt engineering.

To recap, Zero-shot prompting involves providing a model with a clear and detailed
instruction or prompt about the task without any specific examples. The model relies on
its broad pre-existing knowledge from extensive initial training to generate responses. On
the other hand, Few-shot prompting, specifically two-shot prompting in the current project,
includes providing two example input-output pairs within the prompt alongside the task
instruction. These examples offer additional context, helping the model better understand
and execute the task.

To summarize, we will compare two main systems and five different models. The two
systems are:

• Fine-tuned System

• Non-fine-tuned System

The five models to be compared are:

1. FT Zero The fine-tuned LLaMA3 model trained on zero-shot prompted data using
GPT-3.5.

2. FT Few: The fine-tuned LLaMA3 model trained on few-shot prompted data using
GPT-3.5.

3. Pre Zero: The pre-trained LLaMA3 model using zero-shot prompting.

4. Pre Few: The pre-trained LLaMA3 model using few-shot prompting.

5. Baseline: The pre-trained LLaMA3 model using basic instruction without zero-shot
or few-shot prompting.

3.4 Evaluation

The evaluation of question generation encompasses two main components: automatic evalua-
tion and human evaluation (Chang et al., 2023). Additionally, the output data and references
require post-processing for effective evaluation.

3.4.1 Data Post-process

Data post-processing prepares the data for evaluation by focusing on relevant utterances.
Specifically, the process involves extracting follow-up questions (FQs) from the model-generated
outputs. Since only the FQs, which are the utterances from care-takers, are needed for eval-
uation, all other utterances are excluded. For each conversation, there is typically one FQ of
each type, while multiple references may exist for a single conversation. Below, we outline
the procedure for using reference sets to evaluate inferences.
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Consider the following example conversation (3.11):

Speaker Dialogue

C Have you walked anywhere yesterday?
P I walked to the cinema yesterday.

Table 3.11: Example Dialogue

From this conversation, the model might generate FQs as follows (3.12):

Speaker FQs

C How far is the cinema from your place, and how long did it take you to
walk there?

P The cinema is about a mile away, and it took me around 20 minutes to
get there.

C Do you need to have a break during the walking?
P Actually, I didn’t pay attention. We walked there while chatting.

Table 3.12: Model-generated FQs on Function Level

To prepare for evaluation, the FQs are extracted as follows (3.13):

Inference
ID

Functional Question (FQ)

1 (C:) How far is the cinema from your place, and how long did it take you
to walk there?

2 (C:) Do you need to have a break during the walking?

Table 3.13: Extracted FQ Inferences
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Assuming there are two reference sets for comparison, the first set contains four utter-
ances, and the second set contains two utterances (3.14):

Reference
Set

Speaker Reference FQs

Set 1 C Did you need any assistance when you walked?
P No, I did that alone.
C You didn’t use a walker, either?
P Oh, I used that. I couldn’t walk by myself.

Set 2 C How did you feel during and after the walk? Were you comfort-
able, or did you experience any pain or fatigue?

P I felt fine during the walk, but my legs were a bit sore afterward.
It wasn’t too bad, though.

Table 3.14: Reference FQs

The extracted FQs from care-takers will also be reviewed (3.15):

Reference Set 1 Reference Set 2

(1) (C:) Did you need any assis-
tance when you walked?

(C:) How did you feel during and af-
ter the walk? Were you comfortable,
or did you experience any pain or fa-
tigue?

(2) (C:) You didn’t use a
walker, either?

No second reference question

Table 3.15: Extracted FQ Reference Sets

Each inference is evaluated by comparing it with corresponding reference questions from
the reference sets. The evaluation process involves calculating scores by either averaging or
selecting the maximum score among the available references. For instance (3.16):

Inference Reference Set 1 Reference Set 2

1. How far is the cinema
from your place, and how
long did it take you to walk
there?

(1) Did you need any assis-
tance when you walked?

(2) How did you feel during
and after the walk? Were
you comfortable, or did you
experience any pain or fa-
tigue?

2. Do you need to have a
break during the walking?

(2) You didn’t use a walker,
either?

No second reference ques-
tion

Table 3.16: Evaluation of Inferences against Reference Questions

To evaluate the inferences, each one is compared with its corresponding reference ques-
tions. If multiple references are available for a given inference, evaluation metrics can either
average the scores across all references or select the maximum score among them. Each
inference FQ is assigned a score based on these metrics. The overall evaluation score for
each function or category is then determined by averaging the scores of all FQ inferences
associated with that particular function (categories of mobility, communication or self-care).
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3.4.2 Automatic evaluation

The performance of question generation is usually evaluated by the following three tradi-
tional automatic metrics (referred as traditional metrics) employed in machine translation
evaluation. It includes BLEU, METEOR, ROUGE.

BLEU (Bilingual Evaluation Understudy) is a precision-based metric (Papineni et al.,
2002) that assesses how well a candidate output matches a set of reference texts. It calculates
the percentage of n-grams in the candidate text that overlap with the references, with a
penalty applied for overly short sentences.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004) focuses on
recall and evaluates overlap using various n-gram and word-based measures. ROUGE-N
measures recall by comparing n-grams in the candidate text to those in the reference sum-
maries and specifically, ROUGE-L evaluates recall based on the Longest Common Subse-
quence (LCS) statistics, assessing how much of the reference text’s word order is captured
in the candidate.

METEOR (Metric for Evaluation of Translation with Explicit Ordering) (Denkowski
and Lavie, 2014) is a recall-oriented metric that computes sentence-level similarity scores
between the generated output and reference texts. It incorporates factors such as synonymy,
stemming, word order, and paraphrasing into its evaluation.

Taking the following reference and inference candidate as an example and the calculation
is shown as the Table 3.17:

Reference: The cat sat on the mat.

Candidate: The cat is sitting on the mat.

Metric Reference Candidate Match Score

BLEU
(2-gram)

the cat, cat sat, sat
on, on the, the mat

the cat, cat is, is sit-
ting, sitting on, on
the, the mat

the cat, on the, the
mat

3/5 = 0.600

ROUGE-
1

the, cat, sat, on,
the, mat

the, cat, is, sitting,
on, the, mat

the, cat, on, the,
mat

5/6 = 0.833

ROUGE-
L

The cat sat on the
mat

The cat is sitting on
the mat

LCS: The cat [ ] on
the mat

LCS Length:
8
Reference
Length: 9
Candidate
Length: 7
8/9 = 0.889

METEOR the, cat, sat, on,
the, mat

the, cat, is, sitting,
on, the, mat

Matches: the, cat,
on, the, mat

0.750

Table 3.17: Evaluation of metrics with example data.

In the current project, BLEU is utilized with 4-grams, ROUGE uses one-gram, bi-gram,
and ROUGE-L, while METEOR is also employed. Although these metrics are standard for
automatic language evaluation, their effectiveness can be limited. Word-overlap metrics may
struggle to fully capture the quality of responses in dialogue, where multiple appropriate
responses can exist even for a given conversation and limited types of follow-up questions
(Zhao et al., 2017; Yeh et al., 2021). To address these limitations, an advanced method such
as BERTScore may be used for more nuanced evaluation.

BERTScore is a metric that evaluates the quality of generated text by computing the
F1 score based on token embeddings from a pre-trained language model, such as BERT
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(Bidirectional Encoder Representations from Transformers) (Zhang et al., 2020). Unlike tra-
ditional metrics like BLEU or ROUGE, which rely on n-gram overlap, BERTScore captures
semantic similarity by leveraging contextual embeddings. This approach allows for a more
nuanced comparison of the candidate and reference sentences, as it considers the contextual
meaning of words rather than just their surface forms.

BERTScore calculates precision, recall, and F1-score by comparing how well the tokens in
the candidate sentence match the tokens in the reference sentence based on their embeddings.
The scores are computed as follows:

• Precision measures the accuracy of the positive predictions made by the model. It is
the ratio of correctly predicted positive observations to the total predicted positives.
In the context of BERTScore, precision indicates how many of the predicted tokens in
the candidate sentence have a close semantic match with the tokens in the reference
sentence.

• Recall measures the model’s ability to identify all relevant cases within the data. It is
the ratio of correctly predicted positive observations to all the observations in the actual
class. In BERTScore, recall indicates how well the tokens in the reference sentence are
matched by those in the candidate sentence.

• F1-score is the harmonic mean of precision and recall, providing a balanced metric
that accounts for both accuracy and completeness. The F1-score is particularly useful
when there is a need to balance precision and recall, especially in cases where there
is an imbalance in the data or when the cost of false positives and false negatives is
similar.

BERTScore provides a comprehensive measure of the quality of the generated text by
considering the semantic and contextual relationships between words, offering an advanced
alternative to traditional n-gram-based evaluation metrics.

3.4.3 Human evaluation

Automatic metrics have been found to have limited effectiveness in evaluating language gen-
eration systems, which has led researchers to primarily rely on human evaluation (Zhang
et al., 2021). Human evaluation provides invaluable and nuanced insights into the qual-
ity of generated content. However, it is both costly and time-consuming because setting
up and conducting such evaluations requires meticulous planning to accurately reflect real-
world conditions. As a result, human evaluation is typically reserved for the final stages of
assessment.

During the development phase, automatic evaluation metrics play a critical role. They are
essential for optimizing model design and selecting appropriate hyperparameters, providing
quick and consistent feedback that guides the iterative process of model improvement (Liu
et al., 2017; Deriu et al., 2020).

This method is particularly useful in prompt engineering, where different prompt designs
need to be evaluated rapidly to identify the most effective approaches for generating high-
quality responses.
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Chapter 4

Results and Analysis

This chapter involves presenting the results of experiments and analyzing the performance of
two systems and five models that generate follow-up questions based on input conversations.
Two systems include (1) Fine-tuned System (2) Non-fine-tuned with prompt approach Sys-
tem. Five models include (1) FT Zero The fine-tuned LLaMA3 model trained on zero-shot
prompted data using GPT-3.5. (2) FT Few: The fine-tuned LLaMA3 model trained on
few-shot prompted data using GPT-3.5. (3) Pre Zero: The pre-trained LLaMA3 model
using zero-shot prompting. (4) Pre Few: The pre-trained LLaMA3 model using few-shot
prompting. (5) Baseline: The pre-trained LLaMA3 model using basic instruction without
zero-shot or few-shot prompting. The evaluation metrics has been divided into traditional
metrics of BLEU, ROUGE and METEOR as well as more advanced metrics of BERT-scores.

Results and analysis will be divided into three groups for comparison:

1. System-wise Comparison: this comparison is to analyze the overall performance of
each system on each class along with within-system comparison.

2. Category-wise Comparison: this comparison is to analyze the results of categories
across two questions types.

3. FQ type-wise Comparison: this comparison is to analyze the results of two FQ
types across three categories.

4.1 Results

This section will present the results of four models over all categories with two types of FQ
types. To make the illustration clearer, I refer individual category with individual question
type as class. Therefore, there are six classes will be compares: (1) S-Care Emo: Self-care
with FQs on emotional feedback (2) S-Care Func: Self-care with FQs on functional level (3)
Com Emo: Communication with FQs on emotional feedback (4) Com Func: Communication
with FQs on function level (5) Mob Emo: Mobility with FQs on emotional feedback (6) Mob
Func: Mobility with FQs on function level.

The results of baseline is presented in Table 4.1. The results of four models are presented
with traditional metrics in Table 4.2) and with BERT-scores Table 4.3 respectively. In each
table, the highest scores of each class have been bolded.

Within traditional metrics, FT Few (fine-tuned LLaMA trained on few-shot prompted
training data) consistently delivered the highest performance across most traditional metrics
as indicated by the bold results in Table 4.2, particularly in the class of S-Care Emo (Self-care
with FQs on emotional feedback), gaining the highest ROUGE-L of 0.2128 and METEOR
of 0.2711; in the class of Com Emo (Communication with FQs on emotional feedback) with
all the highest traditional metrics: BLEU4: 0.0330, ROUGE1: 0.2730, ROUGE2: 0.0834,

33
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ROUGE-L: 0.2301 and METEOR: 0.2951; as well as in the class of Mob Emo (Mobility
with FQs on emotional feedback), also gaining all the highest traditional metric scores.
FT Zero (fine-tuned LLaMA with zero-shot prompting) followed by, which also had high
performance across lots of traditional metrics in the class of S-Care Func (Self-care with
FQs on functional level), Com Func (Communication with FQs on functional level) and Mob
Func(Mobility with FQs on function lavel). Pre Few and Pre Zero exhibit relatively poor
performance, with Pre Zero being especially underwhelming. Neither consistently achieves
the highest scores across any class when evaluated using any traditional metrics.

Class BLEU4 ROUGE1 ROUGE2 ROUGE-L METEOR Precision Recall F1

S-Care Emo 0.0000 0.0000 0.0000 0.0000 0.0000 0.7414 0.7246 0.7328
S-Care Func 0.0000 0.0000 0.0000 0.0000 0.0000 0.6735 0.6594 0.6663
Com Emo 0.0000 0.0000 0.0000 0.0000 0.0000 0.7737 0.7579 0.7656
Com Func 0.0000 0.0000 0.0000 0.0000 0.0003 0.6867 0.6762 0.6813
Mob Emo 0.0000 0.0000 0.0000 0.0000 0.0000 0.6504 0.6398 0.6450
Mob Func 0.0000 0.0006 0.0000 0.0006 0.0004 0.6144 0.6023 0.6082

Table 4.1: Baseline Average Scores Across All Class

Table 4.2: Average Scores for Traditional Metrics per Class

Class Metric FT Zero FT Few Pre Zero Pre Few

S-Care Emo BLEU4 0.0268 0.0456 0.0214 0.0508
ROUGE1 0.2134 0.2362 0.1932 0.2445
ROUGE2 0.0504 0.0801 0.0386 0.0890
ROUGE-L 0.1897 0.2128 0.1737 0.2115
METEOR 0.2317 0.2711 0.2008 0.2448

S-Care Func BLEU4 0.0170 0.0130 0.0145 0.0240
ROUGE1 0.1651 0.1483 0.1601 0.1615
ROUGE2 0.0311 0.0225 0.0324 0.0343
ROUGE-L 0.1459 0.1248 0.1406 0.1416
METEOR 0.1896 0.1710 0.1757 0.1663

Com Emo BLEU4 0.0310 0.0330 0.0225 0.0214
ROUGE1 0.2493 0.2730 0.2111 0.2036
ROUGE2 0.0799 0.0834 0.045 0.0429
ROUGE-L 0.2201 0.2301 0.183 0.1653
METEOR 0.2724 0.2951 0.2006 0.2211

Com Func BLEU4 0.0226 0.0160 0.0272 0.0200
ROUGE1 0.2096 0.1899 0.1932 0.1917
ROUGE2 0.0459 0.0327 0.0352 0.0289
ROUGE-L 0.1805 0.1676 0.17 0.1690
METEOR 0.2128 0.1937 0.1943 0.1848

Mob Emo BLEU4 0.0299 0.0483 0.0215 0.0281
ROUGE1 0.2339 0.2524 0.2105 0.2153
ROUGE2 0.0846 0.0994 0.0493 0.0617
ROUGE-L 0.2146 0.2245 0.1858 0.1934
METEOR 0.2426 0.2475 0.1896 0.2121

Continued on next page
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Class Metric FT Zero FT Few Pre Zero Pre Few

Mob Func BLEU4 0.0216 0.0184 0.0156 0.0190
ROUGE1 0.1792 0.1780 0.1599 0.1737
ROUGE2 0.0392 0.0370 0.0351 0.0321
ROUGE-L 0.1564 0.1547 0.1433 0.1540
METEOR 0.1815 0.1852 0.1575 0.1632

Table 4.3: Average BERT Scores Across All Systems

Class Metric FT Zero FT Few Pre Zero Pre Few

S-Care Emo Precision 0.8746 0.8750 0.8638 0.8739
Recall 0.8837 0.8848 0.8735 0.8772
F1 0.8790 0.8798 0.8685 0.8754

S-Care Func Precision 0.8594 0.8578 0.8601 0.8584
Recall 0.8714 0.8704 0.8679 0.8680
F1 0.8653 0.8640 0.8639 0.8630

Com Emo Precision 0.8806 0.8800 0.8724 0.8642
Recall 0.8855 0.8879 0.873 0.8716
F1 0.8830 0.8838 0.8726 0.8678

Com Func Precision 0.8693 0.8662 0.8689 0.8646
Recall 0.8770 0.8750 0.8711 0.8724
F1 0.8731 0.8705 0.8699 0.8684

Mob Emo Precision 0.8746 0.8706 0.8668 0.8691
Recall 0.8788 0.8779 0.8705 0.8730
F1 0.8766 0.8741 0.8685 0.8710

Mob Func Precision 0.8641 0.8611 0.8599 0.8653
Recall 0.8719 0.8692 0.862 0.8691
F1 0.8678 0.8651 0.8608 0.8678

For the BERT-Scores, which measures the semantic similarity between the generated and
reference questions FT Zero and Pre Few still showed competitive performance, indicated
by the bold parts in Table 4.1. Particularly, FT Zero tended to have slightly higher precision,
recall and F1 scores across most class. Taking F1-score for presentation since F1-score is a
balanced indicator of recall and precision, FT Zero has gained the highest F1-score in 5
classes S-Care Func: 0.8653, Com Func: 0.8731, Mob Emo: 0.8766, Mob Func: 0.8678. FT
Few, on the other hand, gained the highest F1-score in 2 classes of S-Care Emo: 0.8798,
Com Emo:0.8838. Addtionally, Pre Few has gained highest score in Mob Func. Similar to
the case with traditional metrics, Pre Zero has lowest performance across precision, recall
and F1-scores.

The Baseline model shown in Table 4.1 performed poorly with both traditional metrics
and BERT scores. Specifically, with traditional metrics, nearly all class scores are close to
zero. The BERT scores for the Baseline system are also generally low, with the highest score
remaining below 0.80. This is relatively poor, especially compared to other systems, all of
which achieve higher scores.

As outlined in the previous section, the BERT-F1 score, which combines the advanced
semantic similarity captured by BERT with the balanced precision and recall of the F1-score,
will be utilized for the following comparison.
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4.2 System-wise Comparison

This section compares two systems, the fine-tuning approach and the prompting approach,
against both a baseline model and each other. The fine-tuning system includes two mod-
els: FT Zero (fine-tuned on zero-shot prompted data) and FT Few (fine-tuned on few-shot
prompted data). The prompting system, on the other hand, consists of Pre Zero (non-fine-
tuned models using zero-shot prompts) and Pre Few (non-fine-tuned models using few-shot
prompts).

According to the result section above, FT Few and FT Zero consistently delivered the
highest performance across most classes whereas Pre Few and Pre Zero show poor perfor-
mance, particularly the latter gaining no highest score among all the classes. It indicates
that the fine-tuning system outperforms the prompting system. It can be further illustrated
by Figure 4.1 where the fine-tuning system is represented by the red and blue lines at the
top and the prompting system is represented by the two lines at the bottom.
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Figure 4.1: System Comparison of F1 Scores

In contrast, the prompting system demonstrates lower performance in F1-scores. While
few-shot prompting without additional fine-tuning offers slight performance improvements,
it still lags behind the effectiveness achieved through comprehensive fine-tuning.

However, when compared to the Baseline model in Table 4.1, whose highest score (0.7656)
falls below this threshold (0.86) of all four models, all four models show higher performance
and demonstrate substantial improvements over the baseline. This indicates that both fine-
tuning and prompting approaches are effective for enhancing model performance. Nonethe-
less, the fine-tuning approach remains the key differentiator, as it enhances both the quality
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and semantic relevance of the generated follow-up questions, outperforming both prompting
models.

Additionally, within each system, there are variations in performance among the models.
Among the fine-tuned models, FT Zero, which utilizes zero-shot prompted training, shows
the higher performance on most class than FT Few. It particularly excels in generating
questions related to the category of mobility and producing questions related to all FQ types
on function level. In fact, FT Zero achieves the highest scores across mobility on both
question types as well as achieves the highest scores across all categories in terms of the
question type of function.

Within the prompting system, Pre Few generally performs better than Pre Zero. As
shown in Figure 4.1, this improvement is particularly noticeable in the Mobility category,
where Pre Few has shown better performance gains. However, while Pre Few captures more
refined aspects of the content, the overall structural alignment with the reference content
remains similar between the two models.

To summarize, the performance of FT Zero and FT Few outperforms both the non-
fine-tuned baseline and the non-fine-tuned models using zero-shot and few-shot prompting
methods.

Furthermore, within the fine-tuning system, FT Zero generally demonstrates better per-
formance compared to FT Few. Within prompting system, the few-shot prompting tends to
have slightly better performance relative to zero-shot prompting, except for the category of
Communication.

4.3 Category-wise Comparison

To perform a category-wise comparison, I calculated the average scores across the two ques-
tion types, focusing solely on category performance.

Table 4.6 provides the corresponding average scores using BERT scores. Figure 4.3
illustrates the overall trend across the three categories, showing BERT scores as well as
average scores for the four models.

Category Metric FT Zero FT Few Pre Zero Pre Few

Self-care
Precision 0.8670 0.8664 0.8619 0.8662
Recall 0.8776 0.8776 0.8707 0.8726
F1 0.8721 0.8719 0.8662 0.8692

Communication
Precision 0.8749 0.8731 0.8707 0.8644
Recall 0.8812 0.8814 0.8721 0.8720
F1 0.8780 0.8771 0.8713 0.8681

Mobility
Precision 0.8694 0.8659 0.8634 0.8672
Recall 0.8754 0.8736 0.8662 0.8711
F1 0.8722 0.8696 0.8647 0.8690

Table 4.4: Average BERT Scores for Four Systems Across Categories

Communication consistently demonstrates the highest performance across all systems.
FT Zero leads with an impressive F1-score of 0.8780, supported by high precision (0.8749)
and recall (0.8812). FT Few follows closely with an F1-score of 0.8771, with precision at
0.8731 and recall at 0.8814. These high scores suggest that fine-tuning, regardless of the
prompting method, enhances the model’s ability to generate accurate and relevant responses
in Communication. Pre Zero and Pre Few also perform well but exhibit slightly lower scores,
with Pre Zero achieving an F1-score of 0.8713, precision of 0.8707, and recall of 0.8721,
and Pre Few scoring 0.8681 in F1, with precision of 0.8644 and recall of 0.8720. The high
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Figure 4.2: F1 Scores of Cate FQ type across Systems

performance in this category underscores the effectiveness of fine-tuning for generating precise
and comprehensive responses.

In Self-care, the performance is slightly lower compared to Communication. FT Zero
achieves the highest F1-score of 0.8721, with precision of 0.8670 and recall of 0.8776. FT
Few follows closely with an F1-score of 0.8719, precision of 0.8664, and recall of 0.8776.
This indicates that while the fine-tuned models perform well, the results are less pronounced
compared to Communication. Pre Zero shows an F1-score of 0.8662, with precision of 0.8619
and recall of 0.8707. Pre Few performs slightly better with an F1-score of 0.8690, precision of
0.8662, and recall of 0.8726. These results reflect that while Self-care questions are addressed
effectively, the improvements are not as significant as in Communication.

Mobility exhibits the lowest performance across the systems. FT Zero leads with an
F1-score of 0.8722, precision of 0.8694, and recall of 0.8754. FT Few has a slightly lower
F1-score of 0.8696, with precision of 0.8659 and recall of 0.8736. Pre Zero and Pre Few
both show lower scores, with Pre Zero having an F1-score of 0.8647, precision of 0.8634, and
recall of 0.8662, and Pre Few scoring 0.8690 in F1, with precision of 0.8672 and recall of
0.8711. The lower scores in Mobility across all models highlight this category as the most
challenging, suggesting that further enhancements may be necessary to improve performance
in generating relevant responses.
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Figure 4.3: F1-Scores for Each Model and Average F1-Scores for Each Category

When calculating the average scores of each category over all models, the results are:
Communication: 0.8736, Self-care: 0.8699 Mobility: 0.8689, as indicate by Figure 4.3.

Overall, Communication is the strongest category, achieving the highest precision, recall
and F1-scores across all models. Self-care shows strong performance but with less pronounced
results compared to Communication, while Mobility remains the most challenging category,
requiring further improvements to match the performance seen in Communication and Self-
care.

4.4 FQ type-wise Comparison

This section compares the results based on two types of follow-up questions: function-level
questions (FQs) and emotional feedback questions. Table 4.6 presents the results using BERT
scores, with a primary focus on BERT-F1 scores for evaluation.
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Category Metric FT Zero FT Few Pre Zero Pre Few

FQ on Emo
Precision 0.8766 0.8752 0.8677 0.8691
Recall 0.8827 0.8835 0.8723 0.8739
F1 0.8795 0.8792 0.8699 0.8714

FQ on Func
Precision 0.8643 0.8629 0.8629 0.8628
Recall 0.8734 0.8715 0.8670 0.8698
F1 0.8687 0.8665 0.8655 0.8661

Table 4.5: Average BERT Scores for Four Systems Across Categories

Category Metric FT Zero FT Few Pre Zero Pre Few

Self-care
Precision 0.8670 0.8664 0.8619 0.8662
Recall 0.8776 0.8776 0.8707 0.8726
F1 0.8721 0.8719 0.8662 0.8692

Communication
Precision 0.8749 0.8731 0.8707 0.8644
Recall 0.8812 0.8814 0.8721 0.8720
F1 0.8780 0.8771 0.8713 0.8681

Mobility
Precision 0.8694 0.8659 0.8634 0.8672
Recall 0.8754 0.8736 0.8662 0.8711
F1 0.8722 0.8696 0.8647 0.8690

Table 4.6: Average BERT Scores for Four Systems Across Categories

The comparison between question types of emotional feedback and function level mea-
suring reveals a clear trend in model performance. Across all four systems—FT Zero, FT
Few, Pre Zero, and Pre Few—Emotion-related questions consistently achieve higher average
BERT-F1 scores compared to Function-related questions, as illustrated in Figure 4.4 below.

FT
Ze
ro

FT
Fe
w

Pr
e
Ze
ro

Pr
e
Fe
w

0.85

0.86

0.87

0.88

0.89

0.9

System

A
ve
ra
g
e
B
E
R
T

F
1
S
co
re

Emotion
Function

Figure 4.4: Comparison of Average BERT F1 Scores for Emotion and Function FQ Types
across Different Systems

For Emotion-related questions, the average F1 scores are notably higher. For example,
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the FT Zero system, which performs best in this category, achieves an F1 score of 0.8795.
This trend is consistent across all systems, with Emotion-related F1 scores ranging from
0.8714 to 0.8795, reflecting robust performance in this category. In contrast, Function-related
questions consistently exhibit lower F1 scores. The highest score achieved by the FT Zero
system for Function questions is 0.8687, which is lower than the scores for Emotion-related
questions across the same systems. The F1 scores for Function questions are relatively close
across the four systems, with FT Few, Pre Zero, and Pre Few showing scores between 0.8655
and 0.8687. Overall, the data highlights a disparity in performance between Emotion and
Function question types, with Emotion questions being handled with higher accuracy across
all evaluated systems.
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Chapter 5

Error Analysis and Discussion

This Chapter performs error analysis and discussion of the finding from results.

5.1 Error Analysis

Error analysis is crucial in natural language processing tasks such as question generation
because errors directly impact the effectiveness and reliability of the generated content.
When questions are poorly generated, error analysis helps identify and rectify these issues,
providing insights and valid assessments.

Continuing a conversation has always been challenging, as it requires identifying key
concepts worth exploring and asking relevant questions to extract targeted information Hu
et al. (2024); Xiao et al. (2020a). In generating follow-up questions (FQs), the model is
expected to identify the target activity in the given conversations and subsequently ask
questions aligned with the task objectives of monitoring functional levels and emotional
feedback. Moreover, in natural language generation tasks, including question generation,
it is essential to evaluate the relevance, completeness and coherence of the generated text.
Therefore, the current error analysis mainly involves three parts: errors in identifying target
activities, errors in generating task-objective-relevant FQs, and errors related to the quality
of generated text in terms of relevance, completeness and coherence.

5.1.1 Errors in Identifying Target Activities

The ability to detect target activities in conversations is crucial for question generation, as
it directly impacts the final evaluation, especially if the model’s focus differs from that of
human annotators. Errors in identifying the target activity can be grouped into several
scenarios.

The first scenario involves identifying a different activity than the one in the reference.
While this type of error is not necessarily ”wrong”—given that there is only one reference
per utterance (as discussed in the Limitation section)—it still counts as an error because it
differs from the reference and affects accuracy. This can occur when multiple activities are
mentioned in a conversation, all of which are worth exploring. In such cases, models may
struggle to choose the most relevant one for follow-up question (FQ) generation. For instance,
in a conversation discussing ”a neighbor’s cat visit”, ”crossword puzzles”, and ”a favorite
game show”, the FT Zero model (the top performer) chose to continue the conversation with
the first two activities, while the human reference focused on the third.

Conversation:

C: How was your day? Did anything interesting happen? P: Oh, yes! My
neighbor’s cat visited me today. It was very friendly and happened to stay all

43



44 CHAPTER 5. ERROR ANALYSIS AND DISCUSSION

evening. I enjoyed its company. C: That’s lovely to hear! Have you been doing
your crossword puzzles like usual? P: Yes, indeed. I completed one this morning.
It helps me with keeping my mind sharp. C: That’s wonderful to hear. Did you
watch your favorite game show in the evening? P: Oh yes, it’s a favorite of mine,
keeps me entertained. I try to guess the answers before they’re revealed. It’s
quite fun!

Reference:

1. What is you main challenge in answering to the game shows questions?

2. Do you read the newspaper to keep up with economy?

3. If you would like to be able to answer the economy questions you might
want to consider reading the economy pages as well.

FT Zero Candidate 1:

1. That’s great to hear about your neighbor’s cat visiting. How did you feel
when it stayed all evening?

2. Did the cat’s company help you feel more relaxed or energized?

3. That’s wonderful to hear. How about the crossword puzzle you completed
earlier today, did it help you feel more engaged or focused?

4. That’s great to hear. Did you find it challenging or did the answers come
easily to you?

The second scenario involves identifying zero activities worth exploring. When a model
incorrectly assumes there is no activity worth probing, it may continue the conversation
without asking about any specific activity. For example, in the conversation below, at least
three activities are mentioned that could be further explored: ”changing basic body posi-
tions”, ”having some trouble getting up from my armchair” and ”watching a favorite show”.
FT Zero and FT Few correctly identify ”moving from the armchair to a standing position”
as the target activity, while Pre Zero starts a new conversation with open-ended questions,
failing to mention any activity.

Conversation:

C: How was your day, Ms. Elliot? Did you have any difficulties changing basic
body positions today? P: Yes, dear. I have been having some trouble getting up
from my armchair. I feel a bit stiff. C: I see. I can assist you with some gentle
stretches that may help loosen you up. Should we try those tomorrow? P: That
would be wonderful, thank you. I really want to regain some flexibility. C: I’m
glad to hear that. Remember, little by little progress is good progress! P: Thank
you for the encouragement. I really appreciate your help and support.

Reference:

1. were you able to get in and out of your weelchair today?

2. oh, that is worrying. what happend?

3. are you sure your leg is not broken after falling?

FT Zero candidate:

1. Ms. Elliot, did you find it challenging to move from the armchair to a
standing position today?

1the candidate generated by fine-tuned models on zero-shot prompted data
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2. How did it feel when you tried to get up from the armchair?

3. Did you experience any pain or discomfort when trying to stand up?

4. Would you say you have any difficulty with coordination when changing
body positions?

FT Few candidate 2:

1. Did you find it difficult to get up from the armchair today, Ms. Elliot?

2. Did you feel any discomfort while getting up from the armchair?

3. How long did it take you to get up from the armchair?

4. Did you need any help or assistance to get up from the armchair

Pre Zero candidate 3:

1. What did you do today?

2. How was it?

3. That’s great!

4. Oh, I see. What happened?

5. That’s understandable. It can take some time to get used to a new routine.

6. What do you think we could do to help?

Pre Few candidate 4:

1. Did you manage to get up from the chair today mrs Elliot?

The third scenario is identifying an unrelated activity. The task aims to generate ques-
tions about activities to elicit responses reflecting emotions or function levels. If the chosen
activity has little potential for generating such follow-up questions, it is considered unrelated
and thus an error. For example, in an output intended to assess function level, FT Zero’s
first question asks ”the neighbor’s cat visiting” and Pre Zero asks ”the cat”, both focused
on My neighbor’s cat visited me in the conversation (for original conversation, see 5.1.1) as
the activity, whereas the reference asks answering to the game shows questions. Therefore,
these two inferences are unrelated to the task and therefore classified as an error.

Reference:

• What is you main challenge in answering to the game shows questions?

FT Zero Candidate 5:

• That’s great to hear about your neighbor’s cat visiting. How did you feel
when it stayed all evening?

Pre Zero candidate:

• What was the cat like?

2the candidate generated by fine-tuned models on few-shot prompting
3the candidate generated by pretrained models on zero-shot prompting
4the candidate generated by fine-tuned models on few-shot prompting
5the candidate generated by fine-tuned models on zero-shot prompted data
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5.1.2 Errors in Generating Task-Objective-Relevant FQs

The ability to generate task-objective-relevant follow-up questions (FQs) means that the
generated FQs should effectively fulfill the task’s objective, such as eliciting responses that
reflect functional levels or emotional feedback. Errors in this area can be classified into
several categories.

The first category involves limited information provided by the activity in the conversa-
tion for asking. In some cases, even when a specific activity is clearly identified, the activity
may be too general to generate FQs that meet the task objectives. While human experts
recognize the need for a more specific activity and continue the conversation accordingly,
models often fail to make this distinction and ask questions about the general activity in-
stead. This typically occurs because the model does not fully grasp why the activity is worth
exploring further. For instance, in a conversation about ”understanding a message without
words”, the model might ask directly about this general concept. In contrast, human experts
would focus on a more specific, related event, such as ”(what can you tell when) seeing the
face of the one you are talking to”, which can be considered a sub-activity of ”understanding
a message without words”.

Conversation:

C: Have you ever needed to understand a message without words, just through
symbols or gestures? P: Oh yes, definitely. Sometimes I can tell if someone is
feeling sad just from their body language. C: It’s impressive how we can com-
prehend messages without any words, isn’t it? P: Absolutely. It’s a remarkable
aspect of communication that often gets overlooked. C: It truly is amazing how
much information we can gather non-verbally, like knowing when someone is ex-
cited based on their gestures. P: Yes, it really adds depth to our interactions and
understanding of others.

Reference:

1. when on the phone, do you miss seeing the face of the one you are talking
to.

2. I see. You can read a lot from just looking at people when talk to them.

3. what do you do when you see that happen?

FT Zero candidate:

1. Can you recall a specific situation where you understood a message without
words?

2. How did you feel during that conversation? Did it feel different from usual
conversations?

3. What do you think makes it easier or harder to understand messages without
words?

The second category involves the model asking non-target questions. Models may gener-
ate questions that do not align with the task objectives, such as monitoring functional levels
or eliciting emotional feedback. For example, in a conversation (5.1.1) where the model
is expected to inquire about functional levels based on activities like doing your crossword
puzzles or watching your favorite game show, it might instead ask about feelings, as seen
in the FT Few candidate, which asks, How did you feel about... and Do you enjoy.... This
diverges from the intended task objective. Similarly, models might fail to detect the need
for emotional feedback in FQs, resulting in irrelevant or superficial questions that do not
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contribute to the task. For instance, in a task designed to elicit emotional feedback, the
model might instead focus on functional levels, leading to questions that are off-target.

FT Few candidate:

1. How did you feel about having company with your neighbor’s cat?

2. Did you enjoy looking after it and making sure it was comfortable?

Similarly, models might fail to detect the emotional feedback required for FQs, leading to
irrelevant or superficial questions that do not contribute to the task objective. The following
two inference is extracted from the output of task to ask emotional feedback whereas these
two asks about the function level.

Pre Zero candidate:

1. What was the most difficult part of the lunges for you today?

2. Did you have any difficulties with the other exercises as well?

3. How did you manage to complete the squats?

Pre Few candidate:

1. That’s great to hear! Did you find it easy to follow the therapist’s instruc-
tions during the session?

2. It’s completely okay to ask for clarification when needed. Is there any par-
ticular exercise that you found most challenging to comprehend today?

5.1.3 Relevant, Complete and Coherent

Relevance is a critical aspect of natural language generation, including question generation.
In the context of generating follow-up questions (FQs) between caregivers and patients for
monitoring purposes, being complete and coherent is equally important. This is because
such conversations, in real-world scenarios, are typically complete and coherent—a series of
questions that build on one another, differing from more spontaneous natural conversations.
Therefore, ensuring that FQs are relevant, complete, and coherent is crucial, yet it remains
a challenge for generative models, often leading to errors.

For instance, in the following conversation, the Pre Zero model generates repetitive ques-
tions without fully exploring the context of the conversation. This lack of completeness and
coherence can adversely affect the model’s accuracy.

Conversation:

C: How are you feeling today? Did you have any troubles going to the bathroom?
P: I’m feeling fine thank you. No issues with using the bathroom today.

Pre Zero candidate:

1. What are you feeling today? Did you have any troubles going to the bath-
room?

2. What are you feeling today? Did you have any troubles going to the bath-
room?

3. What are you feeling today? Did you have any troubles going to the bath-
room?

4. are you feeling today? Did you have any troubles going to the bathroom?]

Pre Few candidate:

• How did you go to the bathroom today?
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5.2 Discussion of Results

5.2.1 Limitation

Several limitations affected the outcomes of this task.

Firstly, the absence of a validation dataset during prompt engineering had a significant
impact on the entire downstream process. Prompt engineering is critical in this context
because it directly influences the generation of training data, which is essential for fine-
tuning models. The lack of a validation dataset likely hindered the optimization of model
performance, as it restricted the ability to fine-tune prompts and evaluate their effective-
ness. Although human evaluation was conducted, relying on a single annotator reduces the
reliability of the results compared to an automatic evaluation with a validation dataset. Ad-
ditionally, the prompts developed during prompt engineering were consistently used across
both fine-tuned systems and default systems for final inference generation. While this con-
sistency helps maintain uniformity, the absence of validation data limited opportunities for
further refining model performance. Validation data would have been particularly useful in
enhancing few-shot prompting, where the selection and order of examples play a crucial role.
This limitation is reflected in the performance of fine-tuned models using few-shot prompting
training data and in pretrained models using few-shot prompting, where the limited guidance
from only two examples may have constrained the diversity and effectiveness of the training
process.

Secondly, there was a shortage of references for each inference. As outlined in the method-
ology and discussed in the error analysis, multiple references were intended to improve eval-
uation accuracy by accommodating the one-to-many nature of conversations, which can lead
to various valid inference possibilities. However, due to time constraints, only one reference
was provided per inference, potentially compromising the accuracy of the evaluation. This
shortage also exacerbated the risk of fake errors—incorrect error annotations that misidentify
a model’s output as wrong when it is, in fact, a valid alternative—because the evaluation
lacked the necessary context to properly assess all possible valid responses.

Thirdly, the training data lacked diversity. Despite the broad range of daily activities
defined by the International Classification of Functioning, Disability, and Health (ICF), only
three categories were selected for this task due to time constraints. This limited scope could
impair the models’ ability to generalize to conversations about topics not covered during
training, potentially affecting overall performance.

5.2.2 System-wise

The primary system comparison is between the fine-tuned systems and Non-fine-tuned sys-
tems. Fine-tuned systems include fine-tuning llama3 on datasets generated by GPT using
zero-shot prompting and few-shot prompting. After fine-tuning, llama models were tested
using basic instructions, without employing additional few-shot or zero-shot prompts during
the inference. The Non-fine-tuned systems include the pre-trained llama3 with zero-shot
prompting and few-shot prompting during the inference.

The Fine-tuned models on few-shot and zero-shot prompting performed similarly, with
the model fine-tuned on zero-shot data even slightly outperforming the one fine-tuned on
few-shot data. This may be because the zero-shot-generated training data was more diverse
and of higher quality. During prompt engineering, only two examples were used for few-shot
prompts, and these examples remained the same across the individual category. This might
limit the fine-tuned models’ ability to handle activities outside the provided activities. For
instance, under the category of ”mobility”, follow-up questions (FQs) were generated around
activities like ”Walking”, ”Going up and downstairs”, and ”Moving around”. However, the
two FQ examples used in few-shot prompting were exclusively about ”walking”, potentially
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limiting the diversity of the few-shot training data by providing task guidance with limited
examples and further influencing the performance of fine-tuned llama trained on few-shot
prompted data.

This suggests that fine-tuning on diverse data, whether generated by few-shot or zero-shot
prompts, allows the model to effectively learn the underlying task. The slight performance
edge observed with zero-shot data might indicate that it offered more generalized or varied
examples, enhancing the model’s ability to generalize across different scenarios and it stressed
the importance of example choice during few-shot prompting.

In contrast, the second system group includes non-fine-tuned LLaMA3 models evaluated
using few-shot and zero-shot prompting. In this case, the models performed better with
few-shot prompts compared to zero-shot prompts. This outcome is expected, as few-shot
prompting provides explicit examples of the task, offering additional context and reducing
ambiguity. This guided approach helps the model better understand and execute the task.
On the other hand, zero-shot prompting relies entirely on the model’s pre-existing knowledge
without specific examples, which can lead to less accurate performance, particularly if the
task or context is not well-defined.

Overall, the finding that fine-tuned LLaMA3 models generally outperform non-fine-tuned
models underscores the benefits of task-specific adaptation. Fine-tuning allows models to
internalize and specialize in the task, leading to better generalization and more accurate
results, even when evaluated with minimal instructions. In contrast, while prompting can
improve the performance of non-fine-tuned models—as evidenced by comparisons with the
baseline model, an original non-fine-tuned LLaMA3 evaluated without any prompting—it
cannot match the deep task alignment achieved through fine-tuning, which is essential for
optimal performance.

5.2.3 Category-wise

The results indicate the finding of category-related trend that models generally have higher
accuracy in the communication category, followed by self-care, and then mobility.

Despite having the most training data in the mobility category (375 examples) and the
highest number of activity types (16), this category does not exhibit the highest accuracy.
This might be due to the complexity and variability inherent in having so many types of
activities. The model may struggle with this diversity, as the vast range of examples could
introduce more noise and make it harder for the model to generalize effectively. Consequently,
the accuracy is lower despite the extensive training data.

In contrast, the communication category, which has fewer training examples (222) and
fewer activity types (13), demonstrates higher accuracy. When comparing the ICF activities
used to generate conversations and FQs, the activities within the communication category,
while not the least in amount, exhibit less variation. For instance, to assess functional lev-
els related to mobility, the training data conversations might involve distinct and diverse
activities such as ”hand and arm use” and ”moving around in different locations”. In con-
trast, activities related to communication are generally variations of similar tasks, such as
”receiving spoken messages” and ”producing non-verbal languages”. This may suggests that
the tasks within the communication category might be more uniform or straightforward for
the model to handle, allowing it to achieve better performance even with less training data.
Another possibility is that this type of conversations and questions is more likely to be part
of the pretraining data and thus the model is already better equipped to represent and gen-
erate this category. Given that the test data maintains the same distribution in terms of
data quantity and types, it’s likely that the reduced complexity and fewer activity types in
the communication category make it easier for the model to learn and generalize from the
available examples.
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The self-care category, with the least amount of training data (166 examples) and the
fewest activity types (7), ranks in between in terms of accuracy. Similar to the communication
category, the fewer activity types might present a more straightforward task for the model
compared to the mobility category, although the limited data could constrain the model’s
ability to learn comprehensively.

5.2.4 FQ type-wise

The finding that function-level follow-up questions (FQs) have lower performance compared
to emotional feedback FQs across all categories highlights the varying complexity and de-
mands of these two types of questions. Function-level FQs, designed to probe specific func-
tional aspects of a patient’s condition, require a deep understanding of medical knowledge
to ask appropriate questions. The complexity of these questions lies in accurately assessing
and interpreting the patient’s functional abilities and limitations. This type of questioning
demands precision and a thorough understanding of the patient’s medical context, making
it more challenging for models to generate or interpret these questions accurately. The lower
performance in this area likely reflects the model’s difficulty in handling the nuanced and
specialized language required for effective function-level questions.

In contrast, FQs related to emotional feedback are generally less complex and more
straightforward. These questions aim to gather information about the patient’s feelings,
perceptions, or emotional responses to the activities discussed in the conversation. Emo-
tional feedback questions are more about understanding the patient’s perspective rather
than assessing specific functional abilities, requiring less technical precision and medical
knowledge. The relative simplicity of these questions allows the model to generate and in-
terpret them more effectively, leading to higher performance in this area. This discrepancy
in performance underscores the challenges models face when dealing with more specialized,
knowledge-intensive tasks, compared to simpler, more general inquiries.



Chapter 6

Conclusion and Future Work

This project aimed to develop an automatic method for generating appropriate follow-up
questions to monitor patients’ physical and mental conditions using the Llama3 generative
model. The study explored two optimization approaches: prompt engineering (utilizing
zero-shot and few-shot prompting) and fine-tuning the model. The primary focus was on
comparing two systems: fine-tuned (FT) models that did not use prompt engineering and
non-fine-tuned (non-FT) models that relied on prompt engineering techniques. Due to
constraints such as the substantial amount of training data required for fine-tuning and
limited time, GPT-3.5 was used to generate training data through zero-shot and few-shot
prompting.

There are four findings in the current project:

1. Effectiveness of Fine-Tuning: The results demonstrated that fine-tuned LLaMA3
models generally outperformed non-fine-tuned models, underscoring the benefits of
task-specific adaptation. Fine-tuning allowed the models to internalize and specialize in
the task, leading to better generalization and more accurate results, even with minimal
instructions.

2. Impact of Prompting: While prompting improved the performance of non-fine-tuned
models, as evidenced by comparisons with the baseline model, it did not match the
deep task alignment achieved through fine-tuning.

3. Category-Related Performance Trends: The models generally showed higher ac-
curacy in the communication category, followed by self-care and then mobility. This
trend suggests that the quantity, quality, and distribution of training data significantly
influence performance, with less diversity in training data proving more effective in
certain closed-domain scenarios.

4. Difficulty in Generating Function-Level Follow-Up Questions: The study
found that function-level follow-up questions (FQs) had lower performance compared
to emotional feedback FQs across all categories. This disparity highlights the vary-
ing complexity and demands of these two types of questions, with function-level FQs
requiring a deeper understanding of medical knowledge.

Despite those findings, the project faced several limitations: the absence of a validation
dataset during prompt engineering may make it challenging to refine prompts effectively,
potentially leading to sub-optimal performance; a shortage of references for each inference
may bias the performance assessment, as it did not fully capture the range of acceptable
responses; and a lack of diversity in training data may affect the model’s ability to generalize
across different conversational topics and patient interactions.
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Addressing these limitations can be beneficial for future work. Future research should
incorporate validation datasets, expand reference data and enhance training data diversity,
which will advance the development of reliable models for generating follow-up questions
in patient monitoring, ultimately contributing to better healthcare outcomes. Additionally,
models were trained on data generated by GPT, and the resulting performance of Llama3
suggests the feasibility of using LLMs to generate data for subsequent fine-tuning. This
approach is promising for future work, as it can mitigate the challenge of obtaining extensive
training data, which is often resource-intensive.

What’s more, the primary results indicate that fine-tuned systems generally achieve
higher scores than non-fine-tuned systems across the three categories of communication,
self-care, and mobility, as well as for the two follow-up question types for measuring function
levels and requiring emotional feedback. This trend holds true whether the systems are eval-
uated using traditional metrics or BERT scores, highlighting the effectiveness of fine-tuning
in generating follow-up questions.

During error analysis, it was observed that fine-tuned models, whether trained on zero-
shot or few-shot prompted data, excel in identifying activities worth probing and in generat-
ing relevant, complete, and coherent follow-up questions that align with the task objectives,
such as health monitoring. Thus, applying generative models with fine-tuning approaches
shows promise for future use in healthcare, particularly for monitoring patients’ physical and
mental conditions.
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